Метод максимального правдоподобия точечной оценки неизвестных параметров вероятностных распределений. Методы получения оценок Метод максимального правдоподобия примеры решения

Кроме метода моментов, который изложен в предыдущем параграфе, существуют и другие методы точечной оценки неизвестных параметров распределения. К ним относится метод наибольшего правдоподобия, предложенный Р. Фишером.

А. Дискретные случайные величины. Пусть X - дискретная случайная величина, которая в результате n испытаний приняла значения х 1 , х 2 , ..., х п . Допустим, что вид закона распределения величины X задан, но неизвестен параметр θ , которым определяется этот закон. Требуется найти его точечную оценку.

Обозначим вероятность того, что в результате испытания величина X примет значение х i (i = 1 , 2, . . . , n ), через p (х i ; θ ).

Функцией правдоподобия дискретной случайной вели чины X называют функцию аргумента θ :

L (х 1 , х 2 , ..., х п ; θ ) = p (х 1 ; θ ) р (х 2 ; θ ) . . . p (х n ; θ ),

где х 1 , х 2 , ..., х п - фиксированные числа.

В качестве точечной оценки параметра θ принимают такое его значение θ * = θ * (х 1 , х 2 , ..., х п ), при котором функция правдоподобия достигает максимума. Оценку θ * называют оценкой наибольшего правдоподобия.

Функции L и ln L достигают максимума при одном и том же значении θ , поэтому вместо отыскания максимума функции L ищут (что удобнее) максимум функции ln L .

Логарифмической функцией правдоподобия называют функцию ln L . Как известно, точку максимума функции ln L аргумента θ можно искать, например, так:

3) найти вторую производную ; если вторая производная приθ = θ * отрицательна, то θ * - точка максимума.

Найденную точку максимума θ * принимают в качестве оценки наибольшего правдоподобия параметра θ .

Метод наибольшего правдоподобия имеет ряд достоинств: оценки наибольшего правдоподобия, вообще говоря, состоятельны (но они могут быть смещенными), распределены асимптотически нормально (при больших значениях n приближенно нормальны) и имеют наименьшую дисперсию по сравнению с другими асимптотически нормальными оценками; если для оцениваемого параметра θ существует эффективная оценка θ *, то уравнение правдоподобия имеет единственное решение θ *; этот метод наиболее полно использует данные выборки об оцениваемом параметре, поэтому он особенно полезен в случае малых выборок.

Недостаток метода состоит в том, что он часто требует сложных вычислений.

Замечание 1. Функция правдоподобия - функция от аргумента θ ; оценка наибольшего правдоподобия - функция от независимых аргументов х 1 , х 2 , ..., х п .

Замечание 2. Оценка наибольшего правдоподобия не всегда совпадает с оценкой, найденной методом моментов.

Пример 1. λ распределения Пуассона

где m - число произведенных испытаний; x i - число появлений события в i -м (i =1, 2, ..., n ) опыте (опыт состоит из т испытаний).

Решение. Составим функцию правдоподобия, учитывая, что. θ= λ :

L = p (х 1 ; λ :) p (х 2 ; λ :) . . .p (х n ; λ :),=

.

Напишем уравнение правдоподобия, для чего приравняем первую производную нулю:

Найдем критическую точку, для чего решим полученное уравнение относительно λ:

Найдем вторую производную по λ:

Легко видеть, что при λ = вторая производная отрицательна; следовательно,λ = - точка максимума и, значит, в качестве оценки наибольшого правдоподобия параметра λ распределения Пуассона надо принять выборочную среднюю λ* = .

Пример 2. Найти методом наибольшего правдоподобия оценку параметра p биномиального распределения

если в n 1 независимых испытаниях событие А появилось х 1 = m 1 раз и в п 2 независимых испытаниях событие А появилось х 2 = т 2 раз.

Решение. Составим функцию правдоподобия, учитывая, что θ = p :

Найдем логарифмическую функцию правдоподобия:

Найдем первую производную по р:

.

.

Найдем критическую точку, для чего решим полученное уравнение относительно p :

Найдем вторую производную по p :

.

