Nacl какая решетка. Пособие по химии для поступающих в высшие учебные заведения

Ионные соединения (например, хлорид натрия NaCl) - твердые и тугоплавкие от того, что между зарядами их ионов ("+" и "-") существуютмощные силы электростатического притяжения.

Отрицательно заряженный ион хлора притягивает не только "свой" ион Na+, но и другие ионы натрия вокруг себя. Это приводит к тому, что около любого из ионов находится не один ион с противоположным знаком, а несколько (рис. 1).

Рис. 1

Фактически, около каждого иона хлора располагается 6 ионов натрия, а около каждого иона натрия - 6 ионов хлора.

Такая упорядоченная упаковка ионов называется ионным кристаллом. Если в кристалле выделить отдельный атом хлора, то среди окружающих его атомов натрия уже невозможно найти тот, с которым хлор вступал в реакцию. Притянутые друг к другу электростатическими силами,ионы крайне неохотно меняют свое местоположение под влиянием внешнего усилия или повышения температуры. Но если температура очень велика (примерно 1500°C), то NaCl испаряется, образуя двухатомные молекулы. Это говорит о том, что силы ковалентного связывания никогда не выключаются полностью.

Ионные кристаллы отличаются высокими температурами плавления, обычно значительной шириной запрещенной зоны, обладают ионной проводимостью при высоких температурах и рядом специфических оптических свойств (например, прозрачностью в ближней области ИК спектра). Они могут быть построены как из одноатомных, так и из многоатомных ионов. Пример ионных кристаллов первого типа -кристаллы галогенидов щелочных и щелочно-земельных металлов; анионы располагаются по закону плотнейшей шаровой упаковки илиплотной шаровой кладки, катионы занимают соответствующие пустоты. Наиболее характерные структуры такого типа - NaCl, CsCl, CaF2.Ионные кристаллы второго типа построены из одноатомных катионов тех же металлов и конечных или бесконечных анионных фрагментов. Конечные анионы (кислотные остатки) - NO3-, SO42-, СО32- и др. Кислотные остатки могут соединяться в бесконечные цепи, слои или образовывать трехмерный каркас, в полостях которого располагаются катионы, как, например, в кристаллических структурах силикатов. Для ионных кристаллов можно рассчитать энергию кристаллической структуры U (см. табл.), приближенно равнуюэнтальпии сублимации; результаты хорошо согласуются с экспериментальными данными. Согласно уравнению Борна-Майера, длякристалла, состоящего из формально однозарядных ионов:

U = -A/R + Ве-R/r - C/R6 - D/R8 + E0

  • (R - кратчайшее межионное расстояние, А - константа Маделунга, зависящая от геометрии структуры, В и r - параметры, описывающие отталкивание между частицами, C/R6 и D/R8 характеризуют соответствующие диполь-дипольное и диполь-квадрупольное взаимодействие ионов, E
  • 0 - энергия нулевых колебаний, е
  • - заряд электрона). С укрупнением катиона возрастает вклад дипольных взаимодействий.
Испарение жидкости или плавление твердого тела относится к категории процессов, которые называются в физике фазовыми переходами или превращениями. Состояния вещества, между которыми происходит фазовый переход, называется его фазами. Характерной особенностью этих переходов является их скачкообразность. Например, при охлаждении воды ниже комнатной температуры, её тепловое состояние меняется постепенным образом, понижение температуры на десять-пятнадцать градусов к каким-либо видимым изменениям не приводит, и вдруг, при охлаждении на ничтожную долю градуса, вода переходит в совершенно иное состояние, состояние льда. Вода и лёд – две фазы одного и того же вещества.

Фазовые переходы бывают двух типов - первого и второго рода. К фазовым переходам первого рода относится изменение агрегатного состояния вещества: процессы плавления и кристаллизации, испарения и конденсации, сублимации или возгонки , при этом скачком изменяются плотность, внутренняя энергия, энтропия.

Следует заметить, что твердым считается кристаллическое состояние, т.е. состояние, в котором атомы располагаются в узлах кристаллической решетки. На рис. 2-5.1 изображена кристаллическая решетка каменной соли NaCl . Как видно из рисунка, кристалл, благодаря пространственной периодичности структуры, состоит как бы из повторяющихся частей.

В кристалле размером 1 мм повторяющееся расположение атомов встречается сотни тысяч раз. Поэтому к такому расположению атомов применяется термин “дальний порядок ”. Большинство твердых тел являются кристаллическими телами. В обычных условиях они состоят из сросшихся зерен размером порядка 0,001 мм. В таком зернышке отчетливо выражен дальний порядок.

Однако в природе встречаются твердые вещества со сложным молекулярным строением, например, стекла, смолы, пластики, которые не имеют периодической структуры. Это аморфные твердые тела, которые на самом деле являются жидкостями с аномально большой вязкостью. Такие тела приобретают свойство текучести не скачком, а путём постепенного уменьшения вязкости, которое вызывается повышением температуры. Аморфные твердые тела противопоставляются кристаллам, которые имеют форму правильного многогранника. Следует подчеркнуть, что кристалличность не обязательно проявляется в особенностях их внешней формы, это структура решетки (кусок металла не имеет правильной формы, но не является аморфным).

Каков же основной признак кристаллов? Этим признаком является наличие резко выраженной температуры плавления. Если подводить тепло к кристаллическому телу, то температура его будет повышаться до тех пор, пока не начнёт плавиться. После чего подъем температуры прекратится, и весь процесс плавления будет происходить при строго определённой постоянной температуре, называемой температурой плавления Т пл .

На рис. 2-5.2 изображены схемы строения кварца и кварцевого стекла. Одно и то же в химическом отношении вещество, но одно в кристаллическом, другое в аморфном виде. Характер окружения ближайшими соседями в обоих случаях одинаков, но в аморфном теле отсутствует дальний порядок; аморфное тело – это “испорченный кристалл”. Отсутствие дальнего порядка, характерного признака кристаллических тел, является непосредственной причиной отсутствия выраженной точки плавления. В точке плавления совершается переход, при котором дальний порядок исчезает и решетка распадается на легкоподвижные субмикроскопические области, имеющие то же расположение атомов, что и исходный кристалл, но статически беспорядочно ориентированные друг относительно друга, остаётся лишь ближний порядок в расположении атомов.

Схема строения кварца

а) кристаллический, б) аморфный

(рисунок соответствует упрощенной плоской модели)

В аморфных телах при повышении температуры характер расположения атомов не меняется, увеличивается их подвижность, атомы с увеличением температуры “выскальзывают” из своего окружения, меняя соседей. Наконец число таких перемен в секунду становится таким же большим, как для жидкости.

Выше мы говорили, что при всех агрегатных превращениях поглощается или выделяется энергия. Например, для превращения килограмма воды в пар необходимо затратить энергию 2,3×10 6 Дж. Эта энергия необходима для преодоления сил притяжения, действующих между молекулами воды.

Металлы начинают плавиться только тогда, когда начинает разрушаться их кристаллическая решетка, на что также необходимо затрачивать энергию. Эта энергия называется скрытой теплотой плавления. Теплота плавления, отнесённая к массе вещества, называется удельной скрытой теплотой плавления. Например, для цинка она составляет 1.11×10 5 Дж/кг, т.е. нужно количество теплоты 111 кДж/кг, чтобы при Т пл = 419.5°С перевести 1 кг цинка из твердого состояния в жидкое. На рис. 2-5.3 представлена кривая фазового перехода твердого тела в жидкость (1). Обратное превращение – кристаллизация (2) происходит при той же температуре и сопровождается поглощением того же количества энергии, что и при плавлении – скрытой теплоты кристаллизации. Скрытой теплота перехода называется потому, что подвод (поглощение) и отвод (выделение) этой теплоты не сопровождается таким эффектом, как повышение и понижение температуры. Несмотря на то, что мы продолжаем нагревать тело (кривая правления 1), во время плавления температура не повышается, так же во время кристаллизации (кривая кристаллизации 2) температура не понижается, хотя мы продолжаем охлаждать жидкость. Переход жидкость - твердое тело сопровождается выделением энергии. Энергия взаимодействия микроскопических кристаллов становится значительно выше энергии тепловых колебаний, жидкость кристаллизуется. Однако новая фаза при таком переходе образуется не сразу во всем объеме, сначала образуются зародыши ее, которые затем растут, распространяясь на весь объем.

К числу фазовых превращений первого рода относятся и некоторые переходы твердого тела из одной кристаллической модификации в другую. Эти превращения называются полиморфными. Кристаллы различной модификации состоят из одного и того же вещества и отличаются друг от друга лишь строением кристаллической решетки. Например, графит и алмаз состоят из одного и того же элемента – углерода. Разные структуры означают и разные физические свойства. Алмаз по физическим свойствам очень не похож на графит. Графит имеет черный цвет, он совершенно непрозрачен, алмаз же прозрачен и бесцветен; графит не горит даже при очень высоких температурах (он плавится при 385 °С), алмаз же в струе кислорода сгорает при 720 °С. Другой пример – белое и серое олово. Белое олово – блестящий, легкий и очень пластичный металл, серое олово – хрупкое и легко превращается в порошок.

«Кристаллическая решетка» - Задание: Определите тип химической связи в данных соединениях: Классификация твердых веществ. Характеристика основных типов кристаллических решеток. тема урока КРИСТАЛЛИЧЕСКИЕ РЕШЁТКИ. HCl, Cl2, H2O, NaBr, BaCl2, CaS, O2, NH3, CO2, C.

«Кристаллические решётки химия» - Типы кристаллических решеток. Вещества с АКР имеют высокие температуры плавления, обладают повышенной твёрдостью. Точки размещения частиц называют узлами кристаллической решётки. Выше показана кристаллическая решётка алмаза. Оценка собственного продвижения. Закон постоянства состава. Атомные. Ионными называют кристаллические решетки, в узлах которых находятся ионы.

«Кристаллические и аморфные вещества» - Сера S8. Йод I2. Твердое. Примеры: простые вещества (H2, N2, O2, F2, P4, S8, Ne, He), сложные вещества (СО2, H2O, сахар С12H22O11 и др.). Агрегатное состояние вещества (на примере кислорода О2). Нет строгого расположения частиц, нет кристаллической решетки. Свойства веществ: 1) металлический блеск, 2) тепло- и электропроводность, 3) ковкость и пластичность, 4) непрозрачность.

Поликристалл аметиста (разновидность кварца). Аморфные тела. Леденец. Свойства твердых тел. Янтарь. Друза кристаллов горного хрусталя. Кристаллы. Поликристалл металла. Монокристалл Каменной соли. Друза мариона. Монокристалл шпата. Аморфное тело. Монокристалл горного хрусталя. Физические свойства аморфных тел: 1. Бесформенные 2. Отсутствие точки плавления 3. Изотропия.

«Кристаллические и аморфные тела» - Цель: выявить различия в свойствах кристаллов и аморфных тел. Кристаллы имеют температуру плавления, аморфные тела – интервал температур (текучесть). Оборудование: лупа, коллекция минералов и горных пород, коллекция металлов. Поликристаллы изотропны. Кристаллы анизотропны, аморфные тела изотропны. Наличие постоянной температуры плавления.

«Соль 4life» - Marbelle 750г. Зимушка-краса 750г. 4life 125г. Предпосылки. Droga 1000г. Морская соль 4Life обладает уникальными вкусовыми свойствами. Ассортимент. В чём достоинства соли 4Life? Позиционирование. Marsel (пакет 1000г). Карта позиционирования (тубы-солонки). Целевая аудитория. Цена, руб. Экстра 1000г.

Большинство твердых веществ имеют кристаллическую структуру , в которой частицы, из которых она «построена» находятся в определенном порядке, создавая тем самым кристаллическую решетку . Она строится из повторяющихся одинаковых структурных единиц - элементарных ячеек , которая связывается с соседними ячейками, образуя дополнительные узлы. В результате существует 14 различных кристаллических решеток.

Типы кристаллических решеток.

В зависимости от частиц, которые стоят в узлах решетки, различают:

  • металлическую кристаллическую решетку;
  • ионную кристаллическую решетку;
  • молекулярную кристаллическую решетку;
  • макромолекулярную (атомную) кристаллическую решетку.

Металлическая связь в кристаллических решетках.

Ионные кристаллы обладают повышенной хрупкостью, т.к. сдвиг в решетке кристалла (даже незначительный) приводит к тому, что одноименно заряженные ионы начинают отталкиваться друг от друга, и связи рвутся, образуются трещины и расколы.

Молекулярная связь кристаллических решеток.

Основная особенность межмолекулярной связи заключается в ее «слабости» (ван-дер-ваальсовые, водородные).

Это структура льда. Каждая молекула воды связана водородными связями с 4-мя окружающими ее молекулами, в результате структура имеет тетраэдрический характер.

Водородная связь объясняет высокую температуру кипения, плавления и малую плотность;

Макромолекулярная связь кристаллических решеток.

В узлах кристаллической решетки находятся атомы. Эти кристаллы разделяются на 3 вида:

  • каркасные;
  • цепочечные;
  • слоистые структуры.

Каркасной структурой обладает алмаз - одно их самых твердых веществ в природе. Атом углерода образует 4 одинаковые ковалентные связи, что говорит о форме правильного тетраэдра (sp 3 - гибридизация). Каждый атом имеет неподеленную пару электронов, которые также могут связываться с соседними атомами. В результате чего образуется трехмерная решетка, в узлах которой только атомы углерода.

Энергии для разрушения такой структуры требуется очень много, температура плавления таких соединений высока (у алмаза она составляет 3500°С).

Слоистые структуры говорят о наличии ковалентных связях внутри каждого слоя и слабых ван-дер-ваальсовых - между слоями.

Рассмотрим пример: графит. Каждый атом углерода находится в sp 2 - гибридизации. 4-ый неспаренный электрон образует ван-дер-ваальсовую связь между слоями. Поэтому 4ый слой очень подвижен:

Связи слабые, поэтому их легко разорвать, что можно наблюдать у карандаша - «пишущее свойство» - 4ый слой остается на бумаге.

Графит - отличный проводник электрического тока (электроны способны перемещаться вдоль плоскости слоя).

Цепочечными структурами обладают оксиды (например, SO 3 ), который кристаллизуется в виде блестящих иголок, полимеры, некоторые аморфные вещества, силикаты (асбест).

Как объясняет свойства кристаллов молекулярная теория? В начале XIX века впервые было высказано предположение, что внешне правильная форма кристаллов обусловлена внутренне правильным расположением частиц, из которых состоят кристаллы, т. е. атомов. На основании исследований посредством рентгеновских лучей было выяснено, что это предположение справедливо.

Частицы, составляющие кристаллы, расположены друг относительно друга в определенном порядке, на определенных расстояниях друг от друга. Конечно, вследствие теплового движения расстояния между частицами все время немного меняются, но можно говорить о некотором среднем для каждой температуры расстоянии. Совокупность узлов, т. е. точек, соответствующих средним положениям частиц, составляющих кристалл, называют пространственной решеткой этого кристалла.

Частицами, из которых состоят кристаллы, в некоторых случаях являются электрически заряженные частицы - ионы. Ионами называют атомы (или группы атомов), потерявшие или, наоборот, присоединившие к себе один, два или больше электронов. Если атом потерял электроны, он является положительно заряженной частицей - положительным ионом. Если же к атому присоединились электроны, то он является отрицательным ионом. Кристаллы, состоящие из ионов, называют ионными кристаллами.

Простой пример пространственной решетки ионного кристалла представляет собой решетка кристалла хлористого натрия (поваренной соли). Молекулу этого вещества мы представляем себе состоящей из одного атома хлора и одного атома натрия . Такими являются эти молекулы в парах соли. Экспериментальное исследование показало, что в твердом кристалле нет молекул в том смысле, как это упоминалось выше. Кристаллическая решетка хлористого натрия состоит не из молекул хлористого натрия, а из чередующихся ионов хлора и натрия (рис. 444). Каждый ион натрия окружен шестью ионами хлора, расположенными по трем взаимно перпендикулярным направлениям, а каждый ион хлора в свою очередь окружен шестью ионами натрия.

Рис. 444. Схема расположения узлов в пространственной решетке кристалла хлористого натрия

Подобные решетки имеют многие соли, состоящие из двух атомов (бромистое и хлористое серебро, йодистый калий, многие сернистые металлы и т. д.). Расстояния между средними положениями ионов в решетках разных веществ неодинаковы. У хлористого натрия расстояние между соседними ионами равно , у хлористого серебра , у йодистого калия и т.д.). Существуют и более сложные ионные кристаллы. Так, например, решетка исландского шпата состоит из ионов и ионов .

Кроме ионных кристаллов, существуют также кристаллы, состоящие из незаряженных частиц - атомов или молекул. Например, решетка алмаза состоит из атомов углерода, решетка кристаллов льда - из молекул воды , решетка нафталина - из больших молекулярных групп и т. д. Расстояния между атомами таких кристаллов также порядка .

Далеко не всегда атомы или ионы расположены в решетке, представляющей совокупность кубов (кубические решетки), как это имеет место у и др. Большинство решеток имеет гораздо более сложный вид. Примером является решетка льда (рис. 445). Как же объяснить зависимость физических свойств кристаллов от направления?

Рис. 445. Пространственная решетка кристаллов льда: а) вид сверху; б) вид сбоку. Шарики изображают атомы кислорода; положения атомов водорода не показаны

Пусть на рис. 446, а кружки изображают атомы жидкости (например, ртути), расположенные в некоторой плоскости. Выберем некоторый атом и проведем через него прямые линии по разным направлениям. Ясно, что благодаря полной хаотичности расположения атомов на одинаковых отрезках любой из этих прямых будет находиться практически одно и то же число атомов. Это значит, что при хаотическом расположении атомов все направления равноправны.

Рис. 446. а) Беспорядочное расположение частиц в жидкости. Любая прямая , проведенная через молекулу , встречает одинаковое число частиц (они отмечены черными кружками), б) Упорядоченное расположение атомов в кристалле. Различные прямые , проведенные через молекулу , встречают различное число атомов

Не то будет, если мы произведем такое же построение при правильном расположении атомов, характерном для кристалла, например таком, какое изображено на рис. 446, б. Видно, что прямые, проведенные по направлениям или , встретят много атомов, по направлению - несколько меньше, а по направлению - совсем мало. Это и объясняет, почему физические свойства кристалла зависят от направления. Так, например, в решетке поваренной соли раскалывание происходит легче всего по плоскостям, параллельным или (рис. 447). Поэтому, ударив молотком по кубику кристалла поваренной соли, мы разобьем его снова на правильные кубики, в то время как удар по куску аморфного стекла разбивает его на осколки самой разнообразной формы.

Рис. 447. В кристалле поваренной соли раскалывание происходит легче по плоскостям, параллельным или , чем по любым другим плоскостям, например

В заключение отметим, что в реальных кристаллах решетка обычно не является правильной во всем объеме кристалла. Кое-где решетка искажена, имеются участки, где атомы расположены в беспорядке, кое-где присутствуют вкрапления посторонних атомов. Эти местные искажения играют немаловажную роль для объяснения некоторых свойств реальных кристаллов.



Понравилась статья? Поделитесь с друзьями!