Матрица переходных состояний цепи маркова. Марковские цепи

Задача 1. Задана матрица вероятностей перехода дискретной цепи Маркова из i -го состояния в j -ое за один шаг (i , j =1, 2). Распределение вероятностей по состояниям в начальный момент t =0 определяется вектором =(0,1; 0,9). Найти:

1. матрицу Р2 перехода цепи из состояния i в состояние j за два
шага;

2. распределение вероятностей по состояниям в момент t =2;

3. вероятность того, что в момент t =1 состоянием цепи будет А2 ;

4. стационарное распределение.

Решение. Для дискретной цепи Маркова в случае ее однородности справедливо соотношение

где Р1 – матрица переходных вероятностей за один шаг;
Рn - матрица переходных вероятностей за n шагов;

1. Найдем матрицу Р2 перехода за два шага

Пусть распределение вероятностей по состояниям на S -ом шаге определяется вектором
.
Зная матрицу Pn перехода за n шагов, можно определить распределение вероятностей по состояниям на (S+ n) –ом шаге . (5)

2. Найдем распределение вероятностей по состояниям системы в момент t =2. Положим в (5) S =0 и n =2. Тогда .

Получим .

3. Найдем распределение вероятностей по состояниям системы в момент t =1.

Положим в (5) s =0 и n =1, тогда .
Откуда видно, что вероятность того, что в момент t =1 состоянием цепи будет А2 ,равна р2(1) =0,69.
Распределение вероятностей по состояниям называется стационарным, если оно не меняется от шага к шагу, то есть
Тогда из соотношения (5) при n =1 получим

4. Найдем стационарное распределение. Так как =2 имеем =(р1; р2). Запишем систему линейных уравнений (6) в координатной форме


Последнее условие называется нормировочным. В системе (6) всегда одно уравнение является линейной комбинацией других. Следовательно, его можно вычеркнуть. Решим совместно первое уравнение системы и нормировочное. Имеем 0,6р1 =0,3р2 , то есть р2 =2р1 . Тогда р1 +2 р1 =1 или , то есть . Следовательно, .
Ответ:
1) матрица перехода за два шага для данной цепи Маркова имеет вид ;
2) распределение вероятностей по состояниям в момент t =2 равно ;
3) вероятность того, что в момент t =1 состоянием цепи будет А2 , равна р2(t) =0,69;
4) стационарное распределение имеет вид

Задана матрица интенсивностей переходов непрерывной цепи Маркова. Составить размеченный граф состояний, соответствующий матрице Λ; составить систему дифференциальных уравнений Колмогорова для вероятностей состояний; найти предельное распределение вероятностей. Решение. Однородная цепь Маркова с конечным числом состояний А1 , А2 ,…А характеризуется матрицей интенсивностей переходов ,

где - интенсивность перехода цепи Маркова из состояния Аi в состояние Аj ; рij(Δt) -вероятность перехода Ai→ Aj за интервал времени Δ t .

Переходы системы из состояния в состояние удобно задавать с помощью размеченного графа состояний, на котором отмечаются дуги, соответствующие интенсивностям λ ij >0. Составим размеченный граф состояний для заданной матрицы интенсивностей переходов

Пусть - вектор вероятностей р j(t) ,
j =1, 2,…,, нахождения системы в состоянии А j в момент t .

Очевидно, что 0≤р j(t) ≤1 и . Тогда по правилу дифференцирования векторной функции скалярного аргумента получим . Вероятности р j(t) удовлетворяют системе дифференциальных уравнений Колмогорова (СДУК), которая в матричной форме имеет вид . (7)

Если в начальный момент система находилась в состоянии Аj , то СДУК следует решать при начальных условиях
р i (0)=1, рj(0)=0, j≠i, j=1, 2,…, . (8)
Совокупность СДУК (7) и начальных условий (8) однозначно описывает однородную цепь Маркова с непрерывным временем и конечным числом состояний.
Составим СДУК для заданной цепи Маркова. Поскольку =3, то j =1, 2, 3.

Из соотношения (7) получим

.
Отсюда будем иметь

Последнее условие называется нормировочным.
Распределение вероятностей по состояниям называется стационарным , если оно не меняется с течением времени, то есть , где р j= const , j =1,2,…,. Отсюда .

Тогда из СДУК (7) получаем систему для нахождения стационарного распределения
(9)
Для данной задачи из СДУК будем иметь

Из нормировочного условия получим 3р2+р2+р2=1 или . Следовательно, предельное распределение имеет вид .
Заметим, что этот результат можно получить непосредственно по размеченному графу состояний, если воспользоваться правилом: для стационарного распределения сумма произведений λ ji pi , j≠ i , для стрелок, выходящих из i -го состояния, равна сумме произведений λ ji pi , j≠ i , для стрелок, входящих в i -ое состояние. Действительно,

Очевидно, что полученная система эквивалентна той, которая составлена по СДУК. Следовательно, она имеет то же решение.
Ответ: стационарное распределение имеет вид .

