Нейтронная звезда и чёрная дыра. От белого калика до черной дыры

Черная дыра, это и есть нейтронная звезда, точнее, черная дыра представляет собой одну из разновидностей нейтронных звезд.

Черня дыра, как и нейтронная звезда состоит из нейтронов. Причем, это не нейтронный газ, в котором нейтроны находятся в свободном состоянии, а очень плотная субстанция с плотностью атомного ядра.

Черные дыры и нейтронные звезды образуются в результате гравитационного коллапса, когда давление газа в звезде не может уравновесить её гравитационное сжатие. При этом звезда сжимается до очень маленького размера и очень большой плотности, так что электроны вдавливаются в протоны и образуются нейтроны.

Заметим, что среднее время жизни свободного нейтрона около 15 минут (период полураспада около 10 минут). Поэтому нейтроны в нейтронных звездах и в черных дырах могут быть только в связанном состоянии, как в атомных ядрах. Поэтому нейтронная звезда и черная дыра, это как бы атомное ядро макроскопических размеров, в котором нет протонов.

Отсутствие протонов, это одно отличие черной дыры и нейтронной звезды от атомного ядра. Второе отличие связано с тем, что в обычных атомных ядрах нейтроны и протоны "склеены" друг с другом с помощью ядерных сил (так называемое, "сильное" взаимодействие). А в нейтронных звездах нейтроны "склеены" с помощью гравитации.

Дело в том, что ядерным силам нужны еще и протоны для "склеивания" нейтронов друг с другом. Не существует таких ядер, которые состоят только из одних нейтронов. Обязательно должен быть хотя бы один протон. А для гравитации никакие протоны не нужны, чтобы "склеить" нейтроны друг с другом.

Еще одно отличие гравитации от ядерных сил заключается в том, что гравитация, это дальнодействующее взаимодействие, а ядерные силы, это короткодействующее взаимодействие. Поэтому атомные ядра не могут быть макроскопических размеров. Начиная с урана, все элементы периодической таблицы Менделеева имеют неустойчивые ядра, которые распадаются из-за того, что положительно заряженные протоны отталкиваются друг от друга и разрывают крупные ядра.

У нейтронных звезд и черных дыр такой проблемы нет, так как, во-первых, гравитационные силы дальнодействующие, а, во-вторых, в нейтронных звездах и черных дырах нет положительно заряженных протонов.

Нейтронная звезда и черная дыра под действием сил гравитации имеют форму шара, а точнее эллипсоида вращения, так как все нейтронные звезды (и черные дыры) вращаются вокруг своей оси. Причем достаточно быстро, с периодами вращения от нескольких секунд и меньше.

Дело в том, что нейтронные звезды и черные дыры образуются из обычных звезд путем их сильного сжатия под действием гравитации. Поэтому, по закону сохранения момента вращения, они должны очень быстро вращаться.

Является ли поверхность черных дыр и нейтронных звезд твердой? Не в смысле твердого тела, как агрегатного состояния вещества, а в смысле четкой поверхности шара, без нейтронной атмосферы. Видимо, да, черные дыры и нейтронные звезды имеют твердую поверхность. Нейтронная атмосфера и нейтронная жидкость, это нейтроны в свободном состоянии, значит, они должны распадаться.

Но это не значит, что, если мы, например, уроним на поверхность черной дыры или нейтронной звезды какое-нибудь "изделие" из нейтронов с плотностью атомного ядра, то оно останется лежать на поверхности звезды. Такое гипотетическое "изделие" тут же "всосется" во внутрь нейтронной звезды и черной дыры.

Отличие черных дыр от нейтронных звезд

Сила тяжести у черной дыры такая, что вторая космическая скорость на её поверхности превышает скорость света. Поэтому свет с поверхности черной дыры не может навсегда уйти в открытый космос. Гравитационные силы заворачивают луч света обратно.

Если на поверхности черной дыры находится источник света, то фотоны этого света сначала летят вверх, а потом поворачивают и падают обратно на поверхность черной дыры. Или эти фотоны начинают вращаться вокруг черной дыры по эллиптической орбите. Последнее имеет место на такой черной дыре, на поверхности которой первая космическая скорость меньше скорости света. В этом случае фотон может вырваться с поверхности черной дыры, но он превращается в постоянный спутник черной дыры.

А на поверхности всех остальных нейтронных звезд, которые не являются черными дырами, вторая космическая скорость меньше скорости света. Поэтому, если на поверхности такой нейтронной дыры находится источник света, то фотоны от этого источника света покидают поверхность такой нейтронной звезды по гиперболическим орбитам.

