Методы моментов максимального правдоподобия. Методы получения оценок

В работах, предназначенных для первоначального знакомства с математической статистикой, обычно рассматривают оценки максимального правдоподобия (сокращенно ОМП):

Таким образом, сначала строится плотность распределения вероятностей, соответствующая выборке. Поскольку элементы выборки независимы, то эта плотность представляется в виде произведения плотностей для отдельных элементов выборки. Совместная плотность рассматривается в точке, соответствующей наблюденным значениям. Это выражение как функция от параметра (при заданных элементах выборки) называется функцией правдоподобия. Затем тем или иным способом ищется значение параметра, при котором значение совместной плотности максимально. Это и есть оценка максимального правдоподобия.

Хорошо известно, что оценки максимального правдоподобия входят в класс наилучших асимптотически нормальных оценок. Однако при конечных объемах выборки в ряде задач ОМП недопустимы, т.к. они хуже (дисперсия и средний квадрат ошибки больше), чем другие оценки, в частности, несмещенные. Именно поэтому в ГОСТ 11.010-81 для оценивания параметров отрицательного биномиального распределения используются несмещенные оценки, а не ОМП. Из сказанного следует априорно предпочитать ОМП другим видам оценок можно - если можно - лишь на этапе изучения асимптотического поведения оценок.

В отдельных случаях ОМП находятся явно, в виде конкретных формул, пригодных для вычисления.

В большинстве случаев аналитических решений не существует, для нахождения ОМП необходимо применять численные методы. Так обстоит дело, например, с выборками из гамма-распределения или распределения Вейбулла-Гнеденко. Во многих работах каким-либо итерационным методом решают систему уравнений максимального правдоподобия или впрямую максимизируют функцию правдоподобия.

Однако применение численных методов порождает многочисленные проблемы. Сходимость итерационных методов требует обоснования. В ряде примеров функция правдоподобия имеет много локальных максимумов, а потому естественные итерационные процедуры не сходятся. Для данных ВНИИ железнодорожного транспорта по усталостным испытаниям стали уравнение максимального правдоподобия имеет 11 корней. Какой из одиннадцати использовать в качестве оценки параметра?

Как следствие осознания указанных трудностей, стали появляться работы по доказательству сходимости алгоритмов нахождения оценок максимального правдоподобия для конкретных вероятностных моделей и конкретных алгоритмов.

Однако теоретическое доказательство сходимости итерационного алгоритма - это еще не всё. Возникает вопрос об обоснованном выборе момента прекращения вычислений в связи с достижением требуемой точности. В большинстве случаев он не решен.

Но и это не все. Точность вычислений необходимо увязывать с объемом выборки - чем он больше, тем точнее надо находить оценки параметров, в противном случае нельзя говорить о состоятельности метода оценивания. Более того, при увеличении объема выборки необходимо увеличивать и количество используемых в компьютере разрядов, переходить от одинарной точности расчетов к двойной и далее - опять-таки ради достижения состоятельности оценок.

Таким образом, при отсутствии явных формул для оценок максимального правдоподобия нахождение ОМП натыкается на ряд проблем вычислительного характера. Специалисты по математической статистике позволяют себе игнорировать все эти проблемы, рассуждая об ОМП в теоретическом плане. Однако прикладная статистика не может их игнорировать. Отмеченные проблемы ставят под вопрос целесообразность практического использования ОМП.

Пример 1. В статистических задачах стандартизации и управления качеством используют семейство гамма-распределений. Плотность гамма-распределения имеет вид

Плотность вероятности в формуле (7) определяется тремя параметрами a, b, c , где a >2, b >0. При этом a является параметром формы, b - параметром масштаба и с - параметром сдвига. Множитель 1/Г(а) является нормировочным, он введен, чтобы

Здесь Г(а) - одна из используемых в математике специальных функций, так называемая "гамма-функция", по которой названо и распределение, задаваемое формулой (7),

Подробные решения задач оценивания параметров для гамма-распределения содержатся в разработанном нами государственном стандарте ГОСТ 11,011-83 «Прикладная статистика. Правила определения оценок и доверительных границ для параметров гамма-распределения». В настоящее время эта публикация используется в качестве методического материала для инженерно-технических работников промышленных предприятий и прикладных научно-исследовательских институтов.

Поскольку гамма-распределение зависит от трех параметров, то имеется 2 3 - 1 = 7 вариантов постановок задач оценивания. Они описаны в табл. 1. В табл. 2 приведены реальные данные о наработке резцов до предельного состояния, в часах. Упорядоченная выборка (вариационный ряд) объема n = 50 взята из государственного стандарта. Именно эти данные будут служить исходным материалом для демонстрации тех или иных методов оценивания параметров.

Выбор «наилучших» оценок в определенной параметрической модели прикладной статистики - научно-исследовательская работа, растянутая во времени. Выделим два этапа. Этап асимптотики : оценки строятся и сравниваются по их свойствам при безграничном росте объема выборки. На этом этапе рассматривают такие характеристики оценок, как состоятельность, асимптотическая эффективность и др. Этап конечных объемов выборки: оценки сравниваются, скажем, при n = 10. Ясно, что исследование начинается с этапа асимптотики: чтобы сравнивать оценки, надо сначала их построить и быть уверенными, что они не являются абсурдными (такую уверенность дает доказательство состоятельности).

Пример 2. Оценивание методом моментов параметров гамма-распределения в случае трех неизвестных параметров (строка 7 таблицы 1).

В соответствии с проведенными выше рассуждениями для оценивания трех параметров достаточно использовать три выборочных момента - выборочное среднее арифметическое:

выборочную дисперсию

и выборочный третий центральный момент

Приравнивая теоретические моменты, выраженные через параметры распределения, и выборочные моменты, получаем систему уравнений метода моментов:

Решая эту систему, находим оценки метода моментов. Подставляя второе уравнение в третье, получаем оценку метода моментов для параметра сдвига:

Подставляя эту оценку во второе уравнение, находим оценку метода моментов для параметра формы:

Наконец, из первого уравнения находим оценку для параметра сдвига:

Для реальных данных, приведенных выше в табл. 2, выборочное среднее арифметическое = 57,88, выборочная дисперсия s 2 = 663,00, выборочный третий центральный момент m 3 = 14927,91. Согласно только что полученным формулам оценки метода моментов таковы: a * = 5,23; b * = 11,26, c * = - 1,01.

Оценки параметров гамма-распределения, полученные методом моментов, являются функциями от выборочных моментов. В соответствии со сказанным выше они являются асимптотически нормальными случайными величинами. В табл. 3 приведены оценки метода моментов и их асимптотические дисперсии при различных вариантах сочетания известных и неизвестных параметров гамма-распределения.

Все оценки метода моментов, приведенные в табл. 3, включены в государственный стандарт. Они охватывают все постановки задач оценивания параметров гамма-распределения (см. табл. 1), кроме тех, когда неизвестен только один параметр - a или b . Для этих исключительных случаев разработаны специальные методы оценивания.

Поскольку асимптотическое распределение оценок метода моментов известно, то не представляет труда формулировка правил проверки статистических гипотез относительно значений параметров распределений, а также построение доверительных границ для параметров. Например, в вероятностной модели, когда все три параметра неизвестны, в соответствии с третьей строкой таблицы 3 нижняя доверительная граница для параметра а , соответствующая доверительной вероятности г = 0,95, в асимптотике имеет вид

а верхняя доверительная граница для той же доверительной вероятности такова

где а * - оценка метода моментов параметра формы (табл. 3).

Пример 3. Найдем ОМП для выборки из нормального распределения, каждый элемент которой имеет плотность

Таким образом, надо оценить двумерный параметр (m , у 2).

Произведение плотностей вероятностей для элементов выборки, т.е. функция правдоподобия, имеет вид

Требуется решить задачу оптимизации

Как и во многих иных случаях, задача оптимизации проще решается, если прологарифмировать функцию правдоподобия, т.е. перейти к функции

называемой логарифмической функцией правдоподобия. Для выборки из нормального распределения

Необходимым условием максимума является равенство 0 частных производных от логарифмической функции правдоподобия по параметрам, т.е.

Система (10) называется системой уравнений максимального правдоподобия. В общем случае число уравнений равно числу неизвестных параметров, а каждое из уравнений выписывается путем приравнивания 0 частной производной логарифмической функции правдоподобия по тому или иному параметру.

При дифференцировании по m первые два слагаемых в правой части формулы (9) обращаются в 0, а последнее слагаемое дает уравнение

Следовательно, оценкой m * максимального правдоподобия параметра m является выборочное среднее арифметическое,

Для нахождения оценки дисперсии необходимо решить уравнение

Легко видеть, что

Следовательно, оценкой (у 2)* максимального правдоподобия для дисперсии у 2 с учетом найденной ранее оценки для параметра m является выборочная дисперсия,

Итак, система уравнений максимального правдоподобия решена аналитически, ОМП для математического ожидания и дисперсии нормального распределения - это выборочное среднее арифметическое и выборочная дисперсия. Отметим, что последняя оценка является смещенной.

Отметим, что в условиях примера 3 оценки метода максимального правдоподобия совпадают с оценками метода моментов. Причем вид оценок метода моментов очевиден и не требует проведения каких-либо рассуждений.

Пример 4. Попытаемся проникнуть в тайный смысл следующей фразы основателя современной статистики Рональда Фишера: “нет ничего проще, чем придумать оценку параметра”. Классик иронизировал: он имел в виду, что легко придумать плохую оценку. Хорошую оценку не надо придумывать (!) - ее надо получать стандартным образом, используя принцип максимального правдоподобия.

Задача. Согласно H 0 математические ожидания трех независимых пуассоновских случайных величин связаны линейной зависимостью: .

Даны реализации этих величин. Требуется оценить два параметра линейной зависимости и проверить H 0 .

Для наглядности можно представить линейную регрессию, которая в точках принимает средние значения. Пусть получены значения. Что можно сказать о величине и справедливости H 0 ?

Наивный подход

Казалось бы, оценить параметры можно из элементарного здравого смысла. Оценку наклона прямой регрессии получим, поделив приращение при переходе от x 1 =-1 к x 3 =+1 на, а оценку значения найдем как среднее арифметическое:

Легко проверить, что математические ожидания оценок равны (оценки несмещенные).

После того как оценки получены, H 0 проверяют как обычно с помощью хи-квадрат критерия Пирсона:

Оценки ожидаемых частот можно получить, исходя из оценок:

При этом, если наши оценки ”правильные”, то расстояние Пирсона будет распределено как случайная величина хи-квадрат с одной степенью свободы: 3-2=1. Напомним, что мы оцениваем два параметра, подгоняя данные под нашу модель. При этом сумма не фиксирована, поэтому дополнительную единицу вычитать не нужно.

Однако, подставив, получим странный результат:

С одной стороны ясно, что для данных частот нет оснований отвергать H 0 , но мы не в состоянии это проверить с помощью хи-квадрат критерия, так как оценка ожидаемой частоты в первой точке оказывается отрицательной. Итак, найденные из “здравого смысла” оценки не позволяют решить задачу в общем случае.

Метод максимального правдоподобия

Случайные величины независимы и имеют пуассоновское распределение. Вероятность получить значения равна:

Согласно принципу максимального правдоподобия значения неизвестных параметров надо искать, требуя, чтобы вероятность получить значения была максимальной:

Если постоянны, то мы имеем дело с обычной вероятностью. Фишер предложил новый термин “правдоподобие” для случая, когда постоянны, а переменными считаются. Если правдоподобие оказывается произведением вероятностей независимых событий, то естественно превратить произведение в сумму и дальше иметь дело с логарифмом правдоподобия:

Здесь все слагаемые, которые не зависят от, обозначены и в окончательном выражении отброшены. Чтобы найти максимум логарифма правдоподобия, приравняем производные по к нулю:

Решая эти уравнения, получим:

Таковы “правильные” выражения для оценок. Оценка среднего значения совпадает с тем, что предлагал здравый смысл, однако оценки для наклона различаются: . Что можно сказать по поводу формулы для?

  • 1) Кажется странным, что ответ зависит от частоты в средней точке, так как величина определяет угол наклона прямой.
  • 2) Тем не менее, если справедлива H 0 (линия регрессии - прямая), то при больших значениях наблюдаемых частот, они становятся близки к своим математическим ожиданием. Поэтому: , и оценка максимального правдоподобия становится близка к результату, полученному из здравого смысла.

3) Преимущества оценки начинают ощущаться, когда мы замечаем, что все ожидаемые частоты теперь оказываются всегда положительными:

Это было не так для “наивных” оценок, поэтому применить хи-квадрат критерий можно было не всегда (попытка заменить отрицательную или равную нулю ожидаемую частоту на единицу не спасает положения).

4) Численные расчеты показывают, что наивными оценками можно пользоваться только, если ожидаемые частоты достаточно велики. Если использовать их при малых значениях, то вычисленное расстояние Пирсона часто будет оказываться чрезмерно большим.

Вывод : Правильный выбор оценки важен, так как в противном случае проверить гипотезу с помощью критерия хи-квадрат не удастся. Оценка, казалось бы, очевидная может оказаться непригодной!

непрерывная случайная величина с плотностью Вид плотности известен, но неизвестны значения параметров Функцией правдоподобия называется функция (здесь - выборка объема п из распределения случайной величины £). Легко видеть, что функции правдоподобия можно придать вероятностный смысл, а именно: рассмотрим случайный вектор компоненты которого независимые в совокупности одинаково распределенные случайные величины с законом Д(ж). Тогда элемент вероятности вектора Е имеет вид т.е. функция правдоподобия связана с вероятностью получения фиксированной выборки в последовательности экспериментов П. Основная идея метода правдоподобия состоит в том, что в качестве оценок параметров А предлагается взять такие значения (3), которые доставляют максимум функции правдоподобия при данной фиксированной выборке, т. е. предлагается считать выборку, полученную в эксперименте, наиболее вероятной. Нахождение оценок параметров pj сводится к решению системы к уравнений (к - число неизвестных параметров): Поскольку функция log L имеет максимум в той же точке, что и функция правдоподобия, то часто систему уравнений правдоподобия (19) записывают в виде В качестве оценок неизвестных параметров Д следует брать решения системы (19) или (20), действительно зависящие от выборки и не являющиеся постоянными. Вслучае, когда £ дискретна с рядом распределения, функцией правдоподобия называют функцию и оценки ищут как решения системы Метод максимального правдоподобия или эквивалентной ей Можно показать, что оценки максимального правдоподобия обладают свойством состоятельности. Следует отмстить, что метод максимального правдоподобия приводит к более сложным вычислениям, нежели метод моментов, но теоретически он более эффективен, так как оценки максимального правдоподобия меньше уклоняются от истинных значений оцениваемых параметров, чем оценки, полученные по методу моментов. Для наиболее часто встречающихся в приложениях распределений оценки параметров, полученные по методу моментов и по методу максимального правдоподобия, в большинстве случаев совпадают. Пршир 1. Отклонение (размера детали от номинала является нормально распределенной случайной личиной. Требуется по выборке определить систематическую ошибку и дисперсию отклонения. М По условию (- нормально распределенная случайная величина с математическим ожиданием (систематическая ошибка) и дисперсией, подлежащими оценке по выборке объема п: Х\>...уХп. В этом случае Функция правдоподобия Система (19) имеет вид Отсюда, исключай решения, не зависящие от Хх, получаем т е. оценки максимального правдоподобия в этом случае совпадают с уже известными нам эмпирическими средним и дисперсией > Пример 2. Оценить по выборке параметр /i экспоненциально распределенной случайной величины. 4 Функция правдоподобия имеет вид Уравнение правдоподобия приводит нас к решению совпадающему с оценкой этого же параметра, полученной по методу моментов, см. (17). ^ Пример 3. Пользуясь методом максимального правдоподобия, оценить вероятность появления герба, если при десяти бросаниях монеты герб появился 8 раз. -4 Пусть подлежащая оценке вероятность равна р. Рассмотрим случайную величину (с рядом распределения. Функция правдоподобия (21) имеет вид Метод максимального Уравнение правдоподобия дает в качестве оценки неизвестной вероятности р частоту появления герба в эксперименте Заканчивая обсуждение методов нахождения оценок, подчеркнем, что, даже имея очень большой объем экспериментальных данных, мы все равно не можем указать точного значения оцениваемого параметра, более того, как уже неоднократно отмечалось, получаемые нами оценки близки к истинным значениям оцениваемых параметров только «в среднем» или «в большинстве случаев». Поэтому важной статистической задачей, которую мы рассмотрим далее, является задача определения точности и достоверности проводимого нами оценивания.

Задача оценки параметров распределения заключается в получении наиболее правдоподобных оценок неизвестных параметров распределения генеральной совокупности на основании выборочных данных. Кроме метода моментов для определения точечной оценки параметров распределения используется также метод наибольшего правдоподобия . Метод наибольшего правдоподобия был предложен английским статистиком Р. Фишером в 1912 г.

Пусть для оценки неизвестного параметра  случайной величины Х из генеральной совокупности с плотностью распределения вероятностей p (x )= p (x , ) извлечена выборка x 1 ,x 2 ,…,x n . Будем рассматривать результаты выборки как реализацию n -мерной случайной величины (X 1 ,X 2 ,…,X n ). Рассмотренный ранее метод моментов для получения точечных оценок неизвестных параметров теоретического распределения не всегда дает наилучшие оценки. Методом поиска оценок, обладающих необходимыми (наилучшими) свойствами, является метод максимального правдоподобия.

В основе метода максимального правдоподобия лежит условие определения экстремума некоторой функции, называемой функцией правдоподобия.

Функцией правдоподобия ДСВ Х

L (x 1 ,x 2 ,…,x n ; )=p (x 1 ; ) p (x 2 ; )… p (x n ; ),

где x 1, …, x n – фиксированные варианты выборки,  неизвестный оцениваемый параметр, p (x i ; ) – вероятность события X = x i .

Функцией правдоподобия НСВ Х называют функцию аргумента :

L (x 1 ,x 2 ,…,x n ; )=f (x 1 ; ) f (x 2 ; )… f (x n ; ),

где f (x i ; ) – заданная функция плотности вероятности в точках x i .

В качестве точечной оценки параметров распределения  принимают такое его значение при котором функция правдоподобия достигает своего максимума. Оценку
называютоценкой максимального правдоподобия . Т.к. функции L и
L
достигают своего максимума при одинаковых значениях , то обычно для нахождения экстремума (максимума) используют
L
как более удобную функцию.

Для определения точки максимума
L
надо воспользоваться известным алгоритмом для вычисления экстремума функции:


В том случае, когда плотность вероятности зависит от двух неизвестных параметров –  1 и  2 , то находят критические точки, решив систему уравнений:

Итак, согласно методу наибольшего правдоподобия, в качестве оценки неизвестного параметра  принимается такое значение *, при котором
распределения выборкиx 1 ,x 2 ,…,x n максимальна.

Задача 8. Найдем методом наибольшего правдоподобия оценку для вероятностиp в схеме Бернулли,

Проведем n независимых повторных испытаний и измерим число успехов, которое обозначим m . По формуле Бернулли вероятность того, что будет m успехов из n –– есть функция правдоподобия ДСВ.

Решение : Составим функцию правдоподобия
.

Согласно методу наибольшего правдоподобия, найдем такое значение p , которое максимизирует L , а вместе с ней и ln L .

Тогда логарифмируя L , имеем:

Производная функции lnL по p имеет вид
и в точке экстремума равна нулю. Поэтому, решив уравнение
, имеем
.

Проверим знак второй производной
в полученной точке:

. Т.к.
при любых значениях аргумента, то найденное значениеp есть точка максимума.

Значит, наилучшая оценка для
.

Итак, согласно методу наибольшего правдоподобия, оценкой вероятности p события А в схеме Бернулли служит относительная частота этого события .

Если выборка x 1 , x 2 ,…, x n извлечена из нормально распределенной совокупности, то оценки для математического ожидания и дисперсии методом наибольшего правдоподобия имеют вид:

Найденные значения совпадают с оценками этих параметров, полученными методом моментов. Т.к. дисперсия смещена, то ее необходимо умножить на поправку Бесселя. Тогда она примет вид
, совпадая с выборочной дисперсией.

Задача 9 . Пусть дано распределение Пуассона
где приm = x i имеем
. Найдем методом наибольшего правдоподобия оценку неизвестного параметра.

Решение :

Составив функцию правдоподобия L и ее логарифм ln L . Имеем:

Найдем производную от lnL :
и решим уравнение
. Полученная оценка параметра распределения примет вид:
Тогда
т.к. при
вторая частная производная
то это точка максимума. Т.о., в качестве оценки наибольшего правдоподобия параметра для распределения Пуассона можно принять выборочное среднее.

Можно убедиться, что припоказательном распределении
функция правдоподобия для выборочных значенийx 1 , x 2 , …, x n имеет вид:

.

Оценка параметра распределения  для показательного распределения равна:
.

Достоинством метода наибольшего правдоподобия является возможность получить «хорошие» оценки, обладающие такими свойствами, как состоятельность, асимптотическая нормальность и эффективность для выборок больших объемов при самых общих условиях.

Основным недостатком метода является сложность решения уравнений правдоподобия, а также то, что не всегда известен анализируемый закон распределения.

Метод максимального правдоподобия.

Этот метод состоит в том, что в качестве точечной оценки параметра принимается то значение параметра , при котором функция правдоподобия достигает своего максимума.

Для случайной наработки до отказа с плотностью вероятности f(t, ) функция правдоподобия определяется формулой 12.11: , т.е. представляет из себя совместную плотность вероятности независимых измерений случайной величины τ с плотностью вероятности f(t, ).

Если случайная величина дискретна и принимает значения Z 1 ,Z 2 …, соответственно с вероятностями P 1 (α),P 2 (α)…, , то функция правдоподобия берётся в ином виде, а именно: , где индексы у вероятностей показывают, что наблюдались значения .

Оценки максимального правдоподобия параметра определяются из уравнения правдоподобия (12.12).

Значение метода максимального правдоподобия выясняется следующими двумя предположениями:

Если для параметра существует эффективная оценка , то уравнение правдоподобия (12.12) имеет единственное решение .

При некоторых общих условиях аналитического характера, наложенных на функции f(t, ) решение уравнения правдоподобия сходится при к истинному значению параметра .

Рассмотрим пример использования метода максимального правдоподобия для параметров нормального распределения.

Пример:

Имеем: , , t i (i=1..N) выборка из совокупности с плотностью распределения .

Требуется найти оценку максимального подобия.

Функция правдоподобия: ;

.

Уравнения правдоподобия: ;

;

Решение этих уравнений имеет вид: - статистическое среднее; - статистическая дисперсия. Оценка является смещённой. Не смещённой оценкой будет оценка: .

Основным недостатком метода максимального правдоподобия являются вычислительные трудности, возникающие при решение уравнений правдоподобия, которые, как правило, являются трансцендентными.

Метод моментов.

Этот метод предложен К.Пирсоном и является самым первым общим методом точечной оценки неизвестных параметров. Он до сих пор широко используется в практической статистике, поскольку нередко приводит к сравнительно несложной вычислительной процедуре. Идея этого метода состоит в том, что моменты распределения зависящие от неизвестных параметров, приравниваются к эмпирическим моментам. Взяв число моментов, равное числу неизвестных параметров, и составив соответствующие уравнения, мы получим необходимое число уравнений. Чаще всего вычисляются первые два статистических момента: выборочное среднее ; и выборочная дисперсия . Оценки, получаемые с помощью метода моментов, не являются наилучшими с точки зрения их эффективности. Однако очень часто они используются в качестве первых приближений.

Рассмотрим пример использования метода моментов.

Пример: Рассмотрим экспоненциальное распределение:

t>0; λ<0; t i (i=1..N) – выборка из совокупности с плотностью распределения . Требуется найти оценку для параметра λ.

Составляем уравнение: . Таким образом, иначе .

Метод квантилей.

Это такой же эмпирический метод, как и метод моментов. Он состоит в том, что квантиль теоретического распределения приравниваются к эмпирической квантили. Если оценке подлежат несколько параметров, то соответствующие равенства пишутся для нескольких квантилей.

Рассмотрим случай, когда закон распределения F(t,α,β) с двумя неизвестными параметрами α, β . Пусть функция F(t,α,β ) имеет непрерывно дифференцируемую плотность , принимающую положительные значения для любых возможных значений параметров α, β. Если испытания проводить по плану , r>>1 , то момент появления - го отказа можно рассматривать как эмпирическую квантиль уровня , i=1,2 … , - эмпирическая функция распределения. Если бы t l и t r – моменты появления l-го и r-го отказов известны точно, значения параметров α и β можно было бы найти из уравнений



Понравилась статья? Поделитесь с друзьями!