Определение. Однородной называют цепь Маркова, если условная вероятность (переход из состояния в состоянии) не зависит от номера испытания. Поэтому вместо пишут просто.

Пример 1. Случайное блуждание. Пусть на прямой в точке с целочисленной координатой находится материальная частица. В определенные моменты времени частица испытывает толчки. Под действием толчка частица с вероятностью смещается на единицу вправо и с вероятностью - на единицу влево. Ясно, что положение (координата) частицы после толчка зависит от того, где находилась частица после непосредственно предшествующего толчка, и не зависит от того, как она двигалась под действием остальных предшествующих толчков.

Таким образом, случайное блуждание? пример однородной цепи Маркова с дискретным временем.

Переходной вероятностью называют условную вероятность того, что из состояния (в котором система оказалась в результате некоторого испытания, безразлично какого номера) в итоге следующего испытания система перейдет в состояние.

Таким образом, в обозначении первый индекс указывает номер предшествующего, а второй? номер последующего состояния. Например, - вероятность перехода из второго состояния в третье.

Пусть число состояний конечно и равно.

Матрицей перехода системы называют матрицу, которая содержит все переходные вероятности этой системы:

Так как в каждой строке матрицы помещены вероятности событий (перехода из одного и того же состояния в любое возможное состояние), которые образуют полную группу, то сумма вероятностей этих событий равна единице. Другими словами, сумма переходных вероятностей каждой строки матрицы перехода равна единице:

Приведем пример матрицы перехода системы, которая может находиться в трех состояниях; переход из состояния в состояние происходит по схеме однородной цепи Маркова; вероятности перехода задаются матрицей:

Здесь видим, что если система находилось в состоянии, то после изменения состояния за один шаг она с вероятностью 0,5 останется в этом же состоянии, с вероятностью 0,5 останется в этом же состоянии, с вероятностью 0,2 перейдет в состояние, то после перехода она может оказаться в состояниях; перейти же из состояния в она не может. Последняя строка матрицы показывает нам, что из состояния перейти в любое из возможных состояний с одной и той же вероятностью 0,1.

На основе матрицы перехода системы можно построить так называемый граф состояний системы, его еще называют размеченный граф состояний. Это удобно для наглядного представления цепи. Порядок построения граф рассмотрим на примере.

Пример 2. По заданной матрице перехода построить граф состояний.

Т.к. матрица четвертого порядка, то, соответственно, система имеет 4 возможных состояния.

На графе не отмечаются вероятности перехода системы из одного состояния в то же самое. При рассмотрении конкретных систем удобно сначала построить граф состояний, затем определить вероятность переходов системы из одного состояния в то же самое (исходя из требования равенства единице суммы элементов строк матрицы), а потом составить матрицу переходов системы.

Голосование: 41, 23

Настоящая статья носит реферативный характер, написана на основе приведенных в конце источников, которые местами цитируются.

Введение в теорию марковских цепей

Цепью Маркова называют такую последовательность случайных событий, в которой вероятность каждого события зависит только от состояния, в котором процесс находится в текущий момент и не зависит от более ранних состояний. Конечная дискретная цепь определяется:

  1. множеством состояний S = { s 1 , …, s n }, событием является переход из одного состояния в другое в результате случайного испытания
  2. вектором начальных вероятностей (начальным распределением) p (0) = { p (0) (1),…, p (0) (n)}, определяющим вероятности p (0) (i) того, что в начальный момент времени t = 0 процесс находился в состоянии s i
  3. матрицей переходных вероятностей P = { p i j }, характеризующей вероятность перехода процесса с текущим состоянием s i в следующее состояние s j , при этом сумма вероятностей переходов из одного состояния равна 1:

∑ j =1… n p i j = 1

Пример матрицы переходных вероятностей с множеством состояний S = { S 1 , …, S 5 }, вектором начальных вероятностей p (0) = {1, 0, 0, 0, 0}:

С помощью вектора начальных вероятностей и матрицы переходов можно вычислить стохастический вектор p (n) — вектор, составленный из вероятностей p (n) (i) того, что процесс окажется в состоянии i в момент времени n . Получить p (n) можно с помощью формулы:

P (n) = p (0) × P n

Векторы p (n) при росте n в некоторых случаях стабилизируются — сходятся к некоторому вероятностному вектору ρ , который можно назвать стационарным распределением цепи. Стационарность проявляется в том, что взяв p (0) = ρ, мы получим p (n) = ρ для любого n .
Простейший критерий, который гарантирует сходимость к стационарному распределению, выглядит следующим образом: если все элементы матрицы переходных вероятностей P положительны, то при n , стремящемуся к бесконечности, вектор p (n) стремится к вектору ρ , являющемуся единственным решением системы вида
p × P = p .
Также можно показать, что если при каком-нибудь положительном значении n все элементы матрицы P n положительны, тогда вектор p (n) все-равно будет стабилизироваться.
Доказательство этих утверждений есть в в подробном виде.

