Неорганические полимеры: примеры и области применения. Различные типы неорганических полимеров неорганические полимеры

В 1833 году Й. Берцелиус ввел в обиход термин «полимерия», которым он назвал один из видов изомерии. Такие вещества (полимеры) должны были обладать одинаковым составом, но разной молекулярной массой, как например этилен и бутилен. К современному пониманию термина «полимер» умозаключение Й. Берцелиуса не соответствует, потому что истинные (синтетические) полимеры в то время еще не были известны. Первые упоминания о синтетических полимерах относятся к 1838 (поливинилиденхлорид) и 1839 (полистирол) годам.

Химия полимеров возникла только после создания А. М. Бутлеровым теории химического строения органических соединений и получила дальнейшее развитие благодаря интенсивным поискам способов синтеза каучука (Г. Бушарда, У. Тилден, К Гарриес, И. Л. Кондаков, С. В. Лебедев). С начала 20-х годов 20 века стали развиваться теоретические представления о строении полимеров.

ОПРЕДЕЛЕНИЕ

Полимеры — химические соединения с высокой молекулярной массой (от нескольких тысяч до многих миллионов) , молекулы которых (макромолекулы) состоят из большого числа повторяющихся группировок (мономерных звеньев).

Классификация полимеров

Классификация полимеров основана на трех признаках: их происхождении, химической природе и различиях в главной цепочке.

С точки зрения происхождения все полимеры подразделяют на природные (натуральные), к которым относят нуклеиновые кислоты, белки, целлюлозу, натуральный каучук, янтарь; синтетические (полученные в лаборатории путем синтеза и не имеющие природных аналогов), к которым относят полиуретан, поливинилиденфторид, фенолформальдегидные смоли и др; искусственные (полученные в лаборатории путем синтеза, но на основе природных полимеров) – нитроцеллюлоза и др.

Исходя из химической природы, полимеры делят на полимеры органической (в основе мономер – органическое вещество – все синтетические полимеры), неорганической (в основе Si, Ge, S и др. неорганические элементы – полисиланы, поликремниевые кислоты) и элементоорганической (смесь органических и неорганических полимеров – полислоксаны) природы.

Выделяют гомоцепные и гетероцепные полимеры. В первом случае главная цепь состоит из атомов углерода или кремния (полисиланы, полистирол), во втором – скелет из различных атомов (полиамиды, белки).

Физические свойства полимеров

Для полимеров характерны два агрегатных состояния – кристаллическое и аморфное и особые свойства – эластичность (обратимые деформации при небольшой нагрузке — каучук), малая хрупкость (пластмассы), ориентация при действии направленного механического поля, высокая вязкость, а также растворение полимера происходит посредством его набухания.

Получение полимеров

Реакции полимеризации – цепные реакции, представляющие собой последовательное присоединение молекул ненасыщенных соединений друг к другу с образованием высокомолекулярного продукта – полимера (рис. 1).

Рис. 1. Общая схема получения полимера

Так, например, полиэтилен получают полимеризацией этилена. Молекулярная масса молекулы достигает 1миллиона.

n CH 2 =CH 2 = -(-CH 2 -CH 2 -)-

Химические свойства полимеров

В первую очередь для полимеров будут характерны реакции, характерные для функциональной группы, присутствующей в составе полимера. Например, если в состав полимера входит гидроксо-группа, характерная для класса спиртов, следовательно, полимер будет участвовать в реакциях подобно спиртам.

Во-вторых, взаимодействие с низкомолекулярными соединениями, взаимодействие полимеров друг с другом с образованием сетчатых или разветвленных полимеров, реакции между функциональными группами, входящими в состав одного и того же полимера, а также распад полимера на мономеры (деструкция цепи).

Применение полимеров

Производство полимеров нашло широкое применение в различных областях жизни человечества — химической промышленности (производство пластмасс), машино – и авиастроении, на предприятиях нефтепереработки, в медицине и фармакологии, в сельском хозяйстве (производство гербицидов, инсектицидов, пестицидов), строительной промышленности (звуко- и теплоизоляция), производство игрушек, окон, труб, предметов быта.

Примеры решения задач

ПРИМЕР 1

ПРИМЕР 1

Задание Полистирол хорошо растворяется в неполярных органических растворителях: бензоле, толуоле, ксилоле, тетрахлориде углерода. Вычислите массовую долю (%) полистирола в растворе, полученном растворением 25 г полистирола в бензоле массой 85г. (22,73%).
Решение Записываем формулу для нахождения массовой доли:

Найдем массу раствора бензола:

m р-ра (C 6 H 6) = m(C 6 H 6)/(/100%)

В современном мире практически нет человека, который бы не имел хоть какого то представления о полимерах. Полимеры идут по жизни вместе с человеком, делая его жизнь все более удобной и комфортной. При упоминании о полимерах первые ассоциации будут связаны с синтетическими органическими веществами, так как они больше находятся на виду. Полимеры природные - натуральные органические вещества - хоть их и больше в окружающем нас мире, в ассоциативном восприятии человека отходят на второй план. Они окружают нас всегда, однако никто не задумывается о природе происхождения флоры и фауны. Целлюлоза, крахмал, лигнин, каучук, белки и нуклеиновые кислоты - основной материал, используемый природой для сотворения окружающего нас животного и растительного мира. И уж совсем никто не будет воспринимать как полимеры драгоценные камни, графит, слюду, песок и глину, стекло и цемент. Тем не менее, наукой установлен факт полимерного строения многих неорганических соединений, в том числе и перечисленных выше. Полимерные вещества состоят из макромолекул. При образовании полимеров большое число атомов или групп атомов связываются между собой химическими связями - ковалентными или координационными. Полимерные макромолекулы содержат десятки, сотни, тысячи или десятки тысяч атомов или повторяющихся элементарных звеньев. Сведения о полимерном строении были получены при исследовании свойств растворов, строения кристаллов, механических и физико-химических свойств неорганических веществ. В подтверждение вышесказанному следует отметить, что имеется достаточное количество научной литературы, подтверждающей факт полимерного строения некоторых неорганических веществ.

Логичным будет замечание: почему так много есть информации о синтетических органических полимерах и так мало о неорганических. Если есть неорганические полимерные вещества, то что конкретно они из себя представляют и где они используются? Выше были приведены несколько примеров неорганических полимеров. Это известные вещества, которые знают все, вот только мало кто знает, что эти вещества можно причислить к отряду полимеров. По большому счету обывателю все равно можно ли отнести графит к полимерам или нет, что касается драгоценных камней, то для кого-то это может быть даже оскорбительно, равнять дорогие украшения с дешевой пластмассовой бижутерией. Тем не менее, если есть основания называть некоторые неорганические вещества полимерами, то почему бы об этом не поговорить. Рассмотрим некоторых представителей таких материалов, остановимся более подробно на самых интересных.
Для синтеза неорганических полимеров чаще всего требуются очень чистые исходные вещества, а также высокие температура и давление. Основными способами их получения, как и органических полимеров, являются полимеризация, поликонденсация и поликоординация. К простейшим неорганическим полимерами относятся гомоцепные соединения, состоящие из цепей или каркасов, построенных из одинаковых атомов. Кроме известного всем углерода, являющегося основным элементом, участвующим в построении практически всех органических полимеров другие элементы тоже могут участвовать в построении макромолекул. К таким элементам относятся бор из третьей группы, кремний, германий и олово из четвертой группы, куда как раз входит и углерод, фосфор, мышьяк, сурьма и висмут из пятой группы, сера, селен теллур из шестой. В основном гомоцепные полимеры, полученные на основе этих элементов, используются в электронике и оптике. Электронная промышленность развивается очень высокими темпами и спрос на синтетические кристаллы давно уже превышает предложение. Особо, все же, следует отметить углерод и неорганические полимеры которые получают на его основе: алмаз и графит. Графит, известный материал, который нашел применение в различных сферах промышленности. Из графита получают карандаши, электроды, тигли, краски, смазки. Тысячи тонн графита идут на нужды атомной промышленности благодаря его свойствам замедлять нейтроны. В статье мы остановимся подробнее на самих интересных представителях неорганических полимеров - драгоценных камнях.
Самым интересным, пафосным, любимым женщинами представителем неорганических полимеров являются алмазы. Алмазы - весьма дорогостоящие минералы, которые также можно отнести к неорганическим полимерам, в природе их добывают пять крупных компаний: «DeBeers», «Alrosa», «Leviev», «BHPBilliton», «RioTinto». Именно компания «DeBeers» создала репутацию этих камней. Искусный маркетинг сводится к слогану, « - это навсегда». «DeBeers» превратила этот камень в символ любви, благополучия, власти, успеха. Интересен тот факт, что алмазы в природе встречаются достаточно часто, например сапфиры и рубины, более редкие минералы, однако ценятся они ниже алмазов. Самое интересное это ситуация, которая сложилась на рынке природных алмазов. Дело в том, что существуют технологии, позволяющие получить синтетические алмазы. В 1954 году исследователь компании «General Electric» Трейси Холл изобрел аппарат, который позволял при давлении 100000 атмосфер и температуре свыше 2500ºС из сульфида железа получать кристаллы алмаза. Качество этих камней было с ювелирной точки зрения невысоко, однако твердость была такая же, как у природного камня. Изобретение Холла было усовершенствовано и в 1960 году «General Electric» создал установку, в которой можно было получать алмазы ювелирного качества. Негативным моментом было то, что цена синтетических камней была выше природных.
На данный момент существуют две технологии синтеза алмазов. Технология HPHT (high pressure/high temperature) - синтез алмазов в сочетании высокого давления и высокой температуры. Технология CVD (chemical vapor deposition) - технология химического осаждения пара, считается более прогрессивной и позволяет выращивать алмаз, как бы моделируя природные условия его роста. Обе технологии имеют достоинства и недостатки. Кампании их использующие решают недостатки технологий, применяя свои собственные изобретения и разработки. Например, еще в 1989 году группе советских ученых из Новосибирска удалось снизить давление синтеза до 60000 атмосфер. После распада Советского Союза разработки в области синтеза алмазов не были прекращены благодаря многим заграничным инвесторам, заинтересованным в получении технологии дешевого синтеза качественных драгоценных камней. Например, «DeBeers», дабы не потерять возможность контролировать рынок финансировала работы некоторых ученых. Некоторые частные предприниматели купили в России оборудование по синтезу алмазов, например процветающая сейчас американская компания «Gemesis» начала с того, что приобрела в России в 1996 году за 60000 долларов установку для выращивания алмазов. Сейчас «Gemesis» производит и продает алмазы редких цветов: желтые и синие, причем разница в цене между этими и точно такими же природными камнями достигает 75%.

Другая крупная компания, синтезирующая алмазы - «Apollo Diamond», совершенствует технологию HPHT, проводя синтез камней в газовой атмосфере определенного состава (технология-симбиоз HPHT и CVD). Такой метод выводит «Apollo Diamond» на рынок ювелирных камней при этом, качество синтетических алмазов, выращиваемых по такой технологии очень высоко. Геммотологам все труднее отличить синтетические камни от природных. Для этого требуется комплекс анализов, на достаточно сложном и дорогостоящем оборудовании. Синтетические ювелирные алмазы «Apollo Diamond» практически невозможно отличить от природных минералов стандартными методами анализа.

Мировая добыча алмазов составляет сейчас 115 миллионов карат или 23 тонны в год. Теоретически этот гигантский рынок может упасть при этом репутация алмазов как драгоценных камней будет потеряна навсегда. Фирмы-монополисты вкладывают средства в стабилизацию ситуации и контроль рынка. Например, проводятся дорогостоящие маркетинговые компании, скупаются патенты на технологии искусственного изготовления алмазов для того чтобы эти технологии никогда не были внедрены, на фирменные бриллианты выдаются сертификаты и паспорта качества, подтверждающие их природное происхождение. Но удержит ли это прогресс технологии синтеза?

Заговорив об алмазах, мы отвлеклись на блеск драгоценных камней ювелирной промышленности, но следует указать и на промышленные камни. В данном случае большинство предприятий, занимающихся выращиванием алмазов, работает в основном для нужд электронной и оптической промышленности. Рынок промышленных камней, возможно, не так интригует как рынок ювелирных, но, тем не менее, он огромен. Например, основной доход «Apollo Diamond» - синтез тонких алмазных дисков для полупроводников. Кстати, сейчас установку для синтеза алмазов производительностью порядка 200 кг алмазов в месяц можно приобрести за 30 тысяч долларов.

Другим представителем драгоценных камней является рубин. Первый синтетический рубин появился на свет в 1902 году. Его синтезировал французский инженер Вернейль, расплавив порошок окиси алюминия и хрома, который потом кристаллизовался в шестиграммовый рубин. Такая простота синтеза позволила относительно быстро развить промышленное производство рубинов по всему миру. Камень этот очень востребован. Ежегодно в мире добывают порядка 5 тонн рубинов, а потребности рынка исчисляются сотнями тонн. Рубины нужны часовой промышленности, нужны при производстве лазеров. Предложенная Вернейлем технология впоследствии дала предпосылки для синтеза сапфиров и гранатов. Наиболее крупные производства искусственных рубинов находятся во Франции, Швейцарии, Германии, Великобритании, США. Экономика производства такова. Львиную долю себестоимости съедают энергетические расходы. При этом себестоимость синтеза килограмма рубинов 60 долларов, себестоимость килограмма сапфиров - 200 долларов. Рентабельность такого бизнеса очень высока, так как закупочная цена на кристаллы минимум в два раза выше. Здесь следует учитывать ряд факторов, таких как тот, что чем больше выращиваемый монокристалл, тем себестоимость его ниже, также при производстве из кристаллов изделий, цена их будет намного выше, нежели цена продаваемых кристаллов (например, производство и реализация стекол). Что касается оборудования, то российские установки для выращивания кристаллов стоят около 50 тысяч долларов, западные на порядок дороже, при этом срок окупаемости организуемого производства в среднем составляет два года. Как уже говорилось потребности рынка в синтетических кристаллах коллосальны. Например, очень востребованы сапфировые стекла. В мире синтезируется порядка тысячи тонн сапфиров в год. Годовые потребности производства доходят до миллиона тонн!
Изумруды синтезируют исключительно для нужд ювелирной промышленности. В отличие от остальных кристаллов получают изумруд не из расплава, а из раствора борного агидрида при температуре 400оС и давлении 500 атмосфер в гидротермальной камере. Любопытно то, что добыча природного камня составляет всего 500 килограмм в год. Синтетические изумруды в мире производят также в не таком большом количестве, как остальные кристаллы, порядка тонны в год. Дело в том, что технология синтеза изумрудов малопроизводительна, однако рентабельность такого производства на высоте. Производя около 5 килограмм кристаллов в месяц при себестоимости 200 долларов за килограмм, цена продажи изумрудов синтетических практически равна цене природных. Стоимость установки для синтеза изумрудов составляет порядка 10 тысяч долларов.
Но самым востребованным синтетическим кристаллом является кремний. Пожалуй, он даст фору любому драгоценному камню. На данный момент кремний занимает 80% всего рынка синтетических кристаллов. Рынок испытывает дефицит кремния ввиду стремительного развития высоких технологий. На данный момент рентабельность производства кремния превышает 100%. Цена килограмма кремния составляет порядка 100 долларов за килограмм, при этом себестоимость синтеза достигает 25 долларов.

Сверхчистый кремний используется в качестве полупроводника. Из его кристаллов делают солнечные фотоэлементы, имеющие высокий коэффициент полезного действия. Кремний, как и углерод, может создавать длинные молекулярные цепи из своих атомов. Таким образом получают силан и каучук, обладающий удивительными свойствами. Несколько лет назад весь мир взбудоражило сообщение об опытах американского инженера Вальтера Роббса, которому удалось изготовить пленку из силиконовой резины толщиной 0,0025 сантиметра. Этой резиной он обтянул клетку, в которой жил хомяк, и опустил хомяка в аквариум. В течение нескольких часов первый в мире хомяк-подводник дышал кислородом, растворенным в воде, и был при этом бодр, не проявлял признаков беспокойства. Оказывается, пленка играет роль мембраны, выполняя те же функции, что и жабры у рыб. Пленка пропускает внутрь молекулы газа жизни, а углекислый газ при этом через пленку вытесняется наружу. Такое открытие делает возможным организацию жизни человека под водой отодвигая в сторону баллоны с дыхательной смесью и кислородные генераторы.

Кремний выпускается трех видов: кремний металлургический (MG), кремний для электронной промышленности (EG) и кремний для производства солнечных батарей (SG). Ввиду череды энергетических кризисов усиленно внедряются альтернативные технологии получения энергии. К таковым относится преобразование солнечной энергии в электрическую, то есть, использование солярных установок, работающих на солнечных батареях. Важной составляющей солнечных батарей является кремний. В Украине на Запорожском титаномагниевом комбинате производился кремний для солнечных батарей. При советском Союзе это предприятие давало 200 тонн кремния, при общесоюзном объеме производства 300 тонн. О том, как обстоит дело с производством кремния в Запорожье сейчас автору ничего неизвестно. Стоимость организации современного производства поликристаллического кремния для нужд энергетической промышленности мощностью 1000 тон в год составляет около 56 миллионов долларов. Синтез кремния для различных нужд во всем мире по востребованности занимает первое место и еще долго будет удерживать эти позиции.

В статье мы рассмотрели только некоторых представителей неорганических полимеров. Быть может многие вещи, рассказанные выше, для кого-то были восприняты с удивлением и неподдельным интересом. Кто-то по-новому взглянул на понятие философского камня, пусть не золото, но драгоценные камни из невзрачных оксидов металлов и других непримечательных веществ получать все-таки можно. Надеемся, что статья дала повод к размышлениям и как минимум развлекла читателя интересными фактами.

В природе существуют элементоорганические, органические и неорганические полимеры. К неорганическим относят материалы, главная цепь которых неорганическая, а боковые ответвления не являются углеводородными радикалами. К формированию полимеров неорганического происхождения наиболее склонны элементы III-VI групп периодической системы химических элементов.

Классификация

Органические и неорганические полимеры активно исследуются, определяются их новые характеристики, поэтому четкой классификации этих материалов еще не выработано. Впрочем, можно выделить определенные группы полимеров.

В зависимости от структуры:

  • линейные;
  • плоские;
  • разветвленные;
  • полимерные сетки;
  • трехмерные и другие.

В зависимости от атомов главной цепи, образующих полимер:

  • гомоцепные типа (-M-)n - состоят из одного вида атомов;
  • гетероцепные типа (-M-L-)n - состоят из различных видов атомов.

В зависимости от происхождения:

  • природные;
  • искусственные.

Для отнесения к неорганическим полимерам веществ, которые в твердом состоянии представляют собой макромолекулы, необходимо также наличие в них определенной анизотропии пространственного строения и соответствующих свойств.

Основные характеристики

Более распространенными являются гетероцепные полимеры, в которых происходит чередование электроположительных и электроотрицательных атомов, например B и N, P и N, Si и O. Получить гетероцепные неорганические полимеры (НП) можно с помощью реакций поликонденсации. Поликонденсация оксоанионов ускоряется в кислой среде, а поликонденсация гидратированных катионов - в щелочной. Поликонденсация может быть проведена как в растворе, так и в при наличии высокой температуры.

Многие из гетероцепных неорганических полимеров можно получить только в условиях высокотемпературного синтеза, например, непосредственно из простых веществ. Образование карбидов, которые являются полимерными телами, происходит при взаимодействии некоторых оксидов с углеродом, а также при наличии высокой температуры.

Длинные гомоцепные цепи (со степенью полимеризации n>100) образуют карбон и p-элементы VI группы: сера, селен, теллур.

Неорганические полимеры: примеры и применение

Специфика НП заключается в образовании полимерных с регулярной трехмерной структурой макромолекул. Наличие жесткого каркаса химических связей предоставляет таким соединениям значительную твердость.

Указанное свойство позволяет использовать в качестве неорганические полимеры. Применение этих материалов нашло широчайшее применение в промышленности.

Исключительная химическая и термическая стойкость НП является также ценным свойством. Например, армирующие волокна, изготовленные из органических полимеров, устойчивы на воздухе до температуры 150-220 ˚С. Между тем борное волокно и его производные остаются устойчивыми до температуры 650 ˚С. Именно поэтому неорганические полимеры являются перспективными для создания новых химически и термостойких материалов.

Практическое значение также имеют НП, которые одновременно являются и приближающимися по свойствам к органическим, и сохраняющими свои специфические свойства. К таким относят фосфаты, полифосфазены, силикаты, полимерные с различными боковыми группами.

Полимеры углерода

Задание: «Приведите примеры неорганических полимеров», - часто встречается в учебниках по химии. Целесообразно его выполнять с упоминанием самых выдающихся НП - производных углерода. Ведь сюда входят материалы с уникальными характеристиками: алмазы, графит и карбин.

Карбин - искусственно созданный, малоизученный линейный полимер с непревзойденными показателями прочности, не уступающими, а согласно ряду исследований и превосходящими графен. Впрочем, карбин - вещество таинственное. Ведь не все ученые признают его существование как самостоятельного материала.

Внешне выглядит как металло-кристаллический черный порошок. Имеет полупроводниковые свойства. Электропроводность карбина значительно увеличивается под действием света. Он не теряет этих свойств даже при температуре до 5000 ˚С, что намного выше, чем для других материалов подобного назначения. Получен материал в 60-х В.В. Коршаком, А.М. Сладковым, В.И. Касаточкиным и Ю.П. Кудрявцевым путем каталитического окисления ацетилена. Самое сложное было определить вид связей между атомами углерода. Впоследствии было получено вещество только с двойными связями между атомами углерода в Институте элементоорганических соединений АН СССР. Новое соединение назвали поликумулен.

Графит - в этом упорядоченность распространяется только в плоскости. Его слои соединены не химическими связями, а слабыми межмолекулярными взаимодействиями, поэтому он проводит тепло и ток и не пропускает свет. Графит и его производные - достаточно распространенные неорганические полимеры. Примеры их использования: от карандашей до атомной промышленности. Окисляя графит, можно получить промежуточные продукты окисления.

Алмаз - его свойства принципиально другие. Алмаз является пространственным (трехмерным) полимером. Все атомы углерода скрепляются между собой прочными ковалентными связями. Потому этот полимер является чрезвычайно прочным. Алмаз не проводит ток и тепло, имеет прозрачную структуру.

Полимеры бора

Если вас спросят о том, какие неорганические полимеры вам известны, смело отвечайте - полимеры бора (-BR-). Это достаточно обширный класс НП, широко применяемый в промышленности и науке.

Карбид бора - его формула правильнее выглядит так (B12C3)n. Его элементарная ячейка - ромбоэдрическая. Каркас образуют двенадцать ковалентно связанных атомов бора. А в середине его - линейная группа из трех ковалентно связанных атомов углерода. В результате образуется очень прочная конструкция.

Бориды - их кристаллы образованы подобно вышеописанному карбиду. Наиболее стойкий из них HfB2, который плавится только при температуре 3250 °C. Наибольшей химической стойкостью отмечается TaB2 - на него не действуют ни кислоты, ни их смеси.

Нитрид бора - его часто называют белым тальком за сходство. Это сходство действительно лишь внешнее. Структурно он аналогичен графиту. Получают его, нагревая бор или его оксид в атмосфере аммиака.

Боразон

Эльбор, боразон, киборит, кингсонгит, кубонит - сверхтвердые неорганические полимеры. Примеры их применения: изготовление абразивных материалов, обработка металлов. Это химически инертные вещества на основе бора. По твердости ближе прочих материалов к алмазам. В частности, боразон оставляет царапины на алмазе, последний тоже оставляет царапины на кристаллах боразона.

Впрочем, эти НП имеют несколько преимуществ перед натуральными алмазами: у них большая термостойкость (выдерживают температуру до 2000 °C, алмаз же разрушается при показателях в пределах 700-800 °C) и высокая устойчивость к механическим нагрузкам (они не такие хрупкие). Боразон был получен при температуре 1350 °C и давлении 62000 атмосфер Робертом Венторфом в 1957 году. Аналогичные материалы ленинградскими учеными были получены в 1963 году.

Неорганические полимеры серы

Гомополимер - эта модификация серы имеет линейную молекулу. Вещество не является устойчивым, при колебаниях температуры распадается на октаэдрические циклы. Образуется в случае резкого охлаждения расплава серы.

Полимерная модификация сернистого ангидрида. Очень похожа на асбест, имеет волокнистую структуру.

Полимеры селена

Серый селен - полимер со спиралевидными линейными макромолекулами, вложенными параллельно. В цепях атомы селена связаны ковалентно, а макромолекулы связаны молекулярными связями. Даже расплавленный или растворенный селен не распадается на отдельные атомы.

Красный или аморфный селен тоже полимер цепной, но малоупорядоченной структуры. В температурном промежутке 70-90 ˚С он приобретает каучукоподобные свойства, переходя в высокоэластичное состояние, чем напоминает органические полимеры.

Карбид селена, или горный хрусталь. Термически и химически устойчивый, достаточно прочный пространственный кристалл. Пьезоэлектрик и полупроводник. В искусственных условиях его получили при реакции и угля в электропечи при температуре около 2000 °C.

Прочие полимеры селена:

  • Моноклинный селен - более упорядоченный, чем аморфный красный, но уступает серому.
  • Диоксид селена, или (SiO2)n - представляет собой трехмерный сетчатый полимер.
  • Асбест - полимер оксида селена волокнистой структуры.

Полимеры фосфора

Существует много модификаций фосфора: белый, красный, черный, коричневый, фиолетовый. Красный - НП мелкокристаллического строения. Получается нагревом белого фосфора без доступа воздуха при температуре 2500 ˚С. Черный фосфор получен П. Бриджменом при следующих условиях: давление 200000 атмосфер при температуре 200 °C.

Фосфорнитридхлориды - соединения фосфора с азотом и хлором. Свойства этих веществ меняются с ростом массы. А именно уменьшается их растворимость в органических веществах. Когда молекулярная масса полимера достигает нескольких тысяч единиц, образуется каучукоподобное вещество. Это единственный достаточно термостойкий безуглеродный каучук. Он разрушается только при температуре свыше 350 °C.

Вывод

Неорганические полимеры в большинстве своем - вещества с уникальными характеристиками. Их применяют на производстве, в строительстве, для разработки инновационных и даже революционных материалов. По мере изучения свойств известных НП и создания новых, сфера их применения расширяется.

Неорганические полимеры

  • Неорганические полимеры - полимеры, не содержащие в повторяющемся звене связей C-C, но способные содержать органический радикал как боковые заместители.


Классификация полимеров

1. Гомоцепные полимеры

Углерод и халькогены (пластическая модификация серы).

Минеральное волокно асбест


Характеристика асбеста

  • Асбест (греч. ἄσβεστος, - неразрушимый) - собирательное название группы тонковолокнистых минералов из класса силикатов. Состоят из тончайших гибких волокон.

  • Ca2Mg5Si8O22(OH)2 -формула

  • Два основных типа асбестов - серпентин-асбест (хризотил-асбест, или белый асбест) и амфибол-асбесты


Химический состав

  • По химическому составу асбесты представляют собой водные силикаты магния, железа, отчасти кальция и натрия. К классу хризотил-асбестов относятся следующие вещества:

  • Mg6(OH)8

  • 2Na2O*6(Fe,Mg)O*2Fe2O3*17SiO2*3Н2О


Безопасность

  • Асбест практически инертен и не растворяется в жидких средах организма, но обладает заметным канцерогенным эффектом. У людей, занятых на добыче и переработке асбеста, вероятность возникновения опухолей в несколько раз больше, чем у основного населения. Чаще всего вызывает рак лёгких, опухоли брюшины, желудка и матки.

  • На основе результатов всесторонних научных исследований канцерогенных веществ, Международное агентство по изучению рака отнесло асбест к первой, наиболее опасной категории списка канцерогенов.


Применение асбеста

  • Производства огнеупорных тканей (в том числе для пошива костюмов для пожарных).

  • В строительстве (в составе асбесто-цементных смесей для производства труб и шифера).

  • В местах, где требуется снизить влияние кислот.


Роль неорганических полимеров в формировании литосферы


Литосфера

  • Литосфера - твёрдая оболочка Земли. Состоит из земной коры и верхней части мантии, до астеносферы.

  • Литосфера под океанами и континентами значительно различается. Литосфера под континентами состоит из осадочного, гранитного и базальтового слоев общей мощностью до 80 км. Литосфера под океанами претерпела множество этапов частичного плавления в результате образования океанической коры, она сильно обеднена легкоплавкими редкими элементами, в основном состоит из дунитов и гарцбургитов, её толщина составляет 5-10 км, а гранитный слой полностью отсутствует.



Химический состав

    Основными компонентами земной коры и поверхностного грунта Луны являются оксиды Si и Al и их производные. Такой вывод можно сделать исходя из существующих представлений о распространенности базальтовых пород. Первичным веществом земной коры является магма - текучая форма горной породы, содержащая наряду с расплавленными минералами значительное количество газов. При выходе на поверхность магма образует лаву, последняя застывая образует базальтовые породы. Основной химический компонент лавы - кремнезем, или диоксид кремния, SiO2 . Однако при высокой температуре атомы кремния могут легко замещаться на другие атомы, например алюминия, образуя различного рода алюмосиликаты. В целом литосфера представляет собой силикатную матрицу с включением других веществ, образовавшихся в результате физических и химических процессов, протекавших в прошлом в условиях высокой температуры и давления. Как сама силикатная матрица, так и включения в нее содержат по преимуществу вещества в полимерной форме, то есть гетероцепные неорганические полимеры.


Гранит

  • Гранит - кислая магматическая интрузивная горная порода. Состоит из кварца, плагиоклаза, калиевого полевого шпата и слюд - биотита и мусковита. Граниты очень широко распространены в континентальной земной коре.

  • Наибольшие объёмы гранитов образуются в зонах коллизии, где сталкиваются две континентальные плиты и происходит утолщение континентальной коры. По мнению некоторых исследователей, в утолщённой коллизионной коре образуется целый слой гранитного расплава на уровне средней коры (глубина 10-20 км). Кроме того, гранитный магматизм характерен для активных континентальных окраин,и в меньшей степени, для островных дуг.

  • Минеральный состав гранита:

  • полевые шпаты - 60-65 %;

  • кварц - 25-30 %;

  • темноцветные минералы (биотит, редко роговая обманка) - 5-10 %.


Базальт

  • Минеральный состав . Основная масса сложена микролитами плагиоклазов, клинопироксена, магнетита или титаномагнетита, а также вулканическим стеклом. Наиболее распространенным акцессорным минералом является апатит.

  • Химический состав . Содержание кремнезёма (SiO2) колеблется от 45 до 52-53 %, сумма щелочных оксидов Na2O+K2O до 5 %,в щелочных базальтах до 7 %. Прочие оксиды могут распределяться так: TiO2=1.8-2.3 %; Al2O3=14.5-17.9 %; Fe2O3=2.8-5.1 %; FeO=7.3-8.1 %; MnO=0.1-0.2 %; MgO=7.1-9.3 %; CaO=9.1-10.1 %; P2O5=0.2-0.5 %;


Кварц (Оксид кремния(IV), кремнезем)


Формула: SiO2

  • Формула: SiO2

  • Цвет: бесцветный, белый, фиолетовый, серый, жёлтый, коричневый

  • Цвет черты: белая

  • Блеск: стеклянный, в сплошных массах иногда жирный

  • Плотность: 2,6-2,65 г/см³

  • Твердость: 7





Химические свойства





Корунд (Al2O3 , глинозем)


Формула: Al2O3

  • Формула: Al2O3

  • Цвет: голубой, красный, жёлтый, коричневый, серый

  • Цвет черты: белая

  • Блеск: стеклянный

  • Плотность: 3,9-4,1 г/см³

  • Твердость: 9







Теллур


Теллур цепочечного строения

  • Кристаллы - гексагональные, атомы в них образуют спиральные цепи и связаны ковалентными связями с ближайшими соседями. Поэтому элементарный теллур можно считать неорганическим полимером. Кристаллическому теллуру свойствен металлический блеск, хотя по комплексу химических свойств его скорее можно отнести к неметаллам.


Применение теллура

  • Производстве полупроводниковых материалов

  • Производство резины

  • Высокотемпературная сверхпроводимость


Селен


Селен цепочечного строения

Черный Серый Красный

Серый селен

    Серый селен (иногда его называют металлическим) имеет кристаллы гексагональной системы. Его элементарную решетку можно представить как несколько деформированный куб. Все его атомы как бы нанизаны на спиралевидные цепочки, и расстояния между соседними атомами в одной цепи примерно в полтора раза меньше расстояния между цепями. Поэтому элементарные кубики искажены.


Применение серого селена

  • Обычный серый селен обладает полупроводниковыми свойствами, это полупроводник p-типа, т.е. проводимость в нем создается главным образом не электронами, а «дырками».

  • Другое практически очень важное свойство селена-полупроводника – его способность резко увеличивать электропроводность под действием света. На этом свойстве основано действие селеновых фотоэлементов и многих других приборов.


Красный селен

  • Красный селен представляет собой менее устойчивую аморфную модификацию.

  • Полимер цепного строения, но малоупорядоченной структуры. В температурном интервале 70-90°С он приобретает каучукоподобные свойства, переходя в высокоэластичное состояние.

  • Не имеет определенной температуры плавления.

  • Красный аморфный селен при повышении температуры (- 55) начинает переходить в серый гексагональный селен


Сера



Особенности строения

  • Пластическая модификация серы образована спиральными цепями из атомов серы с левой и правой осями вращения. Эти цепочки скручены и вытянуты в одном направлении.

  • Пластическая сера неустойчива и самопроизвольно превращаются в ромбическую.



Получение пластической серы


Применение серы

  • Получение серной кислоты;

  • В бумажной промышленности;

  • в сельском хозяйстве (для борьбы с болезнями растений, главным образом винограда и хлопчатника);

  • в производстве красителей и светящихся составов;

  • для получения черного (охотничьего) пороха;

  • в производстве спичек;

  • мази и присыпки для лечения некоторых кожных заболеваний.


Аллотропные модификации углерода


Сравнительная характеристика


Применение аллотропных модификаций углерода

  • Алмаз – в промышленности: его используют для изготовления ножей, свёрл, резцов; в ювелирном деле. Перспектива – развитие микроэлектроники на алмазных подложках.

  • Графит – для изготовления плавильных тиглей, электродов; наполнитель пластмасс; замедлитель нейтронов в ядерных реакторах; компонент состава для изготовления стержней для чёрных графитовых карандашей (в смеси с каолином)

Полимеры - это высокомолекулярные соединения, состоящие из множества повторяющихся различных или одинаковых по строению атомных групп - звеньев. Эти звенья соединяются между собой координационными или химическими связями в разветвленные или длинные линейные цепи и в пространственные трехмерные структуры.

Полимеры бывают:

  • синтетическими,
  • искусственными,
  • органическими.

Органические полимеры в природе образуются в животных и растительных организмах. Самые важные из них - это белки, полисахариды, нуклеиновые кислоты, каучук и другие природные соединения.

Человек давно и широко применяет органические полимеры в своей повседневной жизни. Кожа, шерсть, хлопок, шелк, меха - все это используется для производства одежды. Известь, цемент, глина, органическое стекло (плексиглас) - в строительстве.

Органические полимеры присутствуют и в самом человеке. Например, нуклеиновые кислоты (их называют еще ДНК), а также рибонуклеиновые кислоты (РНК).

Свойства органических полимеров

У всех органических полимеров есть особые механические свойства:

  • малая хрупкость кристаллических и стеклообразных полимеров (органическое стекло, пластмассы);
  • эластичность, то есть высокая обратимая деформация при небольших нагрузках (каучук);
  • ориентирование макромолекул под действием механического направленного поля (производство пленок и волокон);
  • при малой концентрации большая вязкость растворов (полимеры вначале набухают, а потом растворяются);
  • под действием небольшого количества реагента способны быстро изменить свои физико-механические характеристики (например, дубление кожи, вулканизация каучука).

Таблица 1. Характеристики горения некоторых полимеров.

Полимеры Поведение материала при внесении в пламя и горючесть Характер пламени Запах
Полиэтилен (ПЭ) Плавится течет по каплям, горит хорошо, продолжает гореть при удалении из пламени. Светящееся, вначале голубоватое, потом желтое Горящего парафина
Полипропилен (ПП) То же То же То же
Поликарбонат (ПК) То же Коптящее
Полиамид (ПА) Горит, течет нитью Синеватое снизу, с желтыми краями Паленых волос илигорелых растений
Полиуретан (ПУ) Горит, течет по каплям Желтое, синеватое снизу, светящееся, серый дым Резкий, неприятный
Полистирол (ПС) Самовоспламеняется, плавится Ярко-желтое, светящееся, коптящее Сладковатый цветочный,с оттенком запаха стирола
Полиэтилентерефталат(ПЭТФ) Горит, капает Желто-оранжевое, коптящее Сладкий, ароматный
Эпоксидная смола (ЭД) Горит хорошо, продолжает гореть при удалении из пламени Желтое коптящее Специфический свежий(в самом начале нагревания)
Полиэфирная смола (ПН) Горит, обугливается Светящееся, коптящее, желтое Сладковатый
Поливинилхлорид жесткий (ПВХ) Горит с трудом и разбрасыванием, при удалении из пламени гаснет, размягчается Ярко-зеленое Резкий, хлористого водорода
ПВХ пластифицированный Горит с трудом и при удалении из пламени, с разбрасыванием Ярко-зеленое Резкий, хлористого водорода
Фенолоформальдегидная смола (ФФС) Загорается с трудом, горит плохо, сохраняет форму Желтое Фенола, формальдегида

Таблица 2. Растворимость полимерных материалов.

Таблица 3. Окраска полимеров по реакции Либермана - Шторха - Моравского.

Статьи по теме

Среди большинства материалов наиболее популярными и широко известными являются полимерные композиционные материалы (ПКМ). Они активно применяются практически в каждой сфере человеческой деятельности. Именно данные материалы являются основным компонентом для изготовления различных изделий, применяемых с абсолютно разными целями, начиная от удочек и корпусов лодок, и заканчивая баллонами для хранения и транспортировки горючих веществ, а также лопастей винтов вертолетов. Такая широкая популярность ПКМ связана с возможностью решения технологических задач любой сложности, связанных с получением композитов, имеющих определенные свойства, благодаря развитию полимерной химии и методов изучения структуры и морфологии полимерных матриц, которые используются при производстве ПКМ.



Понравилась статья? Поделитесь с друзьями!