Нейромедиаторы - биогенные амины: ацетилхолин. Словарь терминов и определений по физиологии и этологии сельскохозяйственных животных учеб

Ацетилхолин (АХ) - очень важный медиатор. Деятельность холинергических нейронов центральной (ЦНС), направляющихся от базальных структур переднего мозга к гиппокампу, обеспечивает возможность обучения и запоминания. Повреждение этих нейронов приводит к возникновению болезни Альцгеймера.

В периферической нервной системе холинергическими являются все двигательные нейроны скелетной мускулатуры, преганглионарные нейроны, иннервирующие симпатические и парасимпатические ганглии, а также постганглионарные нервные волокна, осуществляющие парасимпатическую иннервацию сердечной мышцы, гладкой мускулатуры кишечника и мочевого пузыря, а также гладкой мускулатуры глаза, ответственной за процессы аккомодации и зрения на близком расстоянии.

Ацетилхолин (АХ) синтезируется при переносе ацетильной группы с ацетилокофермента А (ацетил-КоА) на холин под действием фермента холинацетилтрансферазы. Холинацетилтрансфераза присутствует исключительно в холинергических нейронах. Холин поступает в нейрон из межклеточного пространства путем активного транспорта. Ацетил-КоА синтезируется в митохондриях, которые синтезируют холинацетилтрансферазу и в большом количестве расположены в нервных окончаниях.

После высвобождения ацетилхолина (АХ) в синаптическую щель происходит его разрушение под действием ацетилхолинестеразы (АХЭ) с образованием холина и уксусной кислоты, которые подвергаются обратному захвату и повторному использованию для синтеза новых молекул медиатора.

Этапы синтеза, распада и обратного захвата ацетилхолина (АХ) представлены на рисунке ниже.

(А) Схема синтеза ацетилхолина (АХ) из ацетилкофермента А (Ацетил-КоА) и холина под действием холинацетилтрансферазы (ХАТ).
(Б) Распад молекулы ацетилхолина под действием ацетилхолинэстеразы (АХЭ).
Пунктирными стрелками обозначено повторное использование уксусной кислоты и холина.

Выделяют медиаторозависимые рецепторы ацетилхолина (АХ) и рецепторы, связанные с G-белками. Ионотропные рецепторы ацетилхолина (АХ) называют никотиновыми, поскольку первым веществом, которое вызвало их активацию, был никотин, выделенный из растения табака. Метаботропные рецепторы АХ называют мускариновыми, так как их активатором служит мускарин - вещество, выделенное из ядовитых грибов мухоморов.

1. Никотиновые рецепторы . Никотиновые рецепторы сосредоточены в нервно-мышечных синапсах скелетной мускулатуры, во всех вегетативных нервных ганглиях, а также в ЦНС. При воздействии АХ происходят открытие ионного канала и быстрое поступление ионов Са 2+ и Na + в клетку, что приводит к деполяризации нейрона-мишени.
Никотиновые рецепторы рассмотрены подробнее при описании процесса иннервации скелетной мускулатуры в отдельной статье на сайте.

2. Мускариновые рецепторы . G-белок-зависимые мускариновые рецепторы сконцентрированы (а) в височной доле головного мозга, где они участвуют в процессе формирования памяти; (б) в вегетативных ганглиях; (в) в волокнах сердечной мышцы, включая проводящие волокна; (г) в гладкой мускулатуре кишечника и мочевого пузыря; (д) в секреторных клетках потовых желез.

Выделяют пять подтипов мускариновых рецепторов - М 1 -М 5 M 1 , M 3 - и М 5 -рецепторы - возбуждающие: посредством ферментных каскадов происходят активация фосфолипазы С и повышение внутриклеточного уровня Са 2+ . М 2 - и М 4 -рецепторы представляют собой тормозные ауторецепторы, уменьшающие внутриклеточный уровень цАМФ и/или увеличивающие выход К + из клетки в ходе гиперполяризации.

Холинергические процессы в сердце и других внутренних органах описаны в отдельной статье на сайте.

3. Обратный захват ацетилхолина . Продукты гидролиза ацетилхолина в синаптической щели - холин и ацетил-группа - захватываются молекулами специфических переносчиков обратно в клетку.