Марковская цепь изображается в виде графа переходов, вершины которого соответствуют состояниям цепи, а дуги — переходам между ними. Вес дуги (i , j), связывающей вершины s i и s j будет равен вероятности p i (j) перехода из первого состояния во второе. Граф, соответствующий матрице, изображенной выше:


Классификация состояний марковских цепей

При рассмотрении цепей Маркова нас может интересовать поведение системы на коротком отрезке времени. В таком случае абсолютные вероятности вычисляются с помощью формул из предыдущего раздела. Однако более важно изучить поведение системы на большом интервале времени, когда число переходов стремится к бесконечности. Далее вводятся определения состояний марковских цепей, которые необходимы для изучения поведения системы в долгосрочной перспективе.
Марковские цепи классифицируются в зависимости от возможности перехода из одних состояний в другие.
Группы состояний марковской цепи (подмножества вершин графа переходов), которым соответствуют тупиковые вершины диаграммы порядка графа переходов, называются эргодическими классами цепи. Если рассмотреть граф, изображенный выше, то видно, что в нем 1 эргодический класс M 1 = { S 5 }, достижимый из компоненты сильной связности, соответствующей подмножеству вершин M 2 = { S 1 , S 2 , S 3 , S 4 }. Состояния, которые находятся в эргодических классах, называются существенными, а остальные — несущественными (хотя такие названия плохо согласуются со здравым смыслом). Поглощающее состояние s i является частным случаем эргодического класса. Тогда попав в такое состояние, процесс прекратится. Для S i будет верно p ii = 1, т.е. в графе переходов из него будет исходить только одно ребро — петля.

Поглощающие марковские цепи используются в качестве временных моделей программ и вычислительных процессов. При моделировании программы состояния цепи отождествляются с блоками программы, а матрица переходных вероятностей определяет порядок переходов между блоками, зависящий от структуры программы и распределения исходных данных, значения которых влияют на развитие вычислительного процесса. В результате представления программы поглощающей цепью удается вычислить число обращений к блокам программы и время выполнения программы, оцениваемое средними значениями, дисперсиями и при необходимости — распределениями. Используя в дальнейшем эту статистику, можно оптимизировать код программы — применять низкоуровневые методы для ускорения критических частей программы. Подобный метод называется профилированием кода.

Например, в алгоритме Дейкстры присутствуют следующие состояния цепи:

  • vertex (v), извлечение новой вершины из очереди с приоритетами, переход только в состояние b ;
  • begin (b), начало цикла перебора исходящих дуг для процедуры ослабления;
  • analysis (a), анализ следующей дуги, возможен переход к a , d , или e ;
  • decrease (d), уменьшение оценки для некоторой вершины графа, переход к a ;
  • end (e), завершение работы цикла, переход к следующей вершине.

Остается задать вероятности переходом между вершинами, и можно изучать продолжительности переходов между вершинами, вероятности попадания в различные состояния и другие средние характеристики процесса.

Аналогично, вычислительный процесс, который сводится к обращениям за ресурсами системы в порядке, определяемом программой, можно представить поглощающей марковской цепью, состояния которой соответствуют использованию ресурсов системы – процессора, памяти и периферийных устройств, переходные вероятности отображают порядок обращения к различным ресурсам. Благодаря этому вычислительный процесс представляется в форме, удобной для анализа его характеристик.

Цепь Маркова называется неприводимой, если любое состояние S j может быть достигнуто из любого другого состояния S i за конечное число переходов. В этом случае все состояния цепи называются сообщающимися, а граф переходов является компонентой сильной связности. Процесс, порождаемый эргодической цепью, начавшись в некотором состоянии, никогда не завершается, а последовательно переходит из одного состояния в другое, попадая в различные состояния с разной частотой, зависящей от переходных вероятностей. Поэтому основная характеристика эргодической цепи –
вероятности пребывания процесса в состояниях S j , j = 1,…, n , доля времени, которую процесс проводит в каждом из состояний. Неприводимые цепи используются в качестве моделей надежности систем. Действительно, при отказе ресурса, который процесс использует очень часто, работоспособность всей системы окажется под угрозой. В таком случае дублирование такого критического ресурса может помочь избежать отказов. При этом состояния системы, различающиеся составом исправного и отказавшего оборудования, трактуются как состояния цепи, переходы между которыми связаны с отказами и восстановлением устройств и изменением связей между ними, проводимой для сохранения работоспособности системы. Оценки характеристик неприводимой цепи дают представление о надежности поведения системы в целом. Также такие цепи могут быть моделями взаимодействия устройств с задачами, поступающими на обработку.