Понятно, что все эти рассуждения относятся не только к видимому свету, но и к любому электромагнитному излучению. То есть покинуть черную дыру не может не только видимый свет, но и радиоволны, инфракрасные лучи, ультрафиолетовое, рентгеновское и гамма-излучение. Максимум, что смогут фотоны этих излучений и волн, это начать вращаться вокруг черной дыры, если для данной черной дыры скорость света больше первой космической скорости на поверхности звезды.

Поэтому такие нейтронные звезды и называются так "черная дыра". От черной дыры ничего не вылетает, а всё что угодно может туда залететь. (Испарение черных дыр за счет квантового туннелирования здесь рассматривать не будем.)

То есть понятно, что никакой дырки в пространстве там на самом деле нет. Точно также, как нет никакой дырки в пространстве на месте расположения обычной нейтронной звезды или на месте обычной звезды.

Дырки в пространстве там есть только в книгах писателей-фантастов, в научно-популярных изданиях и телепередачах. Изданиям и телепередачам нужно финансово отбить затраты на тиражи и рейтинги. Поэтому им приходится эмоционально поражать своих читателей и телезрителей такими фактами, которые нельзя проверить при сегодняшнем уровне развития науки и техники, но которые могут появится в каких-нибудь математических моделях. (Непрофессиональная публика обычно не подозревает, что математические модели в физике всегда вторичны, что физика наука экспериментальная и что математические модели физических объектов имеют свойство в будущем меняться по мере появления новых экспериментальных данных.)

Если бы мы могли стоять на поверхности черной дыры, то посмотрев вверх мы бы увидели вместо звездного неба полупрозрачное зеркало. То есть мы видели бы там и окружающий космос (так как черная дыра принимает всё излучение отправленное к ней) и тот свет, который возвращается к нам обратно не сумев преодолеть гравитация. Этот возврат света обратно имеет эффект зеркала.

Точно такое же полупрозрачное "зеркало" на поверхности черной дыры имеет место и для других видов электромагнитного излучения (радиоволны, рентген, ультрафиолет и т.д.)

Этот пост - конспект к пятому занятию по программе курса по астрофизике для средней школы. Он содержит описание вспышек сверхновых, процессов образования нейтронных звезд (пульсаров) и черных дыр звездных масс как одиночных, так и в звездных парах. И несколько слов о коричневых карликах.


Сначала повторю картинку, показывающую классификацию типов звезд и их эволюции в зависимости от их масс:

1. Вспышки новых и сверхновых.
Выгорание гелия в недрах звезд завершается образованием красных гигантов и их вспышками как новых с образованием белых карликов или образованием красных сверхгигантов и их вспышками как сверхновых с образованием нейтронных звезд или черных дыр, а также туманностей из сброшенных этими звездами своих оболочек. Зачастую массы сбрасываемых оболочек превышают массы "мумий" этих звезд - нейтронных звезд и черных дыр. Для понимания масштабов этого явления приведу видео вспышки сверхновой 2015F в удаленной от нас на 50 млн. св. лет галактике NGC 2442:

Другой пример - сверхновая 1054 года в нашей Галактике, в результате вспышки которой образовались Крабовидная туманность и нейтронная звезда на расстоянии от нас в 6,5 тыс. св. лет. При этом масса образовавшейся нейтронной звезды ~ 2 солнечных масс, а масса сброшенной оболочки ~ 5 солнечных масс. Современники оценивали яркость этой сверхновой как примерно в 4-5 раз большую, чем у Венеры. Если бы такая сверхновая вспыхнула в тысячу раз ближе (6,5 св. лет), то она бы сверкала на нашем небе в 4000 раз ярче Луны, но в сотню раз слабее Солнца.

2. Нейтронные звезды.
Звезды больших масс (классов О, В, А ) после выгорания водорода в гелий и в процессе выгорания гелия преимущественно в углерод, кислород и азот входят в достаточно короткую стадию красного сверхгиганта и по завершении гелиево-углеродного цикла тоже сбрасывают оболочку и вспыхивают как "Сверхновые" . Их недра тоже сжимаются под действием гравитации. Но давление вырожденного электронного газа уже не может, как у белых карликов, остановить это гравитационное самосжатие. Поэтому температура в недрах этих звезд повышается и в них начинают идти термоядерные реакции, в результате которых образуются следующие элементы таблицы Менделеева. Вплоть до железа .

Почему именно до железа? Потому, что образование ядер с большим атомным номером идет не с выделением энергии, а с поглощением ее. А взять ее от других ядер не так то просто. Конечно, элементы с большим атомным номером в недрах этих звезд образуются. Но в гораздо меньшем количестве, чем железо.

А вот дальше эволюция расщепляется. Не слишком массивные звезды (классов А и частично В ) превращаются в нейтронные звезды . В которых электроны буквально впечатываются в протоны и большая часть тела звезды превращается в огромное нейтронное ядро. Состоящее из соприкасающихся и даже вжатых друг в друга обычных нейтронов. Плотность вещества в котором порядка нескольких миллиардов тонн в кубическом сантиметре. А типичный диаметр нейтронной звезды - порядка 10-20 километров. Нейтронная звезда - второй устойчивый тип "мумии" умершей звезды. Их массы, как правило, лежат в интервале от примерно 1,3 до 2,1 масс Солнца (по данным наблюдений).

Одиночные нейтронные звезды в оптике увидеть практически невозможно из-за их чрезвычайно низкой светимости. Но часть из них обнаруживают себя как пульсары . Что это такое? Практически все звезды обращаются вокруг своей оси и обладают достаточно сильным магнитным полем. Например, наше Солнце делает оборот вокруг своей оси примерно за месяц.

Теперь представьте себе, что его диаметр уменьшится сто тысяч раз. Ясно, что благодаря закону сохранения момента импульса вращаться оно будет гораздо быстрее. И магнитное поле такой звезды будет вблизи ее поверхности на много порядков сильнее солнечного. Большинство нейтронных звезд имеют период оборота вокруг своей оси в десятые - сотые доли секунды. Из наблюдений известно, что самый быстро вращающийся пульсар делает чуть более 700 оборотов вокруг своей оси в секунду, а самый медленно вращающийся делает один оборот за более чем 23 секунды.

А теперь представьте себе, что у такой звезды магнитная ось, как и у Земли, не совпадает с осью вращения. Жесткое излучение от такой звезды будет концентрироваться в узких конусах вдоль магнитной оси. И если этот конус будет с периодом вращения звезды "задевать" Землю, то эту звезду мы будем видеть как пульсирующий источник излучения. Наподобие вращаемого нашей рукой фонарика.

Такой пульсар (нейтронная звезда) образовался после вспышки сверхновой 1054 года, случившейся как раз во время визита кардинала Гумберта в Константинополь. По результатам которого произошел окончательный разрыв между католической и православной церквями. Сам этот пульсар совершает 30 оборотов в секунду. А сброшенная им оболочка массой ~ 5 масс Солнца выглядит как Крабовидная туманность :

3. Черные дыры (звездных масс).
Наконец, достаточно массивные звезды (классов О и частично В ) заканчивают свой жизненный путь третьим типом "мумии" - черной дырой . Такой объект возникает, когда масса остатка звезды настолько велика, что давление соприкасающихся нейтронов (давление вырожденного нейтронного газа) в недрах этого остатка не может противостоять его гравитационному самосжатию. Наблюдения показывают, что граница по массе между нейтронными звездами и черными дырами лежит в окрестности ~ 2,1 массы Солнца.

Напрямую одиночную черную дыру наблюдать невозможно. Ибо с ее поверхности (если она есть) никакая частица вырваться не может. Даже частица света - фотон.

4. Нейтронные звезды и черные дыры в двойных звездных системах.
Одиночные нейтронные звезды и черные дыры звездных масс практически не наблюдаемы. Но в случаях, если они являются одной из двух или более звезд в тесных звездных системах такие наблюдения становятся возможными. Поскольку своим тяготением могут "отсасывать" внешние оболочки остающихся пока нормальными звездами своих соседок.

При таком "отсасывании" вокруг нейтронной звезды или черной дыры образуется аккреционный диск , вещество которого частично "сползает" к нейтронной звезде или черной дыре и частично отбрасывается от нее в двух струях-джетах . Это процесс удается зафиксировать. Пример - двойная звездная системв SS433, одна компонента которой либо нейтронная звезда, либо черная дыра. А вторая - пока обычная звезда:

5. Коричневые карлики.
Звезды с массами заметно меньшей солнечной и вплоть до ~ 0,08 массы Солнца являются красными карликами класса М. Они будут работать на водородно-гелиевом цикле в течение времени большего, чем возраст Вселенной. В объектах с массами меньше этого предела по ряду причин стационарный долго работающий термояд не возможен. Такие звезды называют коричневыми карликами. Температура их поверхности настолько низка, что в оптике они почти не видны. Но светят в ИК-диапазоне. По совокупности этих причин их часто называют недозвездами .

Диапазон масс коричневых карликов - от 0,012 до 0,08 солнечных масс. Объекты с массой меньшей 0,012 массы Солнца (~ 12 масс Юпитера) могут быть только планетами. Газовыми гигантами. Излучающими за счет медленного гравитационного самосжатия заметно больше энергии, чем они получают от родительских звезд. Так, Юпитер по сумме всех диапазонов излучает примерно вдвое больше энергии, чем он получает от Солнца.

Что такое чёрная дыра ? Почему её называют чёрной? Что происходит в звёздах? Как связаны нейтронная звезда и чёрная дыра? Способен ли большой адронный коллайдер создать чёрные дыры, и чем это чревато для нас?

Что такое звезда ??? Если вдруг ещё не знаете, наше Солнце тоже звезда. Это объект больших размеров способен с помощью термоядерного синтеза излучать электромагнитные волны (это не самое точное из определений). Если непонятно, можно сказать так: звезда – это большой объект шарообразной формы, внутри которого с помощью ядерных реакций образуется очень-очень-очень большое количество энергии, часть которой идёт на излучение видимого света. Кроме обычного света излучается и тепло (инфракрасное излучение), и радиоволны, и ультрафиолет и др.

В любой звезде происходят ядерные реакции так же, как и в атомных станциях, только с двумя главными отличиями.

1. В звёздах происходят реакции ядерного синтеза, то есть соединения ядер, а в АЭС ядерного распада. В первом случае выделяется в 3 раза больше энергии, в тысячи раз меньше затрат, так как необходим лишь водород, а он сравнительно недорогой. Также в первом случае нет вредных отходов: выделяется лишь безвредный гелий. Теперь Вас конечно же интересует, почему на АЭС не пользуются такими реакциями? Потому что она НЕКОНТРОЛИРУЕМА и легко приводит к ядерному взрыву, да ещё для этой реакции нужна температура несколько миллионов градусов. Для человека ядерный синтез является самой важной и самой тяжёлой задачей (никто пока не придумал способ контролировать термоядерный синтез), учитывая, что наши источники энергии заканчиваются.

2. В звёздах в реакциях участвует больше вещества, чем в АЭС, и, естественно, там больше получается на выходе энергии.

Теперь про эволюцию звёзд. Каждая звезда рождается, растёт, стареет и умирает (гаснет). Звёзды по стилю эволюционирования делятся в зависимости от своей массы на три категории.

Первая категория звёзды с массой менее 1,4*Массу Солнца. В таких звёздах всё «топливо» медленно превращается в металл, потому что из-за синтеза (объединения) ядер появляются всё более «многоядерные» (тяжёлые) элементы, а это и есть металлы. Правда, последняя стадия эволюции таких звёзд не была зафиксирована (зафиксировать металлические шары сложно), это лишь теория.

Вторая категория звёзды по массе, превышающие массу звёзд первой категории, но меньших трёх масс Солнца. Такие звёзды в результате эволюции теряют баланс внутренних сил притяжения и отталкивания. Как следствие, внешняя их оболочка выбрасывается в космос, а внутренняя (из закона сохранения импульса) начинает «бешено» сжиматься. Образуется нейтронная звезда. Она почти полностью состоит из нейтронов, то есть из частиц, не имеющих электрического заряда. Самое примечательное в нейтронной звезде это её плотность, ведь чтобы стать нейтронной, звезде нужно сжаться до шара диаметром всего около 300 км, а это очень мало. Так вот плотность её очень велика - порядка десятков триллионов кг в одном кубическом метре, что в миллиарды раз больше, чем плотность самых плотных веществ на Земле. Откуда же взялась такая плотность? Дело в том, что все вещества на Земле состоят из атомов, они в свою очередь состоят из ядер. Каждый атом можно представить как большой пустой шар (абсолютно пустой), в центре которого находится маленькое ядро. В ядре заключена вся масса атома (кроме ядра в атоме есть лишь электроны, но их масса очень мала). Ядро в диаметре в 1000 раз меньше атома. А значит в объёме ядро меньше атома в 1000*1000*1000 = 1 миллиард раз. А отсюда плотность ядра в миллиарды раз больше плотности атома. Что происходит в нейтронной звезде? Атомы перестают существовать как форма вещества, они заменяются на ядра. Вот поэтому плотность таких звёзд в миллиарды раз больше плотности земных веществ.

Все мы знаем, что тяжёлые предметы (планеты, звёзды) сильно притягивают к себе всё окружающее. Нейтронные звёзды так и обнаруживают. Они сильно искривляют орбиты других видимых звёзд, находящихся рядом.

Третья категория звёзд звёзды с массой большей, чем тройная масса Солнца. Такие звёзды, став нейтронными, сжимаются далее и превращаются в чёрные дыры. Их плотность в десятки тысяч раз больше плотности нейтронных звёзд. Имея такую огромную плотность, чёрная дыра обретает способность очень сильной гравитации (способность притягивать окружающие тела). С такой гравитацией звезда не позволяет покинуть свои пределы даже электромагнитным волнам, а значит и свету. То есть чёрная дыра не испускает свет. Отсутствие какого-либо света это тьма, вот поэтому чёрную дыру и называют чёрной. Она всегда чёрная, её невозможно увидеть ни в какой телескоп. Все знают, что из-за своей гравитации, чёрные дыры способны засасывать в себя все окружающие тела в большом объёме. Именно поэтому люди и остерегаются запуска Большого Адронного Коллайдера, в работе которого, по мнению учёных, не исключено появление чёрных микродыр. Однако эти микродыры сильно отличаются от обычных: неустойчивы, потому что время их жизни очень мало, и не доказаны практически. Более того, учёные уверяют, что эти микродыры имеют совсем другую природу в отличие от обычных чёрных дыр и не способны поглощать материю.

blog.сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

Нейтронная звезда

Расчеты показывают, что при взрыве сверхновой с M ~ 25M остается плотное нейтронное ядро (нейтронная звезда) с массой ~ 1.6M . В звездах с остаточной массой M > 1.4M , не достигших стадии сверхновой, давление вырожденного электронного газа также не в состоянии уравновесить гравитационные силы и звезда сжимается до состояния ядерной плотности. Механизм этого гравитационного коллапса тот же, что и при взрыве сверхновой. Давление и температура внутри звезды достигают таких значений, при которых электроны и протоны как бы “вдавливаются” друг в друга и в результате реакции

после выброса нейтрино образуются нейтроны, занимающие гораздо меньший фазовый объем, чем электроны. Возникает так называемая нейтронная звезда, плотность которой достигает 10 14 - 10 15 г/см 3 . Характерный размер нейтронной звезды 10 - 15 км. В некотором смысле нейтронная звезда представляет собой гигантское атомное ядро. Дальнейшему гравитационному сжатию препятствует давление ядерной материи, возникающее за счет взаимодействия нейтронов. Это также давление вырождения, как ранее в случае белого карлика, но - давление вырождения существенно более плотного нейтронного газа. Это давление в состоянии удерживать массы вплоть до 3.2M .
Нейтрино, образующиеся в момент коллапса, довольно быстро охлаждают нейтронную звезду. Согласно теоретическим оценкам температура ее падает с 10 11 до 10 9 K за время ~ 100 с. Дальше темп остывания несколько уменьшается. Однако он достаточно высок по астрономическим масштабам. Уменьшение температуры с 10 9 до 10 8 K происходит за 100 лет и до 10 6 K - за миллион лет. Обнаружить нейтронные звезды оптическими методами довольно сложно из-за малого размера и низкой температуры.
В 1967 г. в Кембриджском университете Хьюиш и Белл открыли космические источники периодического электромагнит-ного излучения - пульсары. Периоды повторения импульсов боль-шинства пульсаров лежат в интервале от 3.3·10 -2 до 4.3 с. Согласно современным представлениям, пульсары - это вращающиеся нейтронные звезды, имеющие массу 1 - 3M и диаметр 10 - 20 км. Только компактные объекты, имеющие свойства нейтронных звезд, могут сохранять свою форму, не разрушаясь при таких скоростях вращения. Сохранение углового момента и магнитного поля при образовании нейтронной звезды приводит к рождению быстро вращающихся пульсаров с сильным магнитным полем B ~ 10 12 Гс.
Считается, что нейтронная звезда имеет магнитное поле, ось которого не совпадает с осью вращения звезды. В этом случае излучение звезды (радиоволны и видимый свет) скользит по Земле как лучи маяка. Когда луч пересекает Землю регистрируется импульс. Само излучение нейтронной звезды возникает за счет того, что заряженные частицы с поверхности звезды двигаются вовне по силовым линиям магнитного поля, испуская электромагнитные волны. Этот механизма радиоизлучения пульсара, впервые предложенный Голдом, показан на рис. 39.

Если пучок излучения попадает на земного наблюдателя, то радиотелескоп фиксирует короткие импульсы радиоизлучения с периодом, равным периоду вращения нейтронной звезды. Форма импульса может быть очень сложной, что обусловлено геометрией магнитосферы нейтронной звезды и является характерной для каждого пульсара. Периоды вращения пульсаров строго постоянны и точности измерения этих периодов доходят до 14-значной цифры.
В настоящее время обнаружены пульсары, входящие в двойные системы. Если пульсар вращается по орбите вокруг второго компонента, то должны наблюдаться вариации периода пульсара вследствие эффекта Допплера. Когда пульсар приближается к наблюдателю, регистрируемый период радиоимпульсов из-за допплеровского эффекта уменьшается, а когда пульсар удаляется от нас, его период увеличивается. На основе этого явления и были обнаружены пульсары, входящие в состав двойных звезд. Для впервые обнаруженного пульсара PSR 1913 + 16, входящего в состав двойной системы, орбитальный период обращения составил 7 часов 45 мин. Собственный период обращения пульсара PSR 1913 + 16 равен 59 мс.
Излучение пульсара должно приводить к уменьшению скорости вращения нейтронной звезды. Такой эффект также был обнару-жен. Нейтронная звезда, входящая в состав двойной системы, может быть и источником интенсивного рентгеновского излучения.
Структура нейтронной звезды массой 1.4M и радиусом 16 км показана на рис. 40.

I - тонкий внешний слой из плотно упакованных атомов. В областях II и III ядра расположены в виде объемно-центрированной кубической решетки. Область IV состоит в основном из нейтронов. В области V вещество может состоять из пионов и гиперонов, образуя адронную сердцевину нейтронной звезды. Отдельные детали строения нейтронной звезды в настоящее время уточняются.
Образование нейтронных звезд не всегда является следствием вспышки сверхновой. Возможен и другой механизм образования нейтронных звезд в ходе эволюции белых карликов в тесных двойных звездных системах. Перетекание вещества звезды-компаньона на белый карлик постепенно увеличивает массу белого карлика и по достижении критической массы (предела Чандрасекара) белый карлик превращается в нейтронную звезду. В случае, когда перетекание вещества продолжается и после образования нейтронной звезды, её масса может существенно увеличиться и в результате гравитационного коллапса она может превратиться в черную дыру. Это соответствует так называемому “тихому” коллапсу.
Компактные двойные звезды могут проявляться и как источники рентгеновского излучения. Оно также возникает за счет аккреции вещества, падающего с “нормальной” звезды на более компактную. При аккреции вещества на нейтронную звезду с B > 10 10 Гс вещество падает в район магнитных полюсов. Рентгеновское излучение модулируется её вращением вокруг оси. Такие источники называют рентгеновскими пульсарами.
Существуют рентгеновские источники (называемые барстерами), в которых периодически с интервалом от нескольких часов до суток происходят всплески излучения. Характерное время нарастания всплеска - 1 сек. Длительность всплеска от 3 до 10 сек. Интенсивность в момент всплеска может на 2 - 3 порядка превосходить светимость в спокойном состоянии. В настоящее время известно несколько сотен таких источников. Считается, что всплески излучения происходят в результате термоядерных взрывов вещества, накопившегося на поверхности нейтронной звезды в результате аккреции.
Хорошо известно, что на малых расстояниях между нуклонами (< 0.3·10 -13 см) ядерные силы притяжения сменяются силами оттал-кивания, т. е. противодействие ядерного вещества на малых расстояниях сжимающей силе тяготения увеличивается. Если плотность вещества в центре нейтронной звезды превышает ядерную плотность ρ яд и достигает 10 15 г/см 3 , то в центре звезды наряду с нуклонами и электронами образуются также мезоны, гипероны и другие более массивные частицы. Исследования поведения вещества при плотностях, превышающих ядерную плотность, в настоящее время находятся в начальной стадии и имеется много нерешенных проблем. Расчеты показывают, что при плотностях вещества ρ > ρ яд возможны такие процессы, как появление пионного конденсата, переход нейтронизованного вещества в твердое кристаллическое состояние, образование гиперонной и кварк-глюонной плазмы. Возможно образование сверхтекучего и сверхпроводящего состояний нейтронного вещества.
В соответствии с современными представлениями о поведении вещества при плотностях в 10 2 - 10 3 раз, превышающих ядерную (а именно о таких плотностях идет речь, когда обсуждается внутреннее строение нейтронной звезды), внутри звезды образуются атомные ядра вблизи границы устойчивости. Более глубокое понимание может быть достигнуто в результате исследования состояния вещества в зависимости от плотности, температуры, устойчивости ядерной материи при экзотических отношениях числа протонов к числу нейтронов в ядре n p /n n , учете слабых процессов с участием нейтрино. В настоящее время практически единственной возможностью исследования вещества при плотностях больших ядерной являются ядерные реакции между тяжелыми ионами. Однако, экспериментальные данные по столкновению тяжелых ионов дают пока недостаточно информации, т. к. достижимые значения n p /n n как для ядра - мишени, так и для налетающего ускоренного ядра невелики (~ 1 - 0.7).
Точные измерения периодов радиопульсаров показали, что скорость вращения нейтронной звезды постепенно замедляется. Это связано с переходом кинетической энергии вращения звезды в энергию излучения пульсара и с эмиссией нейтрино. Небольшие скачкообразные изменения периодов радиопульсаров объясняются накоплением напряжений в поверхностном слое нейтронной звезды, сопровождающимся “растрескиванием” и “разломами”, что и приводит к изменению скорости вращения звезды. В наблюдаемых временных характеристиках радиопульсаров содержится информация о свойствах “коры” нейтронной звезды, физических условиях внутри неё и о сверхтекучести нейтронного вещества. В последнее время обнаружено значительное число ра-диопульсаров с периодами меньшими 10 мс. Это требует уточнения представлений о процессах, происходящих в нейтронных звездах.
Другой проблемой является исследование нейтринных процессов в нейтронных звездах. Эмиссия нейтрино является одним из механизмов потери энергии нейтронной звездой в течении 10 5 - 10 6 лет после её образования.

«Остатки взорвавшегося ядра известны под названием нейтронной звезды. Нейтронные звезды вращаются очень быстро, испуская световые и радиоволны, которые, проходя мимо Земли, кажутся светом космического маяка.

Колебания яркости этих волн навело астрономов на мысль назвать такие звезды пульсарами. Самые быстрые пульсары вращаются со скоростью, почти равной 1000 оборотов в секунду». (1)

«К настоящему времени их открыто уже более двухсот. Регистрируя излучение пульсаров на различных, но близких частотах, удалось по запаздыванию сигнала на большей длине волны (при предположении о некоторой плотности плазмы в межзвездной среде) определить расстояние до них. Оказалось, что все пульсары находятся на расстояниях от 100 до 25 000 световых лет, т. е. принадлежат нашей Галактике, группируясь вблизи плоскости Млечного Пути (рис. 7)». (2)

Черные дыры

«Если масса звезды в два раза превышает солнечную, то к концу своей жизни звезда может взорваться как сверхновая, но если масса вещества, оставшегося после взрыва, всё еще превосходит две солнечные, то звезда должна сжаться в плотное крошечное тело, так как гравитационные силы всецело подавляют всякое сопротивление сжатию. Учёные полагают, что именно в этот момент катастрофический гравитационный коллапс приводит к возникновению черной дыры. Они считают, что с окончанием термоядерных реакций звезда уже не может находиться в устойчивом состоянии. Тогда для массивной звезды остаётся один неизбежный путь: путь всеобщего и полного сжатия (коллапса), превращающего её в невидимую чёрную дыру.

В 1939 году Р. Оппенгеймер и его аспирант Снайдер в Калифорнийском университете (Беркли) занимались выяснением окончательной судьбы большой массы холодного вещества. Одним из наиболее впечатляющих следствий общей теории относительности Эйнштейна оказалось следующее: когда большая масса начинает коллапсировать, этот процесс не может быть остановлен и масса сжимается в чёрную дыру. Если, например, не вращающаяся симметричная звезда начинает сжиматься до критического размера, известного как гравитационный радиус, или радиус Шварцшильда (назван так в честь Карла Шварцшильда, который первым указал на его существование). Если звезда достигает этого радиуса, то уже не что не может воспрепятствовать ей завершить коллапс, то есть буквально замкнуться в себе.

Каковы же физические свойства «чёрных дыр» и как учёные предполагают обнаружить эти объекты? Многие учёные раздумывали над этими вопросами; получены кое-какие ответы, которые способны помочь в поиска таких объектов.

Само название - чёрные дыры - говорит о том, что это класс объектов, которые нельзя увидеть. Их гравитационное поле настолько сильно, что если бы каким-то путём удалось оказаться вблизи чёрной дыры и направить в сторону от её поверхности луч самого мощного прожектора, то увидеть этот прожектор было бы нельзя даже с расстояния, не превышающее расстояние от Земли до Солнца. Действительно, даже если бы мы смогли сконцентрировать весь свет Солнца в этом мощном прожекторе, мы не увидели бы его, так как свет не смог бы преодолеть воздействие на него гравитационного поля чёрной дыры и покинуть её поверхность. Именно поэтому такая поверхность называется абсолютным горизонтом событий. Она представляет собой границу чёрной дыры.

Учёные отмечают, что эти необычные объекты нелегко понять, оставаясь в рамках закона тяготения Ньютона. Вблизи поверхности чёрной дыры гравитация столь сильна, что привычные ньютоновские законы здесь перестают действовать. Их следует заменить законами общей теории относительности Эйнштейна. Согласно одному из трёх следствий теории Эйнштейна, покидая массивное тело, свет должен испытывать красное смещение, так как он теряет энергию на преодоление гравитационного поля звёзды. Излучение, приходящее от плотной звезды, подобной белому карлику - спутнику Сириуса А, - лишь слегка смещается в красную область спектра. Чем плотнее звезда, тем больше это смещение, так что от сверхплотной звезды совсем не будет приходить излучения в видимой области спектра. Но если гравитационное действие звезды увеличивается в результате её сжатия, то силы тяготения оказываются настолько велики, что свет вообще не может покинуть звезду. Таким образом, для любого наблюдателя возможность увидеть черную дыру полностью исключена! Но тогда естественно возникает вопрос: если она не видима, то, как же мы можем её обнаружить? Чтобы ответить на этот вопрос учёные прибегают к искусным уловкам. Руффини и Уиллер досконально изучили эту проблему и предложили несколько способов пусть не увидеть, но хотя бы обнаружить чёрную дыру. Начнём с того, что, когда чёрная дыра рождается в процессе гравитационного коллапса, она должна излучать гравитационные волны, которые могли бы пересекать пространство со скорость света и на короткое время искажать геометрию пространства вблизи Земли. Это искажение проявилось бы в виде гравитационных волн, действующих одновременно на одинаковые инструменты, установленные наземной поверхности на значительном расстоянии друг от друга. Гравитационное излучение могло бы приходить от звёзд, испытывающих гравитационный коллапс. Если в течение обычной жизни звезда вращалась, то, сжимаясь и становясь всё меньше и меньше, она будет вращаться всё быстрее, сохраняя свой момент количества движения. Наконец она может достигнуть такой стадии, когда скорость движения на её экваторе приблизится к скорости света, то есть к предельно возможной скорости. В этом случае звезда оказалась бы сильно деформированной и могла бы выбросить часть вещества. При такой деформации энергия могла бы уходить от звезды в виде гравитационных волн с частотой порядка тысячи колебаний в секунду (1000 Гц).

Роджер Пенроуз, профессор математики Биркбекского колледжа Лондонского университета, рассмотрел любопытный случай коллапса и образования чёрной дыры. Он допускает, что чёрная дыра исчезает, а затем проявляется в другое время в какой-то иной вселенной. Кроме того, он утверждает, что рождение чёрной дыры во время гравитационного коллапса является важным указанием на то, что с геометрией пространства-времени происходит нечто необычное. Исследования Пенроуза показывают, что коллапс заканчивается образованием сингулярности (от лат. singularius - отдельный, одиночный), то есть он должен продолжаться до нулевых размеров и бесконечной плотности объекта. Последнее условие даёт возможность другой вселенной приблизиться к нашей сингулярности, и не исключено, что сингулярность перейдёт в эту новую вселенную. Она даже может появиться в каком либо другом месте нашей собственной Вселенной.

Некоторые учёные рассматривают образование чёрной дыры как маленькую модель того, что, согласно предсказаниям общей теории относительности, в конечном счёте, может случиться с Вселенной. Общепризнано, что мы можем в неизменно расширяющейся Вселенной, и один из наиболее важных и насущных вопросов науки касается природы Вселенной, её прошлого и будущего. Без сомнения, все современные результаты наблюдений указывают на расширение Вселенной. Однако на сегодня один из самых каверзных вопросов таков: замедляется ли скорость этого расширения, и если да, то не сожмётся ли Вселенная через десятки миллиардов лет, образуя сингулярность. По-видимому, когда-нибудь мы сможем выяснить, по какому пути следует Вселенная, но, быть может, много раньше, изучая информацию, которая просачивается при рождении чёрных дыр, и те физические законы, которые управляют их судьбой, мы сможем предсказать окончательную судьбу Вселенной (рис. 8)». (1)



Понравилась статья? Поделитесь с друзьями!