Метод интегрирования по частям: объяснение, решение примеров. Метод интегрирования неопределенного интеграла по частям

Интегрирование по частям - метод, применяемый для решения определенных и неопределенных интегралов, когда одна из подынтегральных функций легко интегрируема, а другая дифференцируема. Достаточно распространенный метод нахождения интегралов как неопределенных, так и определенных. Главный признак, когда нужно использовать его - это состоящая из произведения двух функций некоторая функция, которую нельзя проинтегрировать в упор.

Формула

Для того, чтобы успешно использовать данный метод необходимо разобрать и выучить формулы.

Формула интегрирования по частям в неопределенном интеграле:

$$ \int udv = uv - \int vdu $$

Формула интегрирования по частям в определенном интеграле:

$$ \int \limits_{a}^{b} udv = uv \bigg |_{a}^{b} - \int \limits_{a}^{b} vdu $$

Примеры решений

Рассмотрим на практике примеры решений интегрирования по частям, которые часто предлагаются преподавателями на контрольных работах. Обратите внимание, что под значком интеграла стоит произведение двух функций. Это как признак того, что для решения подойдет данный метод.

Пример 1
Найти интеграл $ \int xe^xdx $
Решение

Видим, что подынтегральная функция состоит из двух функций, одна из которых при дифференцировании моментально превращается в единицу, а другая легко интегрируется. Для решения интеграла воспользуемся методом интегрирования по частям. Положим, $ u = x \rightarrow du=dx $, а $ dv = e^x dx \rightarrow v=e^x $

Подставляем найденные значения в первую формулу интегрирования и получаем:

$$ \int xe^x dx = xe^x - \int e^x dx = xe^x - e^x + C $$

Если не получается решить свою задачу, то присылайте её к нам. Мы предоставим подробное решение. Вы сможете ознакомиться с ходом вычисления и почерпнуть информацию. Это поможет своевременно получить зачёт у преподавателя!

Ответ

$$ \int xe^x dx = xe^x - e^x + C $$

Пример 4
Вычислить интеграл $ \int \limits_0 ^1 (x+5) 3^x dx $
Решение

По аналогии с предыдущими решенными примерами разберемся какую функцию без проблем интегрировать, какую дифференцировать. Обращаем внимание, что если продифференцировать $ (x+5) $, то произойдет автоматическое преобразования этого выражения в единицу, что нам будет "на руку". Поэтом поступаем так:

$$ u=x+5 \rightarrow du=dx, dv=3^x dx \rightarrow v=\frac{3^x}{ln3} $$

Теперь все неизвестные функции стали найдены и могут быть поставлены во вторую формулу интегрирования по частям для определенного интеграла.

$$ \int \limits_0 ^1 (x+5) 3^x dx = (x+5) \frac{3^x}{\ln 3} \bigg |_0 ^1 - \int \limits_0 ^1 \frac{3^x dx}{\ln 3} = $$

$$ = \frac{18}{\ln 3} - \frac{5}{\ln 3} - \frac{3^x}{\ln^2 3}\bigg| _0 ^1 = \frac{13}{\ln 3} - \frac{3}{\ln^2 3}+\frac{1}{\ln^2 3} = \frac{13}{\ln 3}-\frac{4}{\ln^2 3} $$

Ответ
$$ \int\limits_0 ^1 (x+5)3^x dx = \frac{13}{\ln 3}-\frac{4}{\ln^2 3} $$

Решение интегралов - задача легкая, но только для избранных. Эта статья для тех, кто хочет научиться понимать интегралы, но не знает о них ничего или почти ничего. Интеграл... Зачем он нужен? Как его вычислять? Что такое определенный и неопределенный интегралы? Если единственное известное вам применение интеграла – доставать крючком в форме значка интеграла что-то полезное из труднодоступных мест, тогда добро пожаловать! Узнайте, как решать интегралы и почему без этого никак нельзя обойтись.

Изучаем понятие "интеграл"

Интегрирование было известно еще в Древнем Египте. Конечно, не в современном виде, но все же. С тех пор математики написали очень много книг по этой теме. Особенно отличились Ньютон и Лейбниц , но суть вещей не изменилась. Как понять интегралы с нуля? Никак! Для понимания этой темы все равно понадобятся базовые знания основ математического анализа. Сведения о , необходимые и для понимания интегралов, уже есть у нас в блоге.

Неопределенный интеграл

Пусть у нас есть какая-то функция f(x) .