Легко убедиться, что при вторая производная отрицательна; следовательно, - точка максимума и, значит, ее надо принять в качестве оценки наибольшего правдоподобия неизвестной вероятности p биномиального распределения:

Б. Непрерывные случайные величины. Пусть X - непрерывная случайная величина, которая в результате n испытаний приняла значения х 1 , х 2 , ..., x п . Допустим, что вид плотности распределения f (x ) задан, но не известен параметр θ , которым определяется эта функция.

Функцией правдоподобия непрерывной случайной вели чины X называют функцию аргумента θ :

L (х 1 , х 2 , ..., х п ; θ ) = f (х 1 ; θ ) f (х 2 ; θ ) . . . f (x n ; θ ),

где х 1 , х 2 , ..., x п - фиксированные числа.

Оценку наибольшего правдоподобия неизвестного параметра распределения непрерывной случайной величины ищут так же, как в случае дискретной величины.

Пример 3. Найти методом наибольшего правдоподобия оценку параметра λ, показательного распределения

(0< х < ∞),

если в результате n испытаний случайная величина X , распределенная по показательному закону, приняла значения х 1 , х 2 , ..., х п .

Решение. Составим функцию правдоподобия, учитывая, что θ= λ:

L = f (х 1 ; λ ) f (х 2 ; λ ) . . . f (х n ; λ ) =.

Найдем логарифмическую функцию правдоподобия:

Найдем первую производную по λ:

Напишем уравнение правдоподобия, для чего приравняем первую производную нулю:

Найдем критическую точку, для чего решим полученное уравнение относительно λ:

Найдем вторую производную по λ:

Легко видеть, что при λ = 1/ вторая производная отрицательна; следовательно, λ = 1/- точка максимума и, значит, в качестве оценки наибольшего правдоподобия параметра λ показательного распределения надо принять величину, обратную выборочной средней:λ *= 1/.

Замечание. Если плотность распределения f (х ) непрерывной случайной величины X определяется двумя неизвестными параметрами θ 1 и θ 2 , то функция правдоподобия является функцией двух независимых аргументов θ 1 и θ 2:

L = f (х 1 ; θ 1 , θ 2) f (х 2 ; θ 1 , θ 2) . . . f (х n ; θ 1 , θ 2),

где х 1 , х 2 , ..., х п - наблюдавшиеся значения X . Далее находят логарифмическую функцию правдоподобия и для отыскания ее максимума составляют и решают систему

Пример 4. Найти методом наибольшего правдоподобия оценки параметров а и σ нормального распределения

если в результате n испытаний величина X приняла значения х 1 , х 2 , ..., х п .

Решение. Составим функцию правдоподобия, учитывая, что θ 1 =a и θ 2 =σ

.

Найдем логарифмическую функцию правдоподобия:

.

Найдем частные производные по а и по σ:

Приравняв частные производные нулю и решив полученную систему двух уравнений относительно а и σ 2 , получим:

Итак, искомые оценки наибольшего правдоподобия: а * = ;σ*= . Заметим, что первая оценка несмещенная, а вторая смещенная.

Метод максимального правдоподобия (ММП) является одним из наиболее широко используемых методов в статистике и эконометрике. Для его применения необходимо знание закона распределения исследуемой случайной величины.

Пусть имеется некоторая случайная величина У с заданным законом распределения ДУ). Параметры этого закона неизвестны и их нужно найти. В общем случае величину Y рассматривают как многомерную, т.е. состоящую из нескольких одномерных величин У1, У2, У3 ..., У.

Предположим, что У – одномерная случайная величина и ее отдельные значения являются числами. Каждое из них (У],у 2, у3, ...,у„) рассматривается как реализация не одной случайной величины У, а η случайных величин У1; У2, У3 ..., У„. То есть:

уj – реализация случайной величины У];

у2 – реализация случайной величины У2;

уз – реализация случайной величины У3;

у„ – реализация случайной величины У„.

Параметры закона распределения вектора У, состоящего из случайных величин Y b Y 2, У3,У„, представляют как вектор Θ, состоящий из к параметров: θχ, θ2,в к. Величины Υ ν Υ 2, У3,..., Υ η могут быть распределены как с одинаковыми параметрами, так и с различными; некоторые параметры могут совпадать, а другие различаться. Конкретный ответ на этот вопрос зависит от той задачи, которую решает исследователь.

