Метод множителей лагранжа используется для нахождения. Моделирование динамических систем (метод Лагранжа и Bond graph approach)

  • Tutorial

Всем доброго дня. В данной статье хочу показать один из графических методов построения математических моделей для динамических систем, который называется Bond graph («bond» - связи, «graph» - граф). В русской литературе, описания данного метода, я нашел только в Учебном пособии Томского политехнического университета, А.В. Воронин «МОДЕЛИРОВАНИЕ МЕХАТРОННЫХ СИСТЕМ» 2008 г. Также показать классический метод через уравнение Лагранжа 2 рода.

Метод Лагранжа

Я не буду расписывать теорию, покажу этапы расчётов и с небольшими комментариями. Лично мне легче учиться на примерах, чем 10 раз читать теорию. Как мне показалось, в русской литературе, объяснение данного метода, да и вообще математики или физики, очень насыщено сложными формулами, что соответственно требует серьезного математического бэкграунда. Во время изучения метода Лагранжа (учусь в Туринском политехническом университет, Италия), я изучал русскую литературу, чтобы сопоставить методики расчётов, и мне было тяжело следить за ходом решения данного метода. Даже вспоминая курсы по моделированию в «Харьковском авиационном институте», вывод подобных методов был очень громоздким, и никто не затруднял себя в попытке разобраться в этом вопросе. Вот этому я решил написать, методичку для построения мат моделей по Лагранжу, как так оказалось это совсем не сложно, достаточно знать как считать производные по времени и частные производные. Для моделей по сложнее еще добавляются матрицы поворота, но в них тоже нет ничего сложного.

Особенности методов моделирования:

  • Ньютона-Эйлера : векторные уравнения, основанные на динамическом равновесии сил (force) и моментов (moments)
  • Лагранжа : скалярные уравнения, основанные на функциях состояния связанных с кинетической и потенциальной энергией (energies)
  • Бонд-граф : метод основанный на течении мощности (power) между элементами системы

Начнем с простого примера. Масса с пружиной и демпфером. Пренебрегаем силой тяжести.


Рис 1 . Масса с пружиной и демпфером

Первым делом обозначаем:

  • начальную системы координат (НСК) или неподвижную ск R0(i0,j0,k0) . Где? Можно тыкнуть пальцем в небо, но подёргав кончиками нейронов в мозгу, проходит идея поставить НСК на линии движения тела М1.
  • системы координат для каждого тела с массой (у нас М1 R1(i1,j1,k1) ), ориентация может быть произвольной, но зачем усложнять себе жизнь, ставим с минимальным отличием от НСК
  • обобщеные координаты q_i (минимальное количество переменные которыми можно описать движение), в данном примере одна обобщенная координата, движение только вдоль оси j


Рис 2 . Проставляем системы координат и обобщенные координаты


Рис 3 . Позиция и скорость тела М1

После найдем кинетическую (С) и потенциальную (Р) энергии и диссипативную функцию (D) для демпфера по формулам:


Рис 4 . Полная формула кинетической энергии

В нашем примере вращения нет, вторая составляющая равна 0.




Рис 5 . Расчет кинетической, потенциальной энергии и диссипативной функции

Уравнение Лагранжа имеет следующий вид:


Рис 6 . Уравнение Лагранжа и Лагранжиан

Дельта W_i это виртуальная работа совершенная приложенными силами и моментами. Найдем ее:


Рис 7 . Расчет виртуальной работы

Где дельта q_1 виртуальное перемещение.

Подставляем всё в уравнение Лагранжа:


Рис 8 . Полученная модель массы с пружинной и демпфером

На этом метод Лагранжа закончился. Как видно не так сложно, но это все же очень простой пример, для которого скорее всего метод Ньютона-Эйлера даже был бы проще. Для более сложных систем, где будет несколько тела, повернутые друг относительно друга на разные угол, метод Лагранжа будет легче.

Метод Bond graph

Сразу покажу так выглядит модель в bond-graph для примера с массой пружиной и демпфером:


Рис 9 . Bond-graph массы с пружинной и демпфером

Здесь придётся рассказать немного теории, которой хватит для построения простых моделей. Если кто нибудь заинтересован можете почитать книгу ( Bond Graph Methodology ) или (Воронин А.В. Моделирование мехатронных систем: учебное пособие. – Томск: Изд-во Томского политехнического университета, 2008 ).

Определим для начала, что сложные системы состоят из нескольких доменов. Например электродвигатель состоит из электрической и механической частей или доменов.

Bond graph основан на обмене мощности между этими доменами, подсистемами. Заметим, что обмен мощностью, любой формы, всегда определяется двумя переменными (переменные мощности ) с помощью которых, мы можем изучать взаимодействие различных подсистем в составе динамической системы (см. таблицу).

Как видно из таблицы выражение мощности везде практически одинаковое. В обобщении, Мощность - это произведение «потока - f » на «усилия - e ».

Усилие (англ. effort ) в электрическом домене это напряжение (e), в механическом - сила (F) или момент (T), в гидравлике – давление (p).

Поток (англ. flow ) в электрическом домене это ток (i), в механическом - скорость (v) или угловая скорость (omega), в гидравлике – поток или расход жидкости (Q).

Принимая данные обозначения, получаем выражение для мощности:


Рис 10 . Формула мощности через мощностные переменные

В языке bond-graph соединение между двумя подсистемами которые обмениваются мощностью представлена связью (англ. bond ). По этому и называется данный метод bond-graph или граф-связей, связной граф . Рассмотрим блок-диаграмму связей в модели с электродвигателем (это еще не bond-graph):


Рис 11 . Блок-диарамма потока мощности между доменами

Если у нас источник напряжения, то соответственно он генерирует напряжение и отдает его двигателю на отмотки (по этому стрелка направлена в сторону двигателя), в зависимости от сопротивления обмотки появляется ток по закону Ома (направлен от двигателя к источнику). Соответственно одна переменная является входом в подсистему, а вторая необходима должна быть выходом из подсистемы. Здесь напряжение (effort ) – вход, ток (flow ) – выход.

Если использовать источник тока, как поменяется диаграмма? Правильно. Ток будет направлен к двигателю, а напряжение к источнику. Тогда ток (flow ) – вход, напряжение (effort ) – выход.

Рассмотрим пример в механике. Сила, действующая на массу.


Рис 12 . Сила приложенная к массе

Блок-Диаграмма будет следующей:


Рис 13 . Блок-диаграмма

В этом примере, Сила (effort ) – входная переменная для массы. (Сила приложена к массе)
По второму закону Ньютона:

Масса отвечает скоростью:

В этом примере если одна переменная (сила - effort ) является входом в механический домен, то другая мощностная переменная (скорость - flow ) – автоматически становится выходом .

Что бы различать, где вход, а где выход, используется вертикальная линия на конце стрелки (связи) между элементами, эту линию называют знак причинности или причинная связь (causality ). Получается: приложенная сила – причина, а скорость - следствие. Этот знак очень важен для правильного построения модели системы, так как причинность - это следствие физического поведения и обмена мощностями двух подсистем, по этому выбор расположения знака причинности не может быть произвольным.


Рис 14 . Обозначение причинной связи

Эта вертикальная линия показывает какая подсистема получает усилие (effort ) и как следствие производить поток (flow ). В примере с массой будет так:


Рис 14 . Причинна связь для силы действующей на массу

По стрелке понятно что на вход для массы - сила , а выход - скорость . Это делается, что бы не загромождать стрелками схему и систематизации построения модели.

Следующий важный момент. Обобщённый импульс (количество движения) и перемещение (энергетические переменные ).

Таблица мощностных и энергетический переменных в разных доменах



Таблица выше вводит две дополнительные физические величины, используемые в методе bond-graph. Они называются обобщенный импульс (р ) и обобщенное перемещение (q ) или энергетические переменные, и получить их можно интегрированием мощностных переменных по времени:


Рис 15 . Связь между мощностными и энергетическими переменными

В электрическом домене :

Исходя из закона Фарадея, напряжение на концах проводника равняется производной от магнитного потока через этот проводник.


А Сила тока - физическая величина, равная отношению количества заряда Q, прошедшего за некоторое время t через поперечное сечение проводника, к величине этого промежутка времени.

Механический домен:

Из 2 закона Ньютона, Сила – производная по времени от импульса


И соответственно, скорость - производная по времени от перемещения:

Обобщим :

Базовые элементы

Все элементы в динамических системах, можно разделить на двухполюсные и четырехполюсные компоненты.
Рассмотрим двухполюсные компоненты :

Источники
Источники бывают как усилия, так и потока. Аналогия в электрическом домене: источник усилия источник напряжения , источник потока источник тока . Причинные знаки для источников должны быть только такие.


Рис 16 . Причинные связи и обозначение источников

Компонент R – диссипативный элемент

Компонент I – инерциальный элемент

Компонент C – емкостной элемент

Как видно из рисунков, разные элементы одного типа R,C,I описываться одинаковыми уравнениями. ТОЛЬКО есть отличие для электрической емкости, это нужно просто запомнить!

Четырёхполюснике компоненты :

Рассмотрим два компонента трансформатор и гиратор.

Последними важными компонентами в методе bond-graph выступают соединения. Существует два типа узлов:




На этом с компонентами закончили.

Основные этапы для проставления причинных связей после построения bond-graph:

  1. Проставить причинные связи всем источникам
  2. Пройтись по всем узлам и проставить причинные связи после пункта 1
  3. Для компонентов I присвоить входную причинную связь (усилие входит в этот компонент), для компонентов С присваиваем выходную причинную связь (усилие выходит из этого компонента)
  4. Повторить пункт 2
  5. Проставить причинные связи для компонентов R
На этом мини-курс по теории закончим. Теперь у нас есть все необходимое для построения моделей.
Давайте решим пару примеров. Начнем с электрической цепь, лучше понять аналогию построения bond-graph.

Пример 1


Начнем построение bond-graph с источника напряжения. Просто пишем Se и ставим стрелку.


Видите все просто! Смотрим далее, R и L соединены последовательно, значить в них течет одинаковый ток, если говорить в мощностных переменных – одинаковый поток. Какой узел имеет одинаковый поток? Правильный ответ 1-узел. Присоединяем к 1-узлу источник, сопротивление (компонент - R) и индуктивность (компонент - I).


Далее у нас емкость и сопротивление в параллели, значить они имеют одинаковое напряжение или усилие. 0-узел подойдет как никто другой. Соединяем емкость (компонент С) и сопротивление (компонент R) к 0-узлу.


Узлы 1 и 0 тоже соединяем между собой. Направление стрелок выбирается произвольное, направление связи влияет только на знак в уравнениях.

Получиться следующий граф связей:

Теперь нужно проставить причинные связи. Следуя указаниям по последовательности их проставления, начнем с источника.

  1. Мы имеем источник напряжения (усилия), такой источник имеет только один вариант причинности – выходную. Ставим.
  2. Далее есть компонент I, смотрим что рекомендуют. Ставим
  3. Проставляем для 1-узла. Есть
  4. 0-узел должен иметь один вход и все выходные причинные связи. У нас есть пока одна выходная. Ищем компоненты С или I. Нашли. Ставим
  5. Проставляем что осталось


Вот и все. Bond-graph построен. Ура, Товарищи!

Осталось дело за малым, написать уравнения, описывающие нашу систему. Для этого составим таблицу с 3 столбцами. В первом будут все компоненты системы, во втором входная переменная для каждого элемента, а в третьем – выходная переменная, для такого же компонента. Вход и выход мы уже определили причинностнными связями. Так что проблем возникнуть не должно.

Пронумеруем каждую связь для удобства записи уровнений. Уравнения для каждого элемента берем из перечня компонентов C,R,I.



Составив таблицу определим переменные состояния, их в данном примере 2, p3 и q5. Далее нужно записать уравнения состояния:


Вот и все модель готова.

Пример 2. Сразу хочу извениться за качество фото, главное что можно прочитать

Решим еще один пример для механической системы, тот же что мы решали методом Лагранжа. Я показу решение без комментариев. Проверим какой из данных методов проще, легче.

В матбале были составлены обе мат модели с одинаковыми параметрами, полученые методом Лагранжа и bond-graph. Результат ниже: Добавить метки

Метод Множителей Лагранжа является классическим методом решения задач математического программирования (в частности выпуклого). К сожалению, при практическом применении метода могут встретиться значительные вычислительные трудности, сужающие область его использования. Мы рассматриваем здесь метод Лагранжа главным образом потому, что он является аппаратом, активно используемым для обоснования различных современных численных методов, широко применяемых на практике. Что же касается функции Лагранжа и множителей Лагранжа, то они играют самостоятельную и исключительно важную роль в теории и приложениях не только математического программирования.

Рассмотрим классическую задачу оптимизации

max (min) z=f(x) (7.20)

Эта задача выделяется из задачи (7.18), (7.19) тем, что среди ограничений (7.21) нет неравенств, нет условий неотрицательности переменных, их дискретности, и функции f(x) и непрерывны и имеют частные производные по крайней мере второго порядка.

Классический подход к решению задачи (7.20), (7.21) дает систему уравнений (необходимые условия), которым должна удовлетворять точка х*,доставляющая функции f(x)локальный экстремум на множестве точек, удовлетворяющих ограничениям (7.21) (для задачи выпуклого программирования найденная точка х*в соответствии с теоремой 7.6 будет одновременно и точкой глобального экстремума).

Предположим, что в точке х* функция (7.20) имеет локальный условный экстремум и ранг матрицы равен . Тогда необходимые условия запишутся в виде:

(7.22)

есть функция Лагранжа; - множители Лагранжа.

Существуют также и достаточные условия, при выполнении которых решение системы уравнений (7.22) определяет точку экстремума функции f(x). Этот вопрос решается на основании исследования знака второго дифференциала функции Лагранжа. Однако достаточные условия представляют главным образом теоретический интерес.

Можно указать следующий порядок решения задачи (7.20), (7.21) методом множителей Лагранжа:

1) составить функцию Лагранжа (7.23);

2) найти частные производные функции Лагранжа по всем переменным и приравнять их нулю. Тем самым будет получена система (7.22), состоящая из уравнений. Решить полученную систему (если это окажется возможным!) и найти таким образом все стационарные точки функции Лагранжа;

3) из стационарных точек, взятых без координат , выбрать точки, в которых функция f(x) имеет условные локальные экстремумы при наличии ограничений (7.21). Этот выбор осуществляется, например, с применением достаточных условий локального экстремума. Часто исследование упрощается, если использовать конкретные условия задачи.



Пример 7.3 . Найти оптимальное распределение ограниченного ресурса в a ед. между n потребителями, если прибыль, получаемая при выделении j-му потребителю x j единиц ресурса, вычисляется по формуле .

Решение. Математическая модель задачи имеет следующий вид:


Составляем функцию Лагранжа:

.

Находим частные производные функции Лагранжа и приравниваем их нулю:

Решая эту систему уравнений, получаем:

Таким образом, если j-му потребителю будет выделено ед. ресурса, то суммарная прибыль достигнет максимальной величины и составит ден. ед.

Мы рассмотрелиметод Лагранжа применительно к классической задаче оптимизации. Можно обобщить этот метод на случай, когда переменные неотрицательны и некоторые ограничения заданы в форме неравенств. Однако это обобщение имеет преимущественно теоретическое значение и не приводит к конкретным вычислительным алгоритмам.

В заключение дадим множителям Лагранжа экономическую интерпретацию. Для этого обратимся к простейшей классической задаче оптимизации

max (min) z =f (x 1 , х 2); (7.24)

𝜑(x 1 , х 2)=b. (7.25)

Предположим, что условный экстремум достигается в точке . Соответствующее экстремальное значение функции f (x )

Допустим, что в ограничениях (7.25) величина b может меняться, тогда координаты точки экстремума, а следовательно, и экстремальное значение f* функции f (x ) станут величинами, зависящими от b , т. е. ,, а поэтому производная функции (7.24)

Рассмотрим линейное неоднородное дифференциальное уравнение первого порядка:
(1) .
Существует три способа решения этого уравнения:

  • метод вариации постоянной (Лагранжа).

Рассмотрим решение линейного дифференциального уравнения первого порядка методом Лагранжа.

Метод вариации постоянной (Лагранжа)

В методе вариации постоянной мы решаем уравнение в два этапа. На первом этапе мы упрощаем исходное уравнение и решаем однородное уравнение. На втором этапе мы заменим постоянную интегрирования, полученную на первой стадии решения, на функцию. После чего ищем общее решение исходного уравнения.

Рассмотрим уравнение:
(1)

Шаг 1 Решение однородного уравнения

Ищем решение однородного уравнения:

Это уравнение с разделяющимися переменными

Разделяем переменные - умножаем на dx , делим на y :

Интегрируем:

Интеграл по y - табличный :

Тогда

Потенцируем:

Заменим постоянную e C на C и уберем знак модуля, что сводится к умножению на постоянную ±1 , которую включим в C :

Шаг 2 Заменим постоянную C на функцию

Теперь заменим постоянную C на функцию от x :
C → u(x)
То есть, будем искать решение исходного уравнения (1) в виде:
(2)
Находим производную.

По правилу дифференцирования сложной функции:
.
По правилу дифференцирования произведения:

.
Подставляем в исходное уравнение (1) :
(1) ;

.
Два члена сокращаются:
;
.
Интегрируем:
.
Подставляем в (2) :
.
В результате получаем общее решение линейного дифференциального уравнения первого порядка:
.

Пример решения линейного дифференциального уравнения первого порядка методом Лагранжа

Решить уравнение

Решение

Решаем однородное уравнение:

Разделяем переменные:

Умножим на :

Интегрируем:

Интегралы табличные :

Потенцируем:

Заменим постоянную e C на C и убираем знаки модуля:

Отсюда:

Заменим постоянную C на функцию от x :
C → u(x)

Находим производную:
.
Подставляем в исходное уравнение:
;
;
Или:
;
.
Интегрируем:
;
Решение уравнения:
.

an(t)z(n)(t) + an − 1(t)z(n − 1)(t) + ... + a1(t)z"(t) + a0(t)z(t) = f(t)

состоит в замене произвольных постоянных ck в общем решении

z(t) = c1z1(t) + c2z2(t) + ...

Cnzn(t)

соответствующего однородного уравнения

an(t)z(n)(t) + an − 1(t)z(n − 1)(t) + ... + a1(t)z"(t) + a0(t)z(t) = 0

на вспомогательные функции ck(t), производные которых удовлетворяют линейной алгебраической системе

Определителем системы (1) служит вронскиан функций z1,z2,...,zn, что обеспечивает её однозначную разрешимость относительно .

Если - первообразные для , взятые при фиксированных значениях постоянных интегрирования, то функция

является решением исходного линейного неоднородного дифференциального уравнения. Интегрирование неоднородного уравнения при наличии общего решения соответствующего однородного уравнения сводится, таким образом, к квадратурам.

Метод Лагранжа (метод вариации произвольных постоянных)

Метод для получения общего решения неоднородного уравнения, зная общее решение однородного уравнения без нахождения частного решения.

Для линейного однородного дифференциального уравнения n-го порядка

y(n) + a1(x) y(n-1) + ... + an-1 (x) y" + an(x) y = 0,

где y = y(x) - неизвестная функция, a1(x), a2(x), ..., an-1(x), an(x) - известные, непрерывные, справедливо: 1) существуют n линейно независимых решений уравнения y1(x), y2(x), ..., yn(x); 2) при любых значениях констант c1, c2, ..., cn функция y(x)= c1 y1(x) + c2 y2(x) + ... + cn yn(x) является решением уравнения; 3) для любых начальных значений x0, y0, y0,1, ..., y0,n-1 существуют такие значения c*1, c*n, ..., c*n, что решение y*(x)=c*1 y1(x) + c*2 y2(x) + ... + c*n yn (x) удовлетворяет при x = x0 начальным условиям y*(x0)=y0, (y*)"(x0)=y0,1 , ...,(y*)(n-1)(x0)=y0,n-1.

Выражение y(x)= c1 y1(x) + c2 y2(x) + ... + cn yn(x) называется общим решением линейного однородного дифференциального уравнения n-го порядка.

Совокупность n линейно независимых решений линейного однородного дифференциального уравнения n-го порядка y1(x), y2(x), ..., yn(x) называется фундаментальной системой решений уравнения.

Для линейного однородного дифференциального уравнения с постоянными коэффициентами существует простой алгоритм построения фундаментальной системы решений. Будем искать решение уравнения в виде y(x) = exp(lx): exp(lx)(n) + a1exp(lx)(n-1) + ... + an-1exp(lx)" + anexp(lx)= = (ln + a1ln-1 + ... + an-1l + an)exp(lx) = 0, т.е. число l является корнем характеристического уравнения ln + a1ln-1 + ... + an-1l + an = 0. Левая часть характеристического уравнения называется характеристическим многочленом линейного дифференциального уравнения: P(l) = ln + a1ln-1 + ... + an-1l + an. Таким образом, задача о решении линейного однородного уравнения n -го порядка с постоянными коэффициентами сводится к решению алгебраического уравнения.

Если характеристическое уравнение имеет n различных действительных корней l1№ l2 № ... № ln, то фундаментальная система решений состоит из функций y1(x) = exp(l1x), y2(x) = exp(l2x), ..., yn(x) = exp(lnx), и общее решение однородного уравнения имеет вид: y(x)= c1 exp(l1x) + c2 exp(l2x) + ... + cn exp(lnx).

ундаментальная система решений и общее решение для случая простых действительных корней.

Если какой-либо из действительных корней характеристического уравнения повторяется r раз (r-кратный корень), то в фундаментальной системе решений ему отвечают r функций; если lk=lk+1 = ... = lk+r-1, то в фундаментальную систему решений уравнения входят r функций: yk(x) = exp(lkx), yk+1(x) = xexp(lkx), yk+2(x) = x2exp(lkx), ..., yk+r-1(x) =xr-1 exp(lnx).

ПРИМЕР 2. Фундаментальная система решений и общее решение для случая кратных действительных корней.

Если характеристическое уравнение имеет комплексные корни, то каждой паре простых (имеющих кратность 1) комплексных корней lk,k+1=ak ± ibk в фундаментальной системе решений отвечает пара функций yk(x) = exp(akx)cos(bkx), yk+1(x) = exp(akx)sin(bkx).

ПРИМЕР 4. Фундаментальная система решений и общее решение для случая простых комплексных корней. Мнимые корни.

Если же комплексная пара корней имеет кратность r, то такой паре lk=lk+1 = ... = l2k+2r-1=ak ± ibk, в фундаментальной системе решений отвечают функции exp(akx)cos(bkx), exp(akx)sin(bkx), xexp(akx)cos(bkx), xexp(akx)sin(bkx), x2exp(akx)cos(bkx), x2exp(akx)sin(bkx), ................ xr-1exp(akx)cos(bkx), xr-1exp(akx)sin(bkx).

ПРИМЕР 5. Фундаментальная система решений и общее решение для случая кратных комплексных корней.

Таким образом, для отыскания общего решения линейного однородного дифференциального уравнения с постоянными коэффициентами следует: записать характеристическое уравнение; найти все корни характеристического уравнения l1, l2, ... , ln; записать фундаментальную систему решений y1(x), y2(x), ..., yn(x); записать выражение для общего решения y(x)= c1 y1(x) + c2 y2(x) + ... + cn yn(x). Для решения задачи Коши нужно подставить выражение для общего решения в начальные условия и определить значения постоянных c1,..., cn, которые являются решениями системы линейных алгебраических уравнений c1 y1(x0) + c2 y2(x0) + ... + cn yn(x0) = y0, c1 y"1(x0) + c2 y"2(x0) + ... + cn y"n(x0) =y0,1, ......... , c1 y1(n-1)(x0) + c2 y2(n-1)(x0) + ... + cn yn(n-1)(x0) = y0,n-1

Для линейного неоднородного дифференциального уравнения n-го порядка

y(n) + a1(x) y(n-1) + ... + an-1 (x) y" + an(x) y = f(x),

где y = y(x) - неизвестная функция, a1(x), a2(x), ..., an-1(x), an(x), f(x) - известные, непрерывные, справедливо: 1) если y1(x) и y2(x) - два решения неоднородного уравнения, то функция y(x) = y1(x) - y2(x) - решение соответствующего однородного уравнения; 2) если y1(x) решение неоднородного уравнения, а y2(x) - решение соответствующего однородного уравнения, то функция y(x) = y1(x) + y2(x) - решение неоднородного уравнения; 3) если y1(x), y2(x), ..., yn(x) - n линейно независимых решений однородного уравнения, а yч(x) - произвольное решение неоднородного уравнения, то для любых начальных значений x0, y0, y0,1, ..., y0,n-1 существуют такие значения c*1, c*n, ..., c*n, что решение y*(x)=c*1 y1(x) + c*2 y2(x) + ... + c*n yn (x) + yч(x) удовлетворяет при x = x0 начальным условиям y*(x0)=y0, (y*)"(x0)=y0,1 , ...,(y*)(n-1)(x0)=y0,n-1.

Выражение y(x)= c1 y1(x) + c2 y2(x) + ... + cn yn(x) + yч(x) называется общим решением линейного неоднородного дифференциального уравнения n-го порядка.

Для отыскания частных решений неоднородных дифференциальных уравнений с постоянными коэффициентами с правыми частями вида: Pk(x)exp(ax)cos(bx) + Qm(x)exp(ax)sin(bx), где Pk(x), Qm(x) - многочлены степени k и m соответственно, существует простой алгоритм построения частного решения, называемый методом подбора.

Метод подбора, или метод неопределенных коэффициентов, состоит в следующем. Искомое решение уравнения записывается в виде: (Pr(x)exp(ax)cos(bx) + Qr(x)exp(ax)sin(bx))xs, где Pr(x), Qr(x) - многочлены степени r = max(k, m) с неизвестными коэффициентами pr , pr-1, ..., p1, p0, qr, qr-1, ..., q1, q0. Сомножитель xs называют резонансным сомножителем. Резонанс имеет место в случаях, когда среди корней характеристического уравнения есть корень l =a ± ib кратности s. Т.е. если среди корней характеристического уравнения соответствующего однородного уравнения есть такой, что его действительная часть совпадает с коэффициентом в показателе степени экспоненты, а мнимая - с коэффициентом в аргументе тригонометрической функции в правой части уравнения, и кратность этого корня s, то в искомом частном решении присутствует резонансный сомножитель xs. Если же такого совпадения нет (s=0), то резонансный сомножитель отсутствует.

Подставив выражение для частного решения в левую часть уравнения, получим обобщенный многочлен того же вида, что и многочлен в правой части уравнения, коэффициенты которого неизвестны.

Два обобщенных многочлена равны тогда и только тогда, когда равны коэффициенты при сомножителях вида xtexp(ax)sin(bx), xtexp(ax)cos(bx) с одинаковыми степенями t. Приравняв коэффициенты при таких сомножителях, получим систему 2(r+1) линейных алгебраических уравнений относительно 2(r+1) неизвестных. Можно показать, что такая система совместна и имеет единственное решение.

Описание метода

где .

Обоснование

Нижеприведенное обоснование метода множителей Лагранжа не является его строгим доказательством. Оно содержит эвристические рассуждения, помогающие понять геометрический смысл метода.

Двумерный случай

Линии уровня и кривая .

Пусть требуется найти экстремум некоторой функции двух переменных при условии, задаваемом уравнением . Мы будем считать, что все функции непрерывно дифференцируемы, и данное уравнение задает гладкую кривую S на плоскости . Тогда задача сводится к нахождению экстремума функции f на кривой S . Будем также считать, что S не проходит через точки, в которых градиент f обращается в 0 .

Нарисуем на плоскости линии уровня функции f (то есть кривые ). Из геометрических соображений видно, что экстремумом функции f на кривой S могут быть только точки, в которых касательные к S и соответствующей линии уровня совпадают. Действительно, если кривая S пересекает линию уровня f в точке трансверсально (то есть под некоторым ненулевым углом), то двигаясь по кривой S из точки мы можем попасть как на линии уровня, соответствующие большему значению f , так и меньшему. Следовательно, такая точка не может быть точкой экстремума.

Тем самым, необходимым условием экстремума в нашем случае будет совпадение касательных. Чтобы записать его в аналитической форме, заметим, что оно эквивалентно параллельности градиентов функций f и ψ в данной точке, поскольку вектор градиента перпендикулярен касательной к линии уровня. Это условие выражается в следующей форме:

где λ - некоторое число, отличное от нуля, и являющееся множителем Лагранжа.

Рассмотрим теперь функцию Лагранжа , зависящую от и λ :

Необходимым условием ее экстремума является равенство нулю градиента . В соответствии с правилами дифференцирования, оно записывается в виде

Мы получили систему, первые два уравнения которой эквивалентны необходимому условию локального экстремума (1), а третье - уравнению . Из нее можно найти . При этом , поскольку в противном случае градиент функции f обращается в нуль в точке , что противоречит нашим предположениям. Следует заметить, что найденные таким образом точки могут и не являться искомыми точками условного экстремума - рассмотренное условие носит необходимый, но не достаточный характер. Нахождение условного экстремума с помощью вспомогательной функции L и составляет основу метода множителей Лагранжа, примененного здесь для простейшего случая двух переменных. Оказывается, вышеприведенные рассуждения обобщаются на случай произвольного числа переменных и уравнений, задающих условия.

На основе метода множителей Лагранжа можно доказать и некоторые достаточные условия для условного экстремума, требующие анализа вторых производных функции Лагранжа.

Применение

  • Метод множителей Лагранжа применяется при решении задач нелинейного программирования, возникающих во многих областях (например, в экономике).
  • Основной метод решения задачи об оптимизации качества кодирования аудио и видео данных при заданном среднем битрейте (оптимизация искажений - англ. Rate-Distortion optimization ).

См. также

Ссылки

  • Зорич В. А. Математический анализ. Часть 1. - изд. 2-е, испр. и доп. - М.: ФАЗИС, 1997.

Wikimedia Foundation . 2010 .

Смотреть что такое "Множители Лагранжа" в других словарях:

    Множители Лагранжа - дополнительные множители, преобразующие целевую функцию экстремальной задачи выпуклого программирования (в частности, линейного программирования) при ее решении одним из классических методов методом разрешающих множителей… … Экономико-математический словарь

    множители Лагранжа - Дополнительные множители, преобразующие целевую функцию экстремальной задачи выпуклого программирования (в частности, линейного программирования) при ее решении одним из классических методов методом разрешающих множителей (методом Лагранжа).… … Справочник технического переводчика

    Механики. 1) Лагранжа уравнения 1 го рода дифференциальные ур ния движения механич. системы, к рые даны в проекциях на прямоугольные координатные оси и содержат т. н. множители Лагранжа. Получены Ж. Лагранжем в 1788. Для голономной системы,… … Физическая энциклопедия

    Механики обыкновенные дифференциальные уравнения 2 го порядка, описывающие движения механич. систем под действием приложенных к ним сил. Л. у. установлены Ж. Лаг ранжем в двух формах: Л. у. 1 го рода, или уравнения в декартовых координатах с… … Математическая энциклопедия

    1) в гидромеханике ур ния движения жидкости (газа) в переменных Лагранжа, к рыми являются координаты ч ц среды. Получены франц. учёным Ж. Лагранжем (J. Lagrange; ок. 1780). Из Л. у. определяется закон движения ч ц среды в виде зависимостей… … Физическая энциклопедия

    Метод множителей Лагранжа, метод нахождения условного экстремума функции f(x), где, относительно m ограничений, i меняется от единицы до m. Содержание 1 Описание метода … Википедия

    Функция, используемая при решении задач на условный экстремум функций многих переменных и функционалов. С помощью Л. ф. записываются необходимые условия оптимальности в задачах на условный экстремум. При этом не требуется выражать одни переменные … Математическая энциклопедия

    Метод решения задач на Условный экстремум; Л. м. м. заключается в сведении этих задач к задачам на безусловный экстремум вспомогательной функции т. н. функции Лагранжа. Для задачи об экстремуме функции f (х1, x2,..., xn) при… …

    Переменные, с помощью к рых строится Лагранжа функция при исследовании задач на условный экстремум. Использование Л. м. и функции Лагранжа позволяет единообразным способом получать необходимые условия оптимальности в задачах на условный экстремум … Математическая энциклопедия

    1) в гидромеханике уравнения движения жид кой среды, записанные в переменных Лагранжа, которыми являются координаты частиц среды. Из Л. у. определяется закон движения частиц среды в виде зависимостей координат от времени, а по ним… … Большая советская энциклопедия



Понравилась статья? Поделитесь с друзьями!