Неопределенным интегралом функции f(x) называется такая функция F(x) , производная которой равна функции f(x) .

Другими словами интеграл – это производная наоборот или первообразная. Кстати, о том, как читайте в нашей статье.


Первообразная существует для всех непрерывных функций. Также к первообразной часто прибавляют знак константы, так как производные функций, различающихся на константу, совпадают. Процесс нахождения интеграла называется интегрированием.

Простой пример:

Чтобы постоянно не высчитывать первообразные элементарных функций, их удобно свести в таблицу и пользоваться уже готовыми значениями:


Определенный интеграл

Имея дело с понятием интеграла, мы имеем дело с бесконечно малыми величинами. Интеграл поможет вычислить площадь фигуры, массу неоднородного тела, пройденный при неравномерном движении путь и многое другое. Следует помнить, что интеграл – это сумма бесконечно большого количества бесконечно малых слагаемых.

В качестве примера представим себе график какой-нибудь функции. Как найти площадь фигуры, ограниченной графиком функции?


С помощью интеграла! Разобьем криволинейную трапецию, ограниченную осями координат и графиком функции, на бесконечно малые отрезки. Таким образом фигура окажется разделена на тонкие столбики. Сумма площадей столбиков и будет составлять площадь трапеции. Но помните, что такое вычисление даст примерный результат. Однако чем меньше и уже будут отрезки, тем точнее будет вычисление. Если мы уменьшим их до такой степени, что длина будет стремиться к нулю, то сумма площадей отрезков будет стремиться к площади фигуры. Это и есть определенный интеграл, который записывается так:


Точки а и b называются пределами интегрирования.


Бари Алибасов и группа "Интеграл"

Кстати! Для наших читателей сейчас действует скидка 10% на

Правила вычисления интегралов для чайников

Свойства неопределенного интеграла

Как решать неопределенный интеграл? Здесь мы рассмотрим свойства неопределенного интеграла, которые пригодятся при решении примеров.

  • Производная от интеграла равна подынтегральной функции:

  • Константу можно выносить из-под знака интеграла:

  • Интеграл от суммы равен сумме интегралов. Верно также для разности:

Свойства определенного интеграла

  • Линейность:

  • Знак интеграла изменяется, если поменять местами пределы интегрирования:

  • При любых точках a , b и с :

Мы уже выяснили, что определенный интеграл - это предел суммы. Но как получить конкретное значение при решении примера? Для этого существует формула Ньютона-Лейбница:

Примеры решения интегралов

Ниже рассмотрим несколько примеров нахождения неопределенных интегралов. Предлагаем самостоятельно разобраться в тонкостях решения, а если что-то непонятно, задавайте вопросы в комментариях.


Для закрепления материала посмотрите видео о том, как решаются интегралы на практике. Не отчаиваетесь, если интеграл не дается сразу. Обратитесь в профессиональный сервис для студентов, и любой тройной или криволинейный интеграл по замкнутой поверхности станет вам по силам.

Понятие первообразной и неопределенного интеграла. Теорема о совокупности первообразных. Свойства неопределенного интеграла. Таблица интегралов.

Функция F(x) называется первообразной для функции f(x) , на заданном промежутке, если на этом промежутке функция F(x) непрерывна, и в каждой внутренней точке промежутка справедливо равенство: F’(x) = f(x)

Теорема 1 . Если функция F(x) имеет на промежутке первообразную F(x), то и все функции вида F(x)+C будут для нее первообразными на том же промежутке. Обратно, любая первообразная Ф(x) для функции y = f(x) может быть представлена в виде Ф(x) = F(x)+C, где F(x) - одна из первообразных функций, а C - произвольная постоянная.

Доказательство:

По определению первообразной имеем F’(x) = f(x). Учитывая, что производная постоянной равна нулю, получаем

(F(x)+C)’ = F’(x)+C’ = F’(x) = f(x). Это и означает, что F(x)+C является первообразной для y = f(x).Покажем теперь, что если функция y = f(x) задана на некотором промежутке и F(x) - одна из ее первообразных, то Ф(x) может быть представлена в виде

В самом деле, по определению первообразной имеем

Ф’(x) = F(x)+C и F’(x) = f(x).

Но две функции, имеющие на промежутке равные производные, отличаются друг от друга лишь на постоянное слагаемое. Значит, Ф(x) = F(x)+C, что и требовалось доказать.

Определение.

Совокупность всех первообразных для функции y = f(x) на заданном промежутке называется неопределенным интегралом этой функции и обозначается ∫f(x)dx = F(x)+C

Функция f(x) называется подынтегральной функцией, а произведение f(x)*dx - подынтегральным выражением.