4. Отравление стрихнином . Стрихнин блокирует рецепторы глицина. Мучительные судороги при отравлении стрихнином обусловлены растормаживанием α-мотонейронов, вызванным нарушением тормозных влияний клеток Реншоу. Клинические проявления напоминают таковые при отравлении столбнячным токсином, который, как известно, препятствует высвобождению глицина из клеток Реншоу.
В ходе патологоанатомических исследований неизмененного мозга с использованием меченых молекул стрихнина было показано, что рецепторы глицина в большом количестве представлены на ассоциативных нейронах ядра тройничного нерва, иннервирующего жевательные мышцы, а также ядра лицевого нерва, иннервирующего мимическую мускулатуру. Именно эти две группы мышц в большей степени подвержены судорогам при отравлении.


(А) Синтез и обратный захват молекул ацетилхолина (АХ) в ЦНС. На постсинаптической мембране расположены никотиновые рецепторы (н-АХ-рецепторы).
(1) Молекулы холина захватываются из межклеточной жидкости и передаются в нервное окончание.
(2) Под действием митохондриального фермента холинацетилтрансферазы (ХАТ) происходит ацетилирование холина ацетилкоферментом А (ацетил-КоА) с образованием ацетилхолина (АХ).
(3) Молекулы АХ помещаются в синаптические пузырьки.
(4) АХ высвобождается и связывается с соответствующими рецепторами.
(5) Под действием ацетилхолинэстеразы (АХЭ) происходит гидролиз молекул медиатора.
(6) Холиновые фрагменты молекул транспортируются обратно в цитозоль.
(7) Под действием трансфераз происходит синтез новых молекул ацетилхолина, которые вновь помещаются в синаптические пузырьки.
(8) Ацетатный фрагмент молекулы перемещается в цитозоль.
(9) В митохондриях происходит синтез новых молекул ацетил-КоА из уксусной кислоты.
(Б) Медиаторозависимый никотиновый рецептор. Присоединение АХ вызывает поступление большого количества ионов Na + в клетку и выход небольшого количества ионов К + из клетки.

Необратимое ингибирование холинэстеразы вызывает смерть. Ингибиторами холинэстеразы являются фосфорорганические соединения (хлорофос, дихлофос, табун, зарин, зоман, бинарные яды). Эти вещества связываются ковалентно с серином в активном центре фермента. Некоторые из них синтезированы в качестве инсектицидов, а некоторые - в качестве БОВ (нервно-паралитические яды). Смерть наступает в результате остановки дыхания.

Обратимые ингибиторы холинэстеразы используются как лечебные препараты. Например, при лечении глаукомы и атонии кишечника.

КАТЕХОЛАМИНЫ: норадреналин и дофамин.

Адренэргические синапсы встречаются в постганглионарных волокнах, в волокнах симпатической нервной системы, в различных отделах головного мозга. Катехоламины в нервной ткани синтезируются по общему механизму из тирозина. Ключевой фермент синтеза - тирозингидроксилаза, ингибируемая конечными продуктами.

НОРАДРЕНАЛИН - медиатор в постганглионарных волокнах симпатической и в различных отделах ЦНС.

ДОФАМИН - медиатор проводящих путей, тела нейронов которого расположены в отделе мозга, который отвечает за контроль произвольных движений. Поэтому при нарушении дофаминэргической передачи возникает заболевание паркинсонизм.

Катехоламины, как и ацетилхолин, накапливаются в синаптических пузырьках и тоже выделяется в синаптическую щель при поступлении нервного импульса. Но регуляция в адренэргическом рецепторе происходит иначе. В пресинаптической мембране здесь имеется специальный регуляторный белок - альфа-ахромогранин (Мм=77 кДа), который в ответ на повышение концентрации медиатора в синаптической щели связывает уже выделившийся медиатор и прекращает его дальнейший экзоцитоз. Фермента, разрушающего медиатор, в адренэргических синапсах нет. После передачи импульса молекулы медиатора перекачивается специальной транспортной системой путем активного транспорта с участием АТФ обратно через пресинаптическую мембрану и включается вновь в везикулы. В пресинаптическом нервном окончании излишек медиатора может быть инактивирован МАО, а также катехоламин-О-метилтрансферазой путем метилирования по оксигруппе. Кокаин тормозит активный транспорт катехоламинов.