Например, если стоит задача определения параметров закона распределения случайной величины У, реализацией которой являются величины У1; У2, У3, У,„ то предполагают, что каждая из этих величин распределена так же, как величина У. Иначе говоря, любая величина У, описывается одним и тем же законом распределения/(У, ), причем с одними и теми же параметрами Θ: θχ, θ2,..., д к.

Другой пример – нахождение параметров уравнения регрессии. В этом случае каждая величина У, рассматривается как случайная величина, имеющая "собственные" параметры распределения, которые могут частично совпадать с параметрами распределения других случайных величин, а могут и полностью различаться. Более подробно применение ММП для нахождения параметров уравнения регрессии будет рассмотрено ниже.

В рамках метода максимального правдоподобия совокупность имеющихся значений У], у2, у3, ...,у„ рассматривается как некоторая фиксированная, неизменная. То есть закон /(У;) есть функция от заданной величиныу, и неизвестных параметров Θ. Следовательно, для п наблюдений случайной величины У имеется п законов /(У;).

Неизвестные параметры этих законов распределения рассматриваются как случайные величины. Они могут меняться, однако приданном наборе значений Уі,у2,у3, ...,у„ наиболее вероятны конкретные значения параметров. Иначе говоря, вопрос ставится таким образом: каковы должны быть параметры Θ, чтобы значения уj, у2, у3, ...,у„ были наиболее вероятны?

Для ответа на него нужно найти закон совместного распределения случайных величин У1; У2, У3,..., Уп –КУі, У 2, Уз, У„). Если предположить, что наблюдаемые нами величиныу^ у2,у3, ...,у„ независимы, то он равен произведению п законов/

(У;) (произведению вероятностей появления данных значений для дискретных случайных величин или произведению плотностей распределения для непрерывных случайных величин):

Чтобы подчеркнуть тот факт, что в качестве переменных рассматриваются искомые параметры Θ, введем в обозначение закона распределения еще один аргумент – вектор параметров Θ:

С учетом введенных обозначений закон совместного распределения независимых величин с параметрами будет записан в виде

(2.51)

Полученную функцию (2.51) называют функцией максимального правдоподобия и обозначают :

Еще раз подчеркнем тот факт, что в функции максимального правдоподобия значения У считаются фиксированными, а переменными являются параметры вектора (в частном случае – один параметр). Часто для упрощения процесса нахождения неизвестных параметров функцию правдоподобия логарифмируют, получая логарифмическую функцию правдоподобия

Дальнейшее решение по ММП предполагает нахождение таких значений Θ, при которых функция правдоподобия (или ее логарифм) достигает максимума. Найденные значения Θ; называют оценкой максимального правдоподобия.

Методы нахождения оценки максимального правдоподобия достаточно разнообразны. В простейшем случае функция правдоподобия является непрерывно дифференцируемой и имеет максимум в точке, для которой

В более сложных случаях максимум функции максимального правдоподобия не может быть найден путем дифференцирования и решения уравнения правдоподобия, что требует поиска других алгоритмов его нахождения, в том числе итеративных.

Оценки параметров, полученные с использованием ММП, являются:

  • состоятельными , т.е. с увеличением объема наблюдений разница между оценкой и фактическим значением параметра приближается к нулю;
  • инвариантными : если получена оценка параметра Θ, равная 0L, и имеется непрерывная функция q(0), то оценкой значения этой функции будет величина q(0L). В частности, если с помощью ММП мы оценили величину дисперсии какого-либо показателя (af ), то корень из полученной оценки будет оценкой среднего квадратического отклонения (σ,), полученной по ММП.
  • асимптотически эффективными ;
  • асимптотически нормально распределенными.

Последние два утверждения означают, что оценки параметров, полученные по ММП, проявляют свойства эффективности и нормальности при бесконечно большом увеличении объема выборки.

Для нахождения параметров множественной линейной регрессии вида

необходимо знать законы распределения зависимых переменных 7; или случайных остатков ε,. Пусть переменная Y t распределена по нормальному закону с параметрами μ, , σ, . Каждое наблюдаемое значение у, имеет, в соответствии с определением регрессии, математическое ожидание μ, = МУ„ равное его теоретическому значению при условии, что известны значения параметров регрессии в генеральной совокупности

где xfl, ..., x ip – значения независимых переменных в і -м наблюдении. При выполнении предпосылок применения МНК (предпосылок построения классической нормальной линейной модели), случайные величины У, имеют одинаковую дисперсию

Дисперсия величины определяется по формуле

Преобразуем эту формулу:

При выполнении условий Гаусса – Маркова о равенстве нулю математического ожидания случайных остатков и постоянстве их дисперсий можно перейти от формулы (2.52) к формуле

Иначе говоря, дисперсии случайной величины У,- и соответствующих ей случайных остатков совпадают.

Выборочную оценку математического ожидания случайной величины Yj будем обозначать

а оценку ее дисперсии (постоянной для разных наблюдений) как Sy.

Если предположить независимость отдельных наблюдений y it то получим функцию максимального правдоподобия

(2.53)

В приведенной функции делитель является константой и не оказывает влияния на нахождение ее максимума. Поэтому для упрощения расчетов он может быть опущен. С учетом этого замечания и после логарифмирования функция (2.53) примет вид

В соответствии с ММП найдем производные логарифмической функции правдоподобия по неизвестным параметрам

Для нахождения экстремума приравняем полученные выражения к нулю. После преобразований получим систему

(2.54)

Эта система соответствует системе, полученной по методу наименьших квадратов. То есть ММП и МНК дают одинаковые результаты, если соблюдаются предпосылки МНК. Последнее выражение в системе (2.54) дает оценку дисперсии случайной переменной 7, или, что одно и то же, дисперсии случайных остатков. Как было отмечено выше (см. формулу (2.23)), несмещенная оценка дисперсии случайных остатков равна

Аналогичная оценка, полученная с применением ММП (как следует из системы (2.54)), вычисляется по формуле

т.е. является смещенной .

Мы рассмотрели случай применения ММП для нахождения параметров линейной множественной регрессии при условии, что величина У, нормально распределена. Другой подход к нахождению параметров той же регрессии заключается в построении функции максимального правдоподобия для случайных остатков ε,. Для них также предполагается нормальное распределение с параметрами (0, σε). Нетрудно убедиться, что результаты решения в этом случае совпадут с результатами, полученными выше.

Сущность задачи точечного оценивания параметров

ТОЧЕЧНАЯ ОЦЕНКА ПАРАМЕТРОВ РАСПРЕДЕЛЕНИЯ

Точечная оценка предполагает нахождение единственной числовой величины, которая и принимается за значение параметра. Такую оценку целесообразно определять в тех случаях, когда объем ЭД достаточно велик. Причем не существует единого понятия о достаточном объеме ЭД, его значение зависит от вида оцениваемого параметра (к этому вопросу предстоит вернуться при изучении методов интервальной оценки параметров, а предварительно будем считать достаточной выборку, содержащую не менее чем 10 значений). При малом объеме ЭД точечные оценки могут значительно отличаться от истинных значений параметров, что делает их непригодными для использования.

Задача точечной оценки параметров в типовом варианте постановки состоит в следующем.

Имеется: выборка наблюдений (x 1 , x 2 , …, x n ) за случайной величиной Х . Объем выборки n фиксирован.

Известен вид закона распределения величины Х , например, в форме плотности распределения f(Θ , x), где Θ – неизвестный (в общем случае векторный) параметр распределения. Параметр является неслучайной величиной.

Требуется найти оценку Θ* параметра Θ закона распределения.

Ограничения: выборка представительная.

Существует несколько методов решения задачи точечной оценки параметров, наиболее употребительными из них являются методы максимального (наибольшего) правдоподобия, моментов и квантилей.

Метод предложен Р. Фишером в 1912 г. Метод основан на исследовании вероятности получения выборки наблюдений (x 1 , x 2, …, x n) . Эта вероятность равна

f(х 1 , Θ) f(х 2 , Θ) … f(х п, Θ) dx 1 dx 2 … dx n .

Совместная плотность вероятности

L(х 1 , х 2 …, х n ; Θ) = f(х 1 , Θ) f(х 2 , Θ) … f(х n , Θ), (2.7)

рассматриваемая как функция параметра Θ , называется функцией правдоподобия .

В качестве оценки Θ* параметра Θ следует взять то значение, которое обращает функцию правдоподобия в максимум. Для нахождения оценки необходимо заменить в функции правдоподобия Т на q и решить уравнение

dL/d Θ* = 0.

Для упрощения вычислений переходят от функции правдоподобия к ее логарифму lnL . Такое преобразование допустимо, так как функция правдоподобия – положительная функция, и она достигает максимума в той же точке, что и ее логарифм. Если параметр распределения векторная величина

Θ* =(q 1 , q 2 , …, q n),

то оценки максимального правдоподобия находят из системы уравнений


d ln L(q 1 , q 2 , …, q n) /d q 1 = 0;

d ln L(q 1 , q 2 , …, q n) /d q 2 = 0;

. . . . . . . . .



d ln L(q 1 , q 2 , …, q n) /d q n = 0.

Для проверки того, что точка оптимума соответствует максимуму функции правдоподобия, необходимо найти вторую производную от этой функции. И если вторая производная в точке оптимума отрицательна, то найденные значения параметров максимизируют функцию.

Итак, нахождение оценок максимального правдоподобия включает следующие этапы: построение функции правдоподобия (ее натурального логарифма); дифференцирование функции по искомым параметрам и составление системы уравнений; решение системы уравнений для нахождения оценок; определение второй производной функции, проверку ее знака в точке оптимума первой производной и формирование выводов.

Решение. Функция правдоподобия для выборки ЭД объемом n

Логарифм функции правдоподобия

Система уравнений для нахождения оценок параметров

Из первого уравнения следует:

или окончательно

Таким образом, среднее арифметическое является оценкой максимального правдоподобия для математического ожидания.

Из второго уравнения можно найти

Эмпирическая дисперсия является смещенной. После устранения смещения

Фактические значения оценок параметров: m =27,51, s 2 = 0,91.

Для проверки того, что полученные оценки максимизируют значение функции правдоподобия, возьмем вторые производные

Вторые производные от функции ln(L(m,S )) независимо от значений параметров меньше нуля, следовательно, найденные значения параметров являются оценками максимального правдоподобия.

Метод максимального правдоподобия позволяет получить состоятельные, эффективные (если таковые существуют, то полученное решение даст эффективные оценки), достаточные, асимптотически нормально распределенные оценки. Этот метод может давать как смещенные, так и несмещенные оценки. Смещение удается устранить введением поправок. Метод особенно полезен при малых выборках.

Аннотация: Цель работы: практически освоить метод максимального правдоподобия для точечной оценки неизвестных параметров заданного вероятностного распределения случайной величины. Среда программирования - MATLAB.

Теоретическая часть

Метод максимального или наибольшего правдоподобия предложен Р. Фишером [ , 13 ]. С помощью этого метода производится точечная оценка неизвестных параметров априорно известного закона распределения случайной величины.

Рассмотрим сначала суть метода при оценке параметров дискретного распределения случайной величины .

Обозначим вероятность того, что в результате испытания величина примет значение , через .

Определение . Функцией правдоподобия случайной дискретной величины называют функцию аргумента :

(7.1)

где - фиксированные числа, полученные при измерении случайной величины .

В качестве точечной оценки параметра принимают такое его значение , при котором функция правдоподобия достигает максимума. Оценку называют оценкой максимального правдоподобия .

Для упрощения расчетов в рассмотрение вводится логарифм функции правдоподобия , которую называют логарифмической функцией правдоподобия . Функции и достигают максимума при одном и том же значении своего аргумента, поэтому вместо отыскания максимума функции ищут максимум функции . Записывая необходимое условие экстремума функции правдоподобия в случае скалярного параметра, получаем уравнения правдоподобия

(7.2)
(7.3)

где - заданная выборка случайных величин.

Уравнение правдоподобия (7.3) с логарифмической функцией, как правило, более простое относительно функции правдоподобия (7.2).

Если распределение случайной величины зависит от вектора параметров , то уравнение (7.3) заменяется системой уравнений

(7.4)

Именно уравнения (7.3) и (7.4) принято называть уравнениями правдоподобия . Во многих случаях решение системы (7.4), являющейся, как правило, нелинейной, приходится искать численными методами.

Рассмотрим применение метода максимального правдоподобия для оценки параметров непрерывного распределения случайных величин генеральной совокупности .

Пусть - непрерывная случайная величина , которая в результате испытаний приняла значения . Предполагается, что вид плотности распределения задан, но неизвестен параметр , которым определяется эта функция .

Определение . Функцией правдоподобия непрерывной случайной величины называют функцию аргумента

(7.5)

где - фиксированные числа.

Оценку максимального правдоподобия неизвестного параметра распределения непрерывной случайной величины ищут так же, как в случае дискретной величины.

Замечание . Если плотность распределения непрерывной случайной величины определяется двумя неизвестными параметрами и , то функция правдоподобия является функцией двух независимых аргументов и :

(7.6)

Как для дискретных распределений, так и для непрерывных точку максимума логарифмической функции распределения аргумента можно искать через необходимое условие экстремума :

Найденную точку максимума принимают в качестве оценки максимального правдоподобия параметра .

Метод максимального правдоподобия имеет ряд достоинств: его оценки, вообще говоря, состоятельны (но они могут быть смещенными), распределены асимптотически нормально (при больших значениях приближенно нормально) и имеют наименьшую дисперсию по сравнению с другими асимптотически нормальными оценками; если для оцениваемого параметра существует эффективная оценка , то уравнение правдоподобия имеет единственное решение ; этот метод наиболее полно использует данные выборки об оцениваемом параметре, поэтому он особенно полезен в случае малых выборок. Недостаток метода состоит в том, что он часто требует сложных вычислений.

Практическая часть

1. Оценка параметра экспоненциального распределения

Рассматривается пример поиска методом максимального правдоподобия оценки параметра экспоненциального распределения случайной величины, для которой функция плотности имеет вид

(7.7)

К характеристикам экспоненциального распределения относятся математическое ожидание и дисперсия :

(7.8)
(7.9)

Замечание . Во встроенных функциях MATLAB параметром экспоненциального распределения является математическое ожидание случайной величины.

Возможная программная реализация точечной оценки параметра экспоненциального распределения:

clear,clc,close all %%% Проверка на закрытие диалоговых окон try global h11 close(h11); end try global n11 close(n11); end try global v11 close(v11) end %% ВВОД ТЕОРЕТИЧЕСКОГО ПАРАМЕТРА РАСПРЕДЕЛЕНИЯ options.Resize = "on"; options.WindowStyle = "modal"; %%"normal"; options.Interpreter = "tex"; P1 = inputdlg({"\bfВвод параметра:......................................................"},... sprintf("Теоретическая величина параметра"),1,{"1.23"},options); %% ПРЕОБРАЗОВАНИЕ К СТРОКОВОЙ ПЕРЕМЕННОЙ P2 = char(P1); %% ПРЕОБРАЗОВАНИЕ К ЧИСЛУ С ДВОЙНОЙ ТОЧНОСТЬЮ P0 = str2num(P2); %% КОНТРОЛЬ ВВОДА ПАРАМЕТРА if isempty(P0) h11 = errordlg("Параметр должен быть действительным положительным числом!","Ошибка ввода"); return end %% КОНТРОЛЬ ВВОДА ПАРАМЕТРА global h11 if P0 <= 0 | ~isreal(P0) | ~isfinite(P0) h11 = errordlg("Параметр должен быть конечным действительным положительным числом!","Ошибка ввода"); return end % ВВОД ЧИСЛА ПРОГОНОВ ПРОГРАММЫ n1 = inputdlg({"\bfВвод числа прогонов программы.........................."},... "Число прогонов программы",1,{"10"}, options); % ПРЕОБРАЗОВАНИЕ К ЧИСЛОВОЙ ПЕРЕМЕННОЙ n = str2num(char(n1)); %% Контроль ввода цифр if isempty(n) global n11 n11 = errordlg("Число прогонов программы должно быть целым положительным числом!", "Ошибка ввода"); return end if ~isreal(n) | ~isfinite(n) global n11 n11 = errordlg("Число прогонов программы должно быть целым положительным числом!", "Ошибка ввода"); return end %% Контроль целого положительного числа циклов if n <= 0 | n ~= round(n) global n11 n11 = errordlg("Число прогонов программы должно быть целым положительным числом!", "Ошибка ввода"); return end % ВВОД ЧИСЛА ИЗМЕРЕНИЙ СЛУЧАЙНОЙ ВЕЛИЧИНЫ v1 = inputdlg({"\bfВвод числа измерений случайной величины..................................."},... "Число измерений случайной величины",1,{"1234"}, options); % ПРЕОБРАЗОВАНИЕ К ЧИСЛОВОЙ ПЕРЕМЕННОЙ v = str2num(char(v1)); if isempty(v) global v11 v11 = errordlg("Число измерений должно быть положительным целым числом!","Ошибка ввода"); return end if ~isreal(v) | ~isfinite(v) global v11 v11 = errordlg("Число измерений должно быть положительным целым числом!","Ошибка ввода"); return end % КОНТРОЛЬ ЦЕЛОГО ЧИСЛА ИЗМЕРЕНИЙ % СЛУЧАЙНОЙ ВЕЛИЧИНЫ if v <= 0 | v ~= round(v) global v11 v11 = errordlg("Число измерений должно быть положительным целым числом!","Ошибка ввода"); return end syms m k = 0; %% ЦИКЛ ЗАДАННОГО ЧИСЛА ПРОГОНОВ ПРОГРАММЫ for I = 1:n k=k+1; %% ФОРМИРОВАНИЕ ЧИСЛА ИЗМЕРЕНИЙ СЛУЧАЙНОЙ ВЕЛИЧИНЫ t = exprnd(1/P0,v,1); %% ФОРМИРОВАНИЕ ФУНКЦИИ МАКСИМАЛЬНОГО %% ПРАВДОПОДОБИЯ L = m^(length(t))*exp(-m*sum(t)); %% ЛОГАРИФМИЧЕСКАЯ ФУНКЦИЯ МАКСИМАЛЬНОГО %% ПРАВДОПОДОБИЯ Lg = log(L); %% ДИФФЕРЕНЦИРОВАНИЕ dLg = diff(Lg,m); %% ПРЕОБРАЗОВАНИЕ СИМВОЛЬНОЙ ПЕРЕМЕННОЙ К СТРОКОВОЙ dLg = char(dLg); %% РЕШЕНИЕ УРАВНЕНИЯ ОТНОСИТЕЛЬНО ОЦЕНИВАЕМОГО %% ПАРАМЕТРА as1(k) = double(solve(dLg)); %% УСРЕДНЕНИЕ ОЦЕНИВАЕМОГО ПАРАМЕТРА as(k) = mean(as1); end %% ОКОНЧАНИЕ ЦИКЛА ЗАДАННОГО ЧИСЛА ПРОГОНОВ ПРОГРАММЫ mcp = mean(as); %% ВЫВОД РЕЗУЛЬТАТОВ В КОМАНДНОЕ ОКНО fprintf("\n\t%s%g\n \t%s%g\n","Теоретический параметр: ",P0,... "Оценка параметра: ", mcp) fprintf("\tОтносительная погрешность: %g%s\n",abs(P0-mcp)/P0*100,"%") %% ГРАФИЧЕСКИЕ ПОСТРОЕНИЯ figure(1) %% set(gcf,"position",) plot(1:n,as1,"r:","linew",2),grid off,hold on, plot(1:n,as,"linew",2), title(sprintf("%s%g","\bfТеоретический параметр\fontsize{12} \lambda\fontsize{10} = ",P0)) xlabel("\bf Количество циклов"), ylabel("\bf Эмпирический параметр\fontsize{14} \lambda"), legend("\bf Измеряемая величина\fontsize{12} \lambda",... "\bf Средняя величина\fontsize{12} \lambda"), set(gcf,"color","w") %% ПОСТРОЕНИЕ ТЕОРЕТИЧЕСКОЙ И ЭМПИРИЧЕСКОЙ %% ФУНКЦИИ ПЛОТНОСТИ t = 0: 0.1: 4; y1 = P0*exp(-P0*t); %exppdf(t,1/P0); % встроенная функция y2 = mcp*exp(-mcp*t); %exppdf(t,1/mcp); figure(2) plot(t, y1, "r", "linew",2), hold on plot(t, y2, "bo", "linew",2) grid off legend("\bf Теоретическая функция плотности (PDF)",... "\bf Эмпирическая функция плотности"), text(t(end)/3,2/3*max(max()),["\bf",... sprintf("Теоретический параметр: %g\n Эмпирический параметр: %g",P0,mcp)]) xlabel("\bf Случайная величина"), ylabel("\bf Функция плотности"), set(gcf,"color","w")

непрерывная случайная величина с плотностью Вид плотности известен, но неизвестны значения параметров Функцией правдоподобия называется функция (здесь - выборка объема п из распределения случайной величины £). Легко видеть, что функции правдоподобия можно придать вероятностный смысл, а именно: рассмотрим случайный вектор компоненты которого независимые в совокупности одинаково распределенные случайные величины с законом Д(ж). Тогда элемент вероятности вектора Е имеет вид т.е. функция правдоподобия связана с вероятностью получения фиксированной выборки в последовательности экспериментов П. Основная идея метода правдоподобия состоит в том, что в качестве оценок параметров А предлагается взять такие значения (3), которые доставляют максимум функции правдоподобия при данной фиксированной выборке, т. е. предлагается считать выборку, полученную в эксперименте, наиболее вероятной. Нахождение оценок параметров pj сводится к решению системы к уравнений (к - число неизвестных параметров): Поскольку функция log L имеет максимум в той же точке, что и функция правдоподобия, то часто систему уравнений правдоподобия (19) записывают в виде В качестве оценок неизвестных параметров Д следует брать решения системы (19) или (20), действительно зависящие от выборки и не являющиеся постоянными. Вслучае, когда £ дискретна с рядом распределения, функцией правдоподобия называют функцию и оценки ищут как решения системы Метод максимального правдоподобия или эквивалентной ей Можно показать, что оценки максимального правдоподобия обладают свойством состоятельности. Следует отмстить, что метод максимального правдоподобия приводит к более сложным вычислениям, нежели метод моментов, но теоретически он более эффективен, так как оценки максимального правдоподобия меньше уклоняются от истинных значений оцениваемых параметров, чем оценки, полученные по методу моментов. Для наиболее часто встречающихся в приложениях распределений оценки параметров, полученные по методу моментов и по методу максимального правдоподобия, в большинстве случаев совпадают. Пршир 1. Отклонение (размера детали от номинала является нормально распределенной случайной личиной. Требуется по выборке определить систематическую ошибку и дисперсию отклонения. М По условию (- нормально распределенная случайная величина с математическим ожиданием (систематическая ошибка) и дисперсией, подлежащими оценке по выборке объема п: Х\>...уХп. В этом случае Функция правдоподобия Система (19) имеет вид Отсюда, исключай решения, не зависящие от Хх, получаем т е. оценки максимального правдоподобия в этом случае совпадают с уже известными нам эмпирическими средним и дисперсией > Пример 2. Оценить по выборке параметр /i экспоненциально распределенной случайной величины. 4 Функция правдоподобия имеет вид Уравнение правдоподобия приводит нас к решению совпадающему с оценкой этого же параметра, полученной по методу моментов, см. (17). ^ Пример 3. Пользуясь методом максимального правдоподобия, оценить вероятность появления герба, если при десяти бросаниях монеты герб появился 8 раз. -4 Пусть подлежащая оценке вероятность равна р. Рассмотрим случайную величину (с рядом распределения. Функция правдоподобия (21) имеет вид Метод максимального Уравнение правдоподобия дает в качестве оценки неизвестной вероятности р частоту появления герба в эксперименте Заканчивая обсуждение методов нахождения оценок, подчеркнем, что, даже имея очень большой объем экспериментальных данных, мы все равно не можем указать точного значения оцениваемого параметра, более того, как уже неоднократно отмечалось, получаемые нами оценки близки к истинным значениям оцениваемых параметров только «в среднем» или «в большинстве случаев». Поэтому важной статистической задачей, которую мы рассмотрим далее, является задача определения точности и достоверности проводимого нами оценивания.



Понравилась статья? Поделитесь с друзьями!