Часто говорят: "взять неопределенный интеграл" или "вычислить неопределенный интеграл", понимая под этим следующее: найти множество всех первообразных для подынтегральной функции,

Свойства неопределенного интеграла

1. (f(x)dx) = f(x)

2. ∫f′(x)dx = f(x) + c

3. ∫a ⋅ f(x)dx = a∫f(x)dx, a ≠ 0

4. ∫(f1(x) + f2(x))dx = ∫f1(x)dx + ∫f2(x)dx

Таблица интегралов

Интегрирование подстановкой и по частям в неопределенном интеграле.

Метод интегрирования подстановкой заключается во введении новой переменной интегрирования (т. е. подстановки). При этом заданный интеграл приводится к новому интегралу, который является табличным или к нему сводащимся (в случае «удачной» подстановки). Общих методов подбора подстановок не существует.

Пусть тpебyетcя вычислить интеграл ∫f(x)dx. Сделаем подстановку х =φ(t), где φ(t) - функция, имеющая непрерывную производную. Тогда dx=φ"(t) dt и на основании свойства инвариантности формулы интегрирования неопpeделeннoгo интеграла получаем формулу интегриpoвaния подcтaнoвкoй ∫f(x)dx = ∫f(φ(t)) * φ’(t)dt Эта формула также называется формулой замены переменных в неопределeннoм интеграле. Пoслe нахождения интеграла правой части этого равенства следует перейти от новой переменной интегрирования t назад к переменной х.

Метод интегрирования по частям

Пусть u=u(х) и ν=v(х) - функции, имеющие непрерывные производные. Тогда d(uv)=u dv+v du.

Интегрируя это равенство, получим ∫d(uv) = ∫udv + ∫vdu или

∫udv =uv - ∫vdu

Полученная формула называется формулой интегрирования по частям. Она дает возможность свести вычисление интеграла ∫udv к вычислению интеграла ∫vdu, который может оказаться существенно более простым, чем исходный.

Примеры интегрирования по частям подобного состава задают студентам 1, 2 курсов. Данные задания задавали на контрольной работе в ЛНУ им. И. Франка. Чтобы формулы в задачах и ответах не повторялись же задачи описывать не будем. По условию заданий нужно или "Найти интеграл", или "Вычислить интеграл".
Пример 8. Интеграл находим по правилу интегрирования частями int(u*dv)=u*v-int(v*du). Здесь главное правильно выбрать функции под правило. (Для себя запомните что за dv если возможно выбирают периодические функции или такие, которые при дифференцировании с точностью до множителя дают сами себя - экспонента). В этом интеграле нужно синус внести под дифференциал

Дальнейшее интегрирование достаточно простое и на деталях останавливаться не будем.

Пример 9. Снова нужно применять правило интегрирования по частям u*dv . Здесь имеем произведение периодической функции на экспоненту, поэтому что лучше вносить под дифференциал выбирать Вам. Можно как экспоненту, так и косинус (в каждом варианте получим рекуррентную формулу).

Применяем интегрирование по частям повторно

Пришли к рекуррентной формуле. Если записать интеграл который искали и результат вычислений то получим два подобные слагаемые

Группируем их и находим искомый интеграл


Пример 10. Имеем готовую запись интеграла под правило u*dv. Находим du и выполняем интегрирование


Сводим второй интеграл под табличную формулу и вычисляем его

Пример 11. Обозначим за новую переменную cos(ln(x))=u і найдем du , затем внесением под дифференциал


К интегралу повторно применяем правило интегрирования по частям


Пришли к рекуррентной формуле

с которой и вычисляем неизвестный интеграл

Пример 12. Для нахождения интеграла выделим в знаменателе полный квадрат. Далее сведя знаменатель к известной формуле интегрирования получим арктангенс


Хорошо запомните порядок чередования множителей. Единица разделена на корень из свободного члена фигурирует перед арктангенсом, также этот множитель присутствует в арктангенс перед переменной.
Пример 13. Дело имеем с подобным интегралом, только в знаменателе квадратичная зависимость находится под корнем. Выделяем полный квадрат и сводим под формулу интегрирования, которая дает логарифм


Вот такие бывают примеры на контрольной или тестах. Хорошо запомните основные схемы интегрирования.
Если не можете решить интеграл сами, тогда обращайтесь за помощью.



Понравилась статья? Поделитесь с друзьями!