Передача сигнала в адренэргических синапсах протекает по механизму, известному Вам из лекций по теме “Биохимия гормонов” с участием аденилатциклазной системы. Связывание медиатора с постсинаптическим рецептором почти мгновенно вызывает повышение концентрации ц-АМФ, что приводит к быстрому фосфорилированию белков постсинаптической мембраны. В результате изменяется генерация нервных импульсов постсинаптической мембраной (тормозится). В некторых случаях непосредственной причиной этого является повышение проницаемости постсинаптической мембраны для калия, либо снижением проводимости для натрия (эти события приводят к гиперполяризации).

Согласно существующим представлениям, в основе механизма действия ФОС лежит избирательное торможение ими фермента ацетилхолинэстеразы, или просто холинэстеразы, которая катализирует гидролиз ацетилхолина-химического передатчика (медиатора) нервного возбуждения. Различают 2 типа холинэстеразы: истинную, "содержащуюся преимущественно в тканях нервной системы, в скелетной мускулатуре, а также в эритроцитах, и ложную, содержащуюся главным образом в плазме крови, печени и некоторых других органах. Собственно ацетилхолинэстеразой является истинная, или специфическая, холинэстераза, так как только она гидролизует названный медиатор. И именно ее в дальнейшем мы будем обозначать термином "холинэстераза". Поскольку фермент и медиатор являются необходимыми химическими компонентами передачи нервных импульсов в синапсах - контактах между двумя нейронами или окончаниями нейрона и рецепторной клеткой, следует более подробно остановиться на их биохимической роли.

Ацетилхолин синтезируется из спирта холина и ацетилкоэнзима А * под влиянием фермента холинацетилазы в митохондриях нервных клеток и накапливается в окончаниях их отростков в виде пузырьков диаметром около 50 нм. Предполагается, что каждый такой пузырек содержит несколько тысяч молекул ацетилхолина. При этом в настоящее время принято различать ацетилхолин, готовый к секреции и расположенный в непосредственной близости от активной зоны, и ацетилхолин вне активной зоны, находящийся в состоянии равновесия с первым и не готовый к выделению в сипаптическую щель. Кроме того, имеется еще так называемый стабильный фонд ацетилхолина (до 15%), не освобождающегося даже в условиях блокады его синтеза. ** Под воздействием нервного возбуждения и ионов Са 2+ молекулы ацетилхолина переходят в синаптическую щель - пространство шириною 20-50 нм, отделяющее окончание нервного волокна (пресинаптическую мембрану) от иннервируемой клетки. На поверхности последней расположена постсинаптическая мембрана с холинорецепторами - специфическими белковыми структурами, способными взаимодействовать с ацетилхолином. Воздействие медиатора на холинорецептор приводит к деполяризации (снижению заряда), временному изменению проницаемости постсинаптической мембраны для положительно заряженных ионов Na + и проникновению их внутрь клетки, что в свою очередь выравнивает потенциал напряжения на ее поверхности (оболочке). *** Это дает начало новому импульсу в нейроне следующей ступени или вызывает деятельность клеток того или иного органа: мышцы, железы и др. (рис 5). Фармакологические исследования выявили существенную разницу в свойствах холинорецепторов различных синапсов. Рецепторы одной группы, проявляющие избирательную чувствительность к мускарину (яду гриба мухомора), названы мускариночувствительными, или М-холинорецепторами; они представлены главным образом в гладких мышцах глаз, бронхов, желудочно-кишечного тракта, в клетках потовых и пищеварительных желез, в сердечной мышце. Холинорецепторы второй группы возбуждаются малыми дозами никотина и поэтому названы никотино-чувствительными, или Н-холинорецепторами. К ним относятся рецепторы вегетативных ганглиев, скелетных мышц, мозгового слоя надпочечниковых желез, центральной нервной системы.

* ( Ацетилкоэнзим А - соединенно уксусной кислоты с нуклеотпи дом, включающим несколько аминокислот и активную SН-группу. Отщепляя ацетат, идущий на построение молекулы ацотилхолина, он превращается в коэнзим А )

** ( Глебов Р. Н., Примаковский Г. Н, Функциональная биохимия синапсов. М.: Медицина, 1978 )

*** ( Согласно установившейся точке зрения, возникновение разности потенциалов между наружной и внутренней сторонами поверхностного сдоя клетки обусловлено неравномерным распределением ионов Na + и К + по обе стороны клеточной мембраны. При этом компенсирующий поток ионов К + , направленный в обратную сторону при воздействии медиатора на постсинантическую мембрану, несколько запаздывает, что приводит на короткое время к обеднению внешней поверхности клетки положительными ионами )

Молекулы ацетилхолина, выполнившие свою медиаторную функцию, должны быть немедленно инактивированы, в противном случае будет нарушена дискретность в проведении нервного импульса и проявится избыточная функция холинорецептора. Именно это осуществляет холинэстераза, мгновенно гидролизующая ацетилхолин. Каталитическая активность холинэстеразы превышает почти все известные ферменты: по разным данным, время расщепления одной молекулы ацетилхолина составляет около одной миллисекунды, что соизмеримо со скоростью передачи нервного импульса. Осуществление столь мощного каталитического эффекта обеспечивается наличием в молекуле холинэстеразы определенных участков (активных центров), обладающих исключительно хорошо выраженной реакционной способностью по отношению к ацетилхолину. * Будучи простым белком (протеином), состоящим только из одних аминокислот, молекула холинэстеразы, как теперь выяснено, исходя из ее молекулярной массы, содержит от 30 до 50 таких активных центров.

* ( Розенгарт В. И. Холинэстеразы. Функциональная роль и клиническое значение. - В кн.: Проблемы медицинской химии. М.: Медицина, 1973, с. 66-104 )

Как видно из рис. 6, участок поверхности холинэстеразы, непосредственно контактирующий с каждой молекулой медиатора, включает 2 центра, расположенных на расстоянии 0,4-0,5 мм: анионный, несущий отрицательный заряд, и эстеразный. Каждый из этих центров образован определенными группами атомов аминокислот, составляющих структуру фермента (гидроксилом, карбоксилом и др.). Ацетилхолин благодаря положительно заряженному атому азота (так называемой катионной головки) ориентируется за счет электростатических сил на поверхности холинэстеразы. При этом расстояние между атомом азота и кислотной группой медиатора соответствует расстоянию между активными центрами фермента. Анионный центр притягивает к себе катионную головку ацетилхолина и тем самым способствует сближению его эфирной группировки с эстеразным центром фермента. Затем рвется эфирная связь, ацетилхолин разделяется на 2 части: холиновую и уксусную, остаток уксусной кислоты присоединяется к эстеразному центру фермента и образуется так называемая ацетилирозанная холинэстераза. Этот крайне непрочный комплекс мгновенно подвергается спонтанному гидролизу, что освобождает фермент от остатка медиатора и приводит к образованию уксусной кислоты. С данного момента холииэстераза снова способна выполнять каталитическую функцию, а холин и уксусная кислота становятся исходными продуктами синтеза новых молекул ацетилхолина.

Образующийся в организме (эндогенный) ацетилхолин играет важную роль в процессах жизнедеятельности: он способствует передаче нервного возбуждения в ЦНС, вегетативных ганглиях, окончаниях парасимпатических (двигательных) нервов. Ацетилхолин является химическим передатчиком (медиатором) нервного возбуждения; окончания нервных волокон, для которых он служит медиатором, называются холинергическими, а рецепторы, взаимодействующие с ним, - холинорецепторами. Холинорецепторы - сложные белковые молекулы (нуклеопротеиды) тетрамерной структуры, локализованные на внешней стороне постсинаптической (плазматической) мембраны. По природе они неоднородны. Холинорецепторы, расположенные в области постганглионарных холинергических нервов (сердца, гладких мышц, желез) обозначают как м-холинорецепторы (мускариночувствительные), а находящиеся в области ганглионарных синапсов и в соматических нервно-мышечных синапсах - как н-холинорецепторы (никотиночувствительные) (С. В. Аничков). Такое деление связано с особенностями реакций, возникающих при взаимодействии ацетилхолина с этими биохимическими системами, мускариноподобных (снижение артериального давления, брадикардия, усиленная секреция слюнных, слезных, желудочных и других экзогенных желез, сужение зрачков и т. д.) в первом случае и никотиноподобных (сокращение скелетной мускулатуры и т. п.) во втором. М- и н-холинорецепторы локализованы в разных органах и системах организма, включая ЦНС. Мускариновые рецепторы стали делить в последние годы на ряд подгрупп (м1, м2, м3, м4, м5). Наиболее изучена в настоящее время локализация и роль м1- и м2-рецепторов. Ацетилхолин не оказывает строго избирательного действия на различные холинорецепторы. В той или другой степени он влияет на м- и н-холинорецепторы и на подгруппы м-холинорецепторов. Периферическое мускариноподобное действие ацетилхолина проявляется в замедлении сердечных сокращений, расширении периферических кровеносных сосудов и снижении артериального давления, активизации перистальтики желудка и кишечника, сокращении мускулатуры бронхов, матки, желчного и мочевого пузыря, увеличении секреции пищеварительных, бронхиальных, потовых и слезных желез, сужении зрачков (миоз). Последний эффект связан с усилением сокращения круговой мышцы радужной оболочки, которая иннервируется постганглионарными холинергическими волокнами глазодвительного нерва (n. oculomotorius). Одновременно в результате сокращения ресничной мышцы и расслабления цинновой связки ресничного пояска наступает спазм аккомодации. Сужение зрачка, обусловленное действием ацетилхолина, сопровождается обычно снижением внутриглазного давления. Этот эффект частично объясняется расширением при сужении зрачка и уплощении радужной оболочки шлеммова канала (венозный синус склеры) и фонтановых пространств (пространства радужно-роговичного угла), за счет чего улучшается отток жидкости из внутренних сред глаза. Не исключено, однако, что в снижении внутриглазного давления принимают участие и другие механизмы. Благодаря способности снижать внутриглазное давление вещества, действующие подобно ацетилхолину (холиномиметики, антихолинэстеразные препараты), широко применяются для лечения глаукомы1. Периферическое никотиноподобное действие ацетилхолина связано с его участием в передаче нервных импульсов с преганглионарных волокон на постганглионарные в вегетативных узлах, а также с двигательных нервов на поперечнополосатую мускулатуру. В малых дозах он является физиологическим передатчиком нервного возбуждения, в больших - может вызывать стойкую деполяризацию в области синапсов и блокировать передачу возбуждения. Ацетилхолину принадлежит также важная роль как медиатору в ЦНС. Он участвует в передаче импульсов в разных отделах мозга, при этом в малых концентрациях облегчает, а в больших - тормозит синаптическую передачу. Изменения в обмене ацетилхолина могут привести к нарушению функций мозга. Некоторые центральнодействующие его антагонисты являются психотропными препаратами. Передозировка антагонистов ацетилхолина может вызвать нарушения высшей нервной деятельности (галлюциногенный эффект и др.). Для применения в медицинской практике и экспериментальных исследований выпускается ацетилхолина хлорид (Acetylcholini chloridum).

Ацетилхолин — это нейротрансмиттер, считающийся естественным фактором, который модулирует бодрствование и сон. Его предшественником является холин, проникающий из межклеточного пространства во внутреннее пространство нервных клеток.

Ацетилхолин является основным посланником холинергической системы, также известной как парасимпатическая система, которая является подсистемой вегетативной нервной системы, ответственной за остальную часть тела и улучшающей пищеварение. Ацетилхолин не используется в медицине.

Ацетилхолин является так называемым нейрогормон. Это первый обнаруженный нейротрансмиттер. Этот прорыв произошел в 1914 году. Первооткрывателем ацетилхолина был английский физиолог Генри Дейл. Австрийский фармаколог Отто Лоуи внес значительный вклад в изучение этого нейротрансмиттера и его популяризацию. Открытия обоих исследователей были удостоены Нобелевской премии в 1936 году.

Ацетилхолин (АХ) является нейротрансмиттером (т.е., химическое вещество, молекулы которого отвечают за процесс передачи сигнала между нейронами через синапсы и нейрональные клетки). Он находится в нейроне, в небольшом пузыре, окруженном мембраной. Ацетилхолин является липофобным соединением и плохо проникает в гематоэнцефалический барьер. Состояние возбуждения, вызванное ацетилхолином, является результатом действия на периферические рецепторы.

Ацетилхолин действует одновременно на два типа вегетативных рецепторов:

  • M (мускариновые) — расположены в различных тканях, таких как гладкие мышцы, структуры мозга, эндокринные железы, миокард;
  • N (никотин) — расположены в ганглиях вегетативной нервной системы и нервно-мышечных переходов.

После входа в кровоток он стимулирует всю систему с преобладанием стимуляции симптомов общей системы. Эффекты ацетилхолина недолговечны, неспецифичны и слишком токсичны. Поэтому в настоящее время он не является целебным.

Как образуется ацетилхолин?

Ацетилхолин (C7H16NO2) представляет собой сложный эфир уксусной кислоты (CH3COOH) и холина (C5H14NO +), которая образована холинацетилтрансферазой. Холин доставляется в ЦНС вместе с кровью, откуда он переносится в нервные клетки посредством активного транспорта.

Ацетилхолин может храниться в синаптических везикулах. Этот нейротрансмиттер за счет деполяризации клеточной мембраны (электроотрицательным уменьшить электрический потенциал клеточной мембраны) высвобождается в синаптическое пространство.

Ацетилхолин деградирует в центральной нервной системе ферментами с гидролитическими свойствами, так называемыми холинэстеразы. Катаболизм (общая реакция, приводящая к деградации сложных химических соединений на более простые молекулы) ацетилхолина, это связано с ацетилхолинэстеразы (АХЭ — фермент, который разрушает ацетилхолин, чтобы холина и остаток уксусной кислоты) и бутирилхолинэстеразы (BuChE, — фермент, который катализирует реакцию ацетилхолина + H2O → холина + анион кислоты карбоновая кислота), которые отвечают за реакцию гидролиза(реакция двойного обмена, которая проходит между водой и растворенным в ней веществом) в нервно-мышечных соединениях. Это является результатом действия ацетилхолинэстеразы и бутирилхолинэстераза-обратно всасывается в нервных клетках в результате активной работы транспортера для холина.

Влияние ацетилхолина на организм человека

Ацетилхолин показывает, среди прочих действие на тело, такое как:

  • снижение уровня артериального давления,
  • расширение кровеносных сосудов,
  • уменьшая силу сокращения миокарда,
  • стимуляция железистой секреции,
  • сжимающие свет дыхательных путей,
  • высвобождение частоты сердечных сокращений,
  • миоз,
  • сокращение гладких мышц кишечника, бронхов, мочевого пузыря,
  • вызывая сокращение поперечно-полосатых мышц,
  • влияющие на процессы памяти, способность концентрироваться, процесс обучения,
  • сохраняя состояние бодрствования,
  • обеспечивая связь между различными областями центральной нервной системы,
  • стимуляция перистальтики в желудочно-кишечном тракте.

Дефицит ацетилхолина приводит к ингибированию передачи нервных импульсов, вследствие чего происходит паралич мышц. Его низкий уровень означает проблемы с памятью и обработкой информации. Доступны препараты ацетилхолина, использование которых положительно влияет на когнитивные процессы, настроение и поведение и задерживает начало нейропсихиатрических изменений. Кроме того, они предотвращают образование старческих бляшек. Увеличение концентрации ацетилхолина в переднем мозге приводит к улучшению когнитивной функции и замедлению нейродегенеративных изменений. Это предотвращает болезнь Альцгеймера или миастению. Редкое состояние избыточного ацетилхолина в организме.

Также возможно аллергия на ацетилхолин, который отвечает за холинергическую крапивницу. Болезнь в основном поражает молодых людей. Развитие симптомов происходит в результате раздражения аффективных холинергических волокон. Это происходит во время чрезмерного усилия или потребления горячей пищи. Изменения кожи в виде маленьких пузырьков, окруженных красной границей, сопровождаются зудом. Холинергическая крапива исчезает после использования антигистаминов, седативных средств и препаратов против чрезмерного потоотделения.



Понравилась статья? Поделитесь с друзьями!