Независимые случайные величины. Операции над случайными величинами

Условные законы распределения. Регрессия.

Определение. Условным законом распределения одной из одномерных составляющих двумерной случайной величины (X, Y) называется ее закон распределения, вычисленный при условии, что другая составляющая приняла определенное значение (или попала в какой-то интервал). В предыдущей лекции было рассмотрено нахождение условных распределений для дискретных случайных величин. Там же приведены формулы условных вероятностей:

В случае непрерывных случайных величин необходимо определить плотности вероятности условных распределений j у (х) и j Х (y). С этой целью в приведенных формулах заменим вероятности событий их «элементами вероятности»,!

после сокращения на dx и dy получим:

т.е. условная плотность вероятности одной из одномерных составляющих двумерной случайной величины равна отношению ее совместной плотности к плотности вероятности другой составляющей. Эти соотношения