Примеры использования

Система обслуживания с отказами

Сервер, состоит из нескольких блоков, например модемов или сетевых карт, к которым поступают запросы от пользователей на обслуживание. Если все блоки заняты, то запрос теряется. Если один из блоков принимает запрос, то он становится занятым до конца его обработки. В качестве состояний возьмем количество незанятых блоков. Время будет дискретно. Обозначим за α вероятность поступления запроса. Также мы считаем, что время обслуживания также является случайным и состоящим из независимых продолжений, т.е. запрос с вероятностью β обслуживается за один шаг, а с вероятностью (1 - β) обслуживается после этого шага как новый запрос. Это дает вероятность (1 - β) β для обслуживания за два шага, (1 - β) 2 β для обслуживания за три шага и т.д. Рассмотрим пример с 4 устройствами, работающими параллельно. Составим матрицу переходных вероятностей для выбранных состояний:

1 - α α 0 0 0
β 1 - α - β α 0 0
0 2 β 1 - α - 2 β α 0
0 0 3 β 1 - α - 3 β α
0 0 0 1 - 4 β

Можно заметить, что она имеет единственный эргодический класс, и, следовательно, система p × P = p в классе вероятностных векторов имеет единственное решение. Выпишем уравнения системы, позволяющей находить это решение:

P 0 (1 - α) + p 1 β = p 0 ,
p 0 α + p 1 (1 - α - β) + p 2 2 β = p 1 ,
p 1 α + p 2 (1 - α - 2 β) + p 3 3 β = p 2 ,
p 2 α + p 3 (1 - α - 3 β) + p 4 4 β = p 3 ,
p 3 α + p 4 (1 - 4 β) = p 4 .

Отсюда получаем (при γ = α / β):

P 1 = γ p 0 ,
p 2 = γ 2 p 0 /2,
p 3 = γ 3 p 0 /3,
p 4 = γ 4 p 0 /4,

из условия нормировки следует:

P 0 = С = (1 + γ + γ 2 /2 + γ 3 /3 + γ 4 /4) -1 .

Теперь известен набор вероятностей π i того, что в стационарном режиме в системе будет занято i блоков. Тогда долю времени p 4 = С γ 4 /4 в системе заняты все блоки, система не отвечает на запросы. Полученные результаты распространяются на любое число блоков. Теперь можно воспользоваться ими: можно сопоставить затраты на дополнительные устройства и уменьшение времени полной занятости системы.
Подробнее можно ознакомиться с этим примером в .

Процессы принятия решений с конечным и бесконечным числом этапов

Рассмотрим процесс, в котором есть несколько матриц переходных вероятностей. Для каждого момента времени выбор той или иной матрицы зависит от принятого нами решения. Понять вышесказанное можно на следующем примере. Садовник в результате анализа почвы оценивает ее состояние одним из трех чисел: (1) - хорошее, (2) - удовлетворительное или (3) - плохое. При этом садовник заметил, что продуктивность почвы в текущем году зависит только от ее состояния в предыдущем году. Поэтому вероятности перехода почвы без внешних воздействий из одного состояния в другое можно представить следующей цепью Маркова с матрицей P1:

Теперь можно сопоставить каждому переходу из одного состояния в другое некоторую функцию дохода, которая определяется как прибыль или убыток за одногодичный период. Садовник может выбирать использовать или не использовать удобрения, именно от этого будет зависеть его конечный доход или убыток. Введем матрицы R1 и R2, определяющие функции дохода в зависимости от затрат на удобрения и качества почвы:

R1
7.00 6.00 3.00
0.00 5.00 1.00
0.00 0.00 -1.00

R2
6.00 5.00 -1.00
7.00 4.00 0.00
6.00 3.00 -2.00

Наконец перед садовником стоит задача, какую стратегию нужно выбрать для максимизации среднего ожидаемого дохода. Может рассматриваться два типа задач: с конечным и бесконечным количеством этапов. В данном случае когда-нибудь деятельность садовника обязательно закончится. Кроме того, визуализаторы решают задачу принятия решений для конечного числа этапов. Пусть садовник намеревается прекратить свое занятие через N лет. Наша задача теперь состоит в том, чтобы определить оптимальную стратегию поведения садовника, то есть стратегию, при которой его доход будет максимальным. Конечность числа этапов в нашей задаче проявляется в том, что садовнику не важно, что будет с его сельскохозяйственным угодьем на N +1 год (ему важны все года до N включительно). Теперь видно, что в этом случае задача поиска стратегии превращается в задачу динамического программирования. Если через f n (i) обозначить максимальный средний ожидаемый доход, который можно получить за этапы от n до N включительно, начиная из состояния с номером i , то несложно вывести рекуррентное соотношение, связывающее f n (i) с числами f n +1 (j)

F n (i) = max k {∑ j =1 m p ij k [ r ij k + f n +1 (j)]}, n = 1, 2, …, N

Здесь k - номер используемой стратегии. Это уравнение основывается на том, что суммарный доход r ij k + f n +1 (j) получается в результате перехода из состояния i на этапе n в состояние j на этапе n +1 с вероятностью p ij k .
Теперь оптимальное решение можно найти, вычисляя последовательно f n (i) в нисходящем направлении (n = N …1). При этом введение вектора начальных вероятностей в условие задачи не усложнит ее решение.
Данный пример также рассмотрен в .

Моделирование сочетаний слов в тексте

Рассмотрим текст, состоящий из слов w . Представим процесс, в котором состояниями являются слова, так что когда он находится в состоянии (S i) система переходит в состояние (s j) согласно матрице переходных вероятностей. Прежде всего, надо «обучить» систему: подать на вход достаточно большой текст для оценки переходных вероятностей. А затем можно строить траектории марковской цепи. Увеличение смысловой нагрузки текста, построенного при помощи алгоритма цепей Маркова возможно только при увеличении порядка, где состоянием является не одно слово, а множества с большей мощностью — пары (u , v), тройки (u , v , w) и т.д. Причем что в цепях первого, что пятого порядка, смысла будет еще немного. Смысл начнет появляться при увеличении размерности порядка как минимум до среднего количества слов в типовой фразе исходного текста. Но таким путем двигаться нельзя, потому, что рост смысловой нагрузки текста в цепях Маркова высоких порядков происходит значительно медленнее, чем падение уникальности текста. А текст, построенный на марковских цепях, к примеру, тридцатого порядка, все еще будет не настолько осмысленным, чтобы представлять интерес для человека, но уже достаточно схожим с оригинальным текстом, к тому же число состояний в такой цепи будет потрясающим.
Эта технология сейчас очень широко применяется (к сожалению) в Интернете для создания контента веб-страниц. Люди, желающие увеличить трафик на свой сайт и повысить его рейтинг в поисковых системах, стремятся поместить на свои страницы как можно больше ключевых слов для поиска. Но поисковики используют алгоритмы, которые умеют отличать реальный текст от бессвязного нагромождения ключевых слов. Тогда, чтобы обмануть поисковики используют тексты, созданные генератором на основе марковской цепи. Есть, конечно, и положительные примеры использования цепей Маркова для работы с текстом, их применяют при определении авторства, анализе подлинности текстов.

Цепи Маркова и лотереи

В некоторых случаях вероятностная модель используется в прогнозе номеров в различных лотереях. По-видимому, использовать цепи Маркова для моделирования последовательности различных тиражей нет смысла. То, что происходило с шариками в тираже, никак не повлияет на результаты следующего тиража, поскольку после тиража шары собирают, а в следующем тираже их укладывают в лоток лототрона в фиксированном порядке. Связь с прошедшим тиражом при этом теряется. Другое дело последовательность выпадения шаров в пределах одного тиража. В этом случае выпадение очередного шара определяется состоянием лототрона на момент выпадения предыдущего шара. Таким образом, последовательность выпадений шаров в одном тираже является цепью Маркова, и можно использовать такую модель. При анализе числовых лотерей здесь имеется большая трудность. Состояние лототрона после выпадения очередного шара определяет дальнейшие события, но проблема в том, что это состояние нам неизвестно. Все что нам известно, что выпал некоторый шар. Но при выпадении этого шара, остальные шары могут быть расположены различным образом, так что имеется группа из очень большого числа состояний, соответствующая одному и тому же наблюдаемому событию. Поэтому мы можем построить лишь матрицу вероятностей переходов между такими группами состояний. Эти вероятности являются усреднением вероятностей переходов между различными отдельными состояниями, что конечно, снижает эффективность применения модели марковской цепи к числовым лотереям.
Аналогично этому случаю, такая модель нейронной сети может быть использована для предсказания погоды, котировок валют и в связи с другими системами, где есть исторические данные, и в будущем может быть использована вновь поступающая информация. Хорошим применением в данном случае, когда известны только проявления системы, но не внутренние (скрытые) состояния, могут быть применены скрытые марковские модели, которые подробно рассмотрены в Викиучебнике (скрытые марковские модели).

Литература

  1. Романовский И.В. Дискретный анализ: Учебное пособие для студентов, 3-е изд. - СПб: Невский Диалект; БХВ Петербург, 2003.
  2. Таха, Хэмди А. Введение в исследование операций, 6-е изд. — М.: Издательский дом «Вильямс», 2001.
  3. Вернер М. Основы кодирования. Учебник для ВУЗов. — М.: Техносфера, 2004.
  4. Беляев А., Гаврилов М., Масальских А., Медвинский М. Марковские процессы , 2004.

Визуализаторы

  1. Алексеев В. Марковские процессы принятия решений , 2002.
  2. Беляев А. Марковские цепи , 2002.

Способы математических описаний марковских случайных процессов в системе с дискретными состояниями (ДС) зависят от того, в какие моменты времени (заранее известные или случайные) могут происходить переходы системы из состояния в состояние.
Если переход системы из состояния в состояние возможен в заранее фиксированные моменты времени, имеем дело со случайным марковским процессом с дискретным временем. Если переход возможен в любой случайный момент времени, то имеем дело со случайным марковским процессом с непрерывным временем.
Пусть имеется физическая система S , которая может находиться в n состояниях S 1 , S 2 , …, S n . Переходы из состояния в состояние возможны только в моменты времени t 1 , t 2 , …, t k , назовём эти моменты времени шагами. Будем рассматривать СП в системе S как функцию целочисленного аргумента 1, 2, …, k , где аргументом является номер шага.
Пример: S 1 → S 2 → S 3 → S 2 .
Условимся обозначать S i ( k ) – событие, состоящее в том, что после k шагов система находится в состоянии S i .
При любом k события S 1 ( k ) , S 2 ( k ) ,…, S n ( k ) образуют полную группу событий и являются несовместными.

Процесс в системе можно представить как цепочку событий.
Пример:S 1 (0) , S 2 (1) , S 3 (2) , S 5 (3) ,….
Такая последовательность называется марковской цепью , если для каждого шага вероятность перехода из любого состояния S i в любое состояние S j не зависит от того, когда и как система пришла в состояние S i .
Пусть в любой момент времени после любого k -го шага система S может находиться в одном из состояний S 1 , S 2 , …, S n , т. е. может произойти одно событие из полной группы событий: S 1 ( k ) , S 2 ( k ) , …, S n ( k ) . Обозначим вероятности этих событий:
P 1 (1) = P (S 1 (1)); P 2 (1) = P (S 2 (1)); …; P n (1) = P (S n ( k ));
P 1 (2) = P (S 1 (2)); P 2 (2) = P (S 2 (2)); …; P n (2) = P (S n (2));
P 1 (k ) = P (S 1 (k )); P 2 (k ) = P (S 2 (k )); …; P n (k ) = P (S n (k )).
Легко заметить, что для каждого номера шага выполняется условие
P 1 (k ) + P 2 (k ) +…+ P n (k ) = 1.
Назовём эти вероятности вероятностями состояний .следовательно, задача будет звучать следующим образом: найти вероятности состояний системы для любого k .
Пример. Пусть имеется какая-то система, которая может находиться в любом из шести состояний. тогда процессы, происходящие в ней, можно изобразить либо в виде графика изменения состояния системы (рис. 7.9, а ), либо в виде графа состояний системы (рис. 7.9, б ).

а)

Рис. 7.9
Также процессы в системе можно изобразить в виде последовательности состояний: S 1 , S 3 , S 2 , S 2 , S 3 , S 5 , S 6 , S 2 .
Вероятность состояния на (k + 1)-м шаге зависит только от состояния на k- м шаге.
Для любого шага k существуют какие-то вероятности перехода системы из любого состояния в любое другое состояние, назовем эти вероятности переходными вероятностями марковской цепи.
Некоторые из этих вероятностей будут равны 0, если переход из одного состояния в другое невозможен за один шаг.
Марковская цепь называется однородной , если переходные состояния не зависят от номера шага, в противном случае она называется неоднородной .
Пусть имеется однородная марковская цепь и пусть система S имеет n возможных состояний: S 1 , …, S n . Пусть для каждого состояния известна вероятность перехода в другое состояние за один шаг, т. е. P ij (из S i в S j за один шаг), тогда мы можем записать переходные вероятности в виде матрицы.

. (7.1)
По диагонали этой матрицы расположены вероятности того, что система переходит из состояния S i в то же состояние S i .
Пользуясь введенными ранее событиями , можно переходные вероятности записать как условные вероятности:
.
Очевидно, что сумма членов в каждой строке матрицы (1) равна единице, поскольку события образуют полную группу несовместных событий.

При рассмотрении марковских цепей, так же как и при анализе марковского случайного процесса, используются различные графы состояний (рис. 7.10).

Рис. 7.10

Данная система может находиться в любом из шести состояний, при этом P ij – вероятность перехода системы из состояния S i в состояние S j . Для данной системы запишем уравнения, что система находилась в каком-либо состоянии и из него за время t не вышла:

В общем случае марковская цепь является неоднородной, т. е. вероятность P ij меняется от шага к шагу. Предположим, что задана матрица вероятностей перехода на каждом шаге, тогда вероятность того, что система S на k -м шаге будет находиться в состоянии S i , можно найти по формуле

Зная матрицу переходных вероятностей и начальное состояние системы, можно найти вероятности состояний после любого k -го шага. Пусть в начальный момент времени система находится в состоянии S m . Тогда для t = 0
.
Найдем вероятности после первого шага. Из состояния S m система перейдет в состояния S 1 , S 2 и т. д. с вероятностями P m 1 , P m 2 , …, P mm , …, P mn . Тогда после первого шага вероятности будут равны

. (7.2)
Найдем вероятности состояния после второго шага: . Будем вычислять эти вероятности по формуле полной вероятности с гипотезами:
.
Гипотезами будут следующие утверждения:

  • после первого шага система была в состоянии S 1 -H 1 ;
  • после второго шага система была в состоянии S 2 -H 2 ;
  • после n -го шага система была в состоянии S n -H n .
Вероятности гипотез известны из выражения (7.2). Условные вероятности перехода в состояние А при каждой гипотезе тоже известны и записаны в матрицы переходных состояний. Тогда по формуле полной вероятности получим:

Вероятность любого состояния после второго шага:

(7.3)
В формуле (7.3) суммируются все переходные вероятности P ij , но учитываются только отличные от нуля. Вероятность любого состояния после k -го шага:

(7.4)
Таким образом, вероятность состояния после k -го шага определяется по рекуррентной формуле (7.4) через вероятности (k – 1)-го шага.

Задача 6. Задана матрица вероятностей перехода для цепи Маркова за один шаг. Найти матрицу перехода данной цепи за три шага.
Решение. Матрицей перехода системы называют матрицу, которая содержит все переходные вероятности этой системы:

В каждой строке матрицы помещены вероятности событий (перехода из состояния i в состояние j ), которые образуют полную группу, поэтому сумма вероятностей этих событий равна единице:

Обозначим через p ij (n) вероятность того, что в результате n шагов (испытаний) система перейдет из состояния i в состояние j . Например p 25 (10) - вероятность перехода из второго состояния в пятое за десять шагов. Отметим, что при n=1 получаем переходные вероятности p ij (1)=p ij .
Перед нами поставлена задача: зная переходные вероятности p ij , найти вероятности p ij (n) перехода системы из состояния i в состояние j заn шагов. Для этого введем промежуточное (между i и j ) состояние r . Другими словами, будем считать, что из первоначального состояния i за m шагов система перейдет в промежуточное состояние r с вероятностью p ij (n-m) , после чего, за оставшиеся n-m шагов из промежуточного состояния r она перейдет в конечное состояние j с вероятностью p ij (n-m) . По формуле полной вероятности получаем:
.
Эту формулу называют равенством Маркова. С помощью этой формулы можно найти все вероятности p ij (n) , а, следовательно, и саму матрицу P n . Так как матричное исчисление ведет к цели быстрее, запишем вытекающее из полученной формулы матричное соотношение в общем виде.
Вычислим матрицу перехода цепи Маркова за три шага, используя полученную формулу:

Ответ: .

Задача №1 . Матрица вероятностей перехода цепи Маркова имеет вид:
.
Распределение по состояниям в момент времени t=0 определяется вектором:
π 0 =(0.5; 0.2; 0.3)
Найти: а) распределение по состояниям в моменты t=1,2,3,4 .
в) стационарное распределение.

Маркова цепь (Markov Chain) - марковский процесс с дискретным временем, заданный в измеримом пространстве.

Введение

Марковские случайные процессы названы по имени выдающегося русского математика А.А.Маркова (1856-1922), впервые начавшего изучение вероятностной связи случайных величин и создавшего теорию, которую можно назвать "динамикой вероятностей".

В дальнейшем основы этой теории явились исходной базой общей теории случайных процессов, а также таких важных прикладных наук, как теория диффузионных процессов, теория надежности, теория массового обслуживания и т.д. В настоящее время теория марковских процессов и ее приложения широко применяются в самых различных областях.

Благодаря сравнительной простоте и наглядности математического аппарата, высокой достоверности и точности получаемых решений, особое внимание марковские процессы приобрели у специалистов, занимающихся исследованием операций и теорией принятия оптимальных решений.

Простой пример: бросание монеты

Прежде чем дать описание общей схемы, обратимся к простому примеру. Предположим, что речь идет о последовательных бросаниях монеты при игре "в орлянку "; монета бросается в условные моменты времени t = 0, 1, ... и на каждом шаге игрок может выиграть ±1 с одинаковой вероятностью 1/2, таким образом в момент t его суммарный выигрыш есть случайная величина ξ(t) с возможными значениями j = 0, ±1, ...

При условии, что ξ(t) = k, на следующем шаге выигрыш будет уже равен ξ(t+1) = k ± 1, принимая указанные значения j = k ± 1 c одинаковой вероятностью 1/2.

Условно можно сказать, что здесь с соответствующей вероятностью происходит переход из состояния ξ(t) = k в состояние ξ(t+1) = k ± 1.

Формулы и определения

Обобщая этот пример, можно представить себе "систему" со счетным числом возможных "фазовых" состояний, которая с течением дискретного времени t = 0, 1, ... случайно переходит из состояния в состояние.

Пусть ξ(t) есть ее положение в момент t в результате цепочки случайных переходов

ξ(0) - ξ(1) - ... - ξ(t) - ... ... (1)

Формально обозначим все возможные состояния целыми i = 0, ±1, ... Предположим, что при известном состоянии ξ(t) = k на следующем шаге система переходит в состояние ξ(t+1) = j с условной вероятностью

p kj = P(ξ(t+1) = j|ξ(t) = k) ... (2)

независимо от ее поведения в прошлом, точнее, независимо от цепочки переходов (1) до момента t:

P(ξ(t+1) = j|ξ(0) = i, ..., ξ(t) = k) = P(ξ(t+1) = j|ξ(t) = k) при всех t, k, j ... (3) - марковское свойство.

Такую вероятностную схему называют однородной цепью Маркова со счетным числом состояний - ее однородность состоит в том, что определенные в (2) переходные вероятности p kj , ∑ j p kj = 1, k = 0, ±1, ..., не зависят от времени, т.е. P(ξ(t+1) = j|ξ(t) = k) = P ij - матрица вероятностей перехода за один шаг не зависит от n.

Ясно, что P ij - квадратная матрица с неотрицательными элементами и единичными суммами по строкам.

Такая матрица (конечная или бесконечная) называется стохастической матрицей. Любая стохастическая матрица может служить матрицей переходных вероятностей.

На практике: доставка оборудования по округам

Предположим, что некая фирма осуществляет доставку оборудования по Москве: в северный округ (обозначим А), южный (В) и центральный (С). Фирма имеет группу курьеров, которая обслуживает эти районы. Понятно, что для осуществления следующей доставки курьер едет в тот район, который на данный момент ему ближе. Статистически было определено следующее:

1) после осуществления доставки в А следующая доставка в 30 случаях осуществляется в А, в 30 случаях - в В и в 40 случаях - в С;

2) после осуществления доставки в В следующая доставка в 40 случаях осуществляется в А, в 40 случаях - в В и в 20 случаях - в С;

3) после осуществления доставки в С следующая доставка в 50 случаях осуществляется в А, в 30 случаях - в В и в 20 случаях - в С.

Таким образом, район следующей доставки определяется только предыдущей доставкой.

Матрица вероятностей перехода будет выглядеть следующим образом:

Например, р 12 = 0.4 - это вероятность того, что после доставки в район В следующая доставка будет производиться в районе А.

Допустим, что каждая доставка с последующим перемещением в следующий район занимает 15 минут. Тогда, в соответствии со статистическими данными, через 15 минут 30% из курьеров, находившихся в А, будут в А, 30% будут в В и 40% - в С.

Так как в следующий момент времени каждый из курьеров обязательно будет в одном из округов, то сумма по столбцам равна 1. И поскольку мы имеем дело с вероятностями, каждый элемент матрицы 0<р ij <1.

Наиболее важным обстоятельством, которое позволяет интерпретировать данную модель как цепь Маркова, является то, что местонахождние курьера в момент времени t+1 зависит только от местонахождения в момент времени t.

Теперь зададим простой вопрос: если курьер стартует из С, какова вероятность того, что осуществив две доставки, он будет в В, т.е. как можно достичь В в 2 шага? Итак, существует несколько путей из С в В за 2 шага:

1) сначала из С в С и потом из С в В;

2) С-->B и B-->B;

3) С-->A и A-->B.

Учитывая правило умножения независимых событий, получим, что искомая вероятность равна:

P = P(CA)*P(AB) + P(CB)*P(BB) + P(CC)*P(CB)

Подставляя числовые значения:

P = 0.5*0.3 + 0.3*0.4 + 0.2*0.3 = 0.33

Полученный результат говорит о том, что если курьер начал работу из С, то в 33 случаях из 100 он будет в В через две доставки.

Ясно, что вычисления просты, но если Вам необходимо определить вероятность через 5 или 15 доставок - это может занять довольно много времени.

Покажем более простой способ вычисления подобных вероятностей. Для того, чтобы получить вероятности перехода из различных состояний за 2 шага, возведем матрицу P в квадрат:

Тогда элемент (2, 3) - это вероятность перехода из С в В за 2 шага, которая была получена выше другим способом. Заметим, что элементы в матрице P 2 также находятся в пределах от 0 до 1, и сумма по столбцам равна 1.

Т.о. если Вам необходимо определить вероятности перехода из С в В за 3 шага:

1 способ. p(CA)*P(AB) + p(CB)*P(BB) + p(CC)*P(CB) = 0.37*0.3 + 0.33*0.4 + 0.3*0.3 = 0.333, где p(CA) - вероятность перехода из С в А за 2 шага (т.е. это элемент (1, 3) матрицы P 2).

2 способ. Вычислить матрицу P 3:

Матрица переходных вероятностей в 7 степени будет выглядеть следующим образом:

Легко заметить, что элементы каждой строки стремятся к некоторым числам. Это говорит о том, что после достаточно большого количества доставок уж не имеет значение в каком округе курьер начал работу. Т.о. в конце недели приблизительно 38,9% будут в А, 33,3% будут в В и 27,8% будут в С.

Подобная сходимость гарантировано имеет место, если все элементы матрицы переходных вероятностей принадлежат интервалу (0, 1).



Понравилась статья? Поделитесь с друзьями!