На рисунке изображён график дифференцируемой функции y f x и касательная к нему в точке.

1. На рисунке изображены график дифференцируемой функции y=f(x) x0 . f(x) в точке x0.


Ответ: 1

2. На рисунке изображены график дифференцируемой функции y=f(x) и касательная к нему в точке с абсциссой x0. Найдите значение производной функции f(x) в точке x0 .

Ответ: 0,75

3. На рисунке изображены график дифференцируемой функции y=f(x) и касательная к нему в точке с абсциссой x 0 f(x) в точке x 0 .


Ответ: -0,5

4. На рисунке изображены график дифференцируемой функции y=f(x) и касательная к нему в точке с абсциссой x0. Найдите значение производной функции f(x) в точке x0.


Ответ: 2

5. На рисунке изображены график дифференцируемой функции y=f(x) и касательная к нему в точке с абсциссой x0. Найдите значение производной функции f(x) в точке x0.


Ответ: -0,75

6. На рисунке изображены график функции y=f(x) и касательная к нему в точке с абсциссой x0. Найдите значение производной функции f(x) в точке x0.


Ответ: 1,4

7. На рисунке изображены график функции y=f(x) и касательная к нему в точке с абсциссой x0. Найдите значение производной функции f(x) в точке x0.


Ответ: -0,25

8. На рисунке изображены график функции y=f(x) и касательная к нему в точке с абсциссой x0. Найдите значение производной функции f(x) в точке x0.


Ответ: 0,4

9. На рисунке изображены график функции y=f(x) и касательная к нему в точке с абсциссой x0. Найдите значение производной функции f(x) в точке x0.


Ответ: -0,8

10. На рисунке изображены график функции y=f(x) и касательная к нему в точке с абсциссой x0. Найдите значение производной функции f(x) в точке x0.


Ответ: -1,25

11. На рисунке изображен график функции y = f (x ). Прямая, проходящая через начало координат, касается графика этой функции в точке с абсциссой 8. Найдите значение производной в точке 8.

Ответ: 1,25

12. На рисунке изображён график дифференцируемой функции y=f(x), определённой на интервале (− 5; 5). Найдите точку из отрезка [− 2; 4], в которой производная функции f(x) равна 0.

Ответ: 1

13. На рисунке изображён график дифференцируемой функции y=f(x), определённой на интервале (1; 10). Найдите точку из отрезка , в которой производная функции f(x) равна 0.

Ответ: 3

14. На рисунке изображён график дифференцируемой функции y=f(x), определённой на интервале (− 11; − 2). Найдите точку из отрезка [− 10; − 4], в которой производная функции f(x) равна 0.

Ответ: -7

15. На рисунке изображён график дифференцируемой функции y=f(x), определённой на интервале (− 11; − 1). Найдите точку из отрезка [− 7; − 2], в которой производная функции f(x) равна 0.

Ответ: -4

16. На рисунке изображён график функции y=f(x), определённой на интервале (− 5; 9). Найдите количество точек, в которых производная функции f(x) равна 0.

Ответ: 6

17. На рисунке изображён график функции y=f(x), определённой на интервале (− 5; 8). Найдите количество точек, в которых производная функции f(x) равна 0.

Ответ: 8

18. На рисунке изображён график функции y=f(x), определённой на интервале (− 3; 8). Найдите количество точек, в которых производная функции f(x) равна 0.

Ответ: 7

19. На рисунке изображён график функции y=f(x), определённой на интервале (− 6; 6). Найдите количество решений уравнения f "(x)=0 на отрезке [− 4,5; 2,5].

Ответ: 4

20. На рисунке изображён график функции y=f′(x) - производной функции f(x), определённой на интервале (2; 13). Найдите точку максимума функции f(x).


Ответ: 9

21. На рисунке изображён график функции y=f′(x) - производной функции f(x), определённой на интервале (− 6; 3). Найдите точку минимума функции f(x).


Ответ: -2

22. На рисунке изображён график функции y=f′(x) - производной функции f(x), определённой на интервале (1; 10). Найдите точку минимума функции f(x).


Ответ: 9

23. На рисунке изображён график функции y=f′(x) - производной функции f(x), определённой на интервале (− 5; 5). Найдите точку максимума функции f(x).


Ответ: -1

24. На рисунке изображён график функции y=f(x), определённой на интервале (− 7; 7). Определите количество целых точек, в которых производная функции положительна.

Ответ: 8

25. На рисунке изображён график функции y=f(x), определённой на интервале (− 7; 7). Определите количество целых точек, в которых производная функции отрицательна.

Ответ: 5

1 2 3

Тип задания: 7

Условие

Прямая y=3x+2 является касательной к графику функции y=-12x^2+bx-10. Найдите b , учитывая, что абсцисса точки касания меньше нуля.

Показать решение

Решение

Пусть x_0 — абсцисса точки на графике функции y=-12x^2+bx-10, через которую проходит касательная к этому графику.

Значение производной в точке x_0 равно угловому коэффициенту касательной, то есть y"(x_0)=-24x_0+b=3. С другой стороны, точка касания принадлежит одновременно и графику функции и касательной, то есть -12x_0^2+bx_0-10=3x_0+2. Получаем систему уравнений \begin{cases} -24x_0+b=3,\\-12x_0^2+bx_0-10=3x_0+2. \end{cases}

Решая эту систему, получим x_0^2=1, значит либо x_0=-1, либо x_0=1. Согласно условию абсцисса точки касания меньше нуля, поэтому x_0=-1, тогда b=3+24x_0=-21.

Ответ

Тип задания: 7
Тема: Геометрический смысл производной. Касательная к графику функции

Условие

Прямая y=-3x+4 параллельна касательной к графику функции y=-x^2+5x-7. Найдите абсциссу точки касания.

Показать решение

Решение

Угловой коэффициент прямой к графику функции y=-x^2+5x-7 в произвольной точке x_0 равен y"(x_0). Но y"=-2x+5, значит, y"(x_0)=-2x_0+5. Угловой коэффициент прямой y=-3x+4, указанной в условии, равен -3. Параллельные прямые имеют одинаковые угловые коэффициенты. Поэтому находим такое значение x_0, что =-2x_0 +5=-3.

Получаем: x_0 = 4.

Ответ

Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Тип задания: 7
Тема: Геометрический смысл производной. Касательная к графику функции

Условие

Показать решение

Решение

По рисунку определяем, что касательная проходит через точки A(-6; 2) и B(-1; 1). Обозначим через C(-6; 1) точку пересечения прямых x=-6 и y=1, а через \alpha угол ABC (на рисунке видно, что он острый). Тогда прямая AB образует с положительным направлением оси Ox угол \pi -\alpha, который является тупым.

Как известно, tg(\pi -\alpha) и будет значением производной функции f(x) в точке x_0. Заметим, что tg \alpha =\frac{AC}{CB}=\frac{2-1}{-1-(-6)}=\frac15. Отсюда по формулам приведения получаем: tg(\pi -\alpha) =-tg \alpha =-\frac15=-0,2.

Ответ

Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Тип задания: 7
Тема: Геометрический смысл производной. Касательная к графику функции

Условие

Прямая y=-2x-4 является касательной к графику функции y=16x^2+bx+12. Найдите b , учитывая, что абсцисса точки касания больше нуля.

Показать решение

Решение

Пусть x_0 — абсцисса точки на графике функции y=16x^2+bx+12, через которую

проходит касательная к этому графику.

Значение производной в точке x_0 равно угловому коэффициенту касательной, то есть y"(x_0)=32x_0+b=-2. С другой стороны, точка касания принадлежит одновременно и графику функции и касательной, то есть 16x_0^2+bx_0+12=-2x_0-4. Получаем систему уравнений \begin{cases} 32x_0+b=-2,\\16x_0^2+bx_0+12=-2x_0-4. \end{cases}

Решая систему, получим x_0^2=1, значит либо x_0=-1, либо x_0=1. Согласно условию абсцисса точки касания больше нуля, поэтому x_0=1, тогда b=-2-32x_0=-34.

Ответ

Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Тип задания: 7
Тема: Геометрический смысл производной. Касательная к графику функции

Условие

На рисунке изображён график функции y=f(x), определённой на интервале (-2; 8). Определите количество точек, в которых касательная к графику функции параллельна прямой y=6.

Показать решение

Решение

Прямая y=6 параллельна оси Ox . Поэтому находим такие точки, в которых касательная к графику функции параллельна оси Ox. На данном графике такими точками являются точки экстремума (точки максимума или минимума). Как видим, точек экстремума 4 .

Ответ

Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Тип задания: 7
Тема: Геометрический смысл производной. Касательная к графику функции

Условие

Прямая y=4x-6 параллельна касательной к графику функции y=x^2-4x+9. Найдите абсциссу точки касания.

Показать решение

Решение

Угловой коэффициент касательной к графику функции y=x^2-4x+9 в произвольной точке x_0 равен y"(x_0). Но y"=2x-4, значит, y"(x_0)=2x_0-4. Угловой коэффициент касательной y=4x-7, указанной в условии, равен 4 . Параллельные прямые имеют одинаковые угловые коэффициенты. Поэтому находим такое значение x_0, что 2x_0-4=4. Получаем: x_0=4.

Ответ

Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Тип задания: 7
Тема: Геометрический смысл производной. Касательная к графику функции

Условие

На рисунке изображены график функции y=f(x) и касательная к нему в точке с абсциссой x_0. Найдите значение производной функции f(x) в точке x_0.

Показать решение

Решение

По рисунку определяем, что касательная проходит через точки A(1; 1) и B(5; 4). Обозначим через C(5; 1) точку пересечения прямых x=5 и y=1, а через \alpha угол BAC (на рисунке видно, что он острый). Тогда прямая AB образует с положительным направлением оси Ox угол \alpha.

Данная статья является продолжением двух предыдущих. В статье « » была изложена теория и рассмотрен один из способов нахождения производной по данному графику функции и касательной, проведенной в определённой точке графика.

Там же я обещал вам рассмотреть ещё один способ решения подобных задач. Напомню, что задания такого типа входят в состав экзамена по математике. В статье « » мы рассмотрели формулу, благодаря которой находится уравнение прямой.

Представленная в указанных статьях теория необходима, так как тот способ, который представлен ниже, непосредственно с ней связан. Итак, кратко:

Из курса алгебры известно, что уравнение прямой имеет вид:

где k – угловой коэффициент прямой.


То есть производная функции y = f (x ) в точке x 0 равна угловому коэффициенту касательной:

2. Уравнение прямой, проходящей через две заданные точки имеет вид:

После подстановки координат в данное уравнение оно приводится к виду:

Таким образом, в случае, когда даны две точки, через которые проходит касательная (прямая) к графику функции, необходимо найти уравнение этой прямой. Решением задачи будет являться коэффициент k (он равен производной).

На рисунке изображены график функции y = f (x ) и касательная к нему в точке с абсциссой x о . Найдите значение производной функции f (x ) в точке x о .

Как уже сказано, значение производной функции f (x ) в точке x о равно коэффициенту k из уравнения прямой y = kx + b .

Во всех подобных задачах будут даны две точки, через которые проходит касательная, в данном случае это (–6;–2) и (–1; 8). Подставляем координаты в формулу уравнения прямой:

Проверка:

– 2 = 2 (–6) + 10 → – 2 = – 2 Верно

8 = 2 (–1) + 10 → 8 = 8 Верно

Уравнение прямой найдено верно. Если вы знаете другие способы нахождения уравнения прямой, то используйте (их, кстати, около шести).

Таким образом, f ′(x ) = k = 2.

Как видите, вычисления просты.

Ответ: 2

Вывод: если вы видите перед собой подобную задачу, где на координатной плоскости обозначены две точки, через которые проведена касательная, то:

1. Определите координаты точек. Точки могут быть и не обозначены (не выделены), но на координатной сетке будет отчётливо видно, как (через какие точки) проходит прямая.

2. Найдите уравнение прямой (касательной) по представленной формуле или другим способом.

3. Проверьте полученное уравнение, подставив в него координаты точек.

4. Запишите ответ (коэффициент k ).

На этом всё. Будет полезный материал в следующей статье!

С уважением, Александр Крутицких.

P.S: Буду благодарен Вам, если расскажете о сайте в социальных сетях.



Понравилась статья? Поделитесь с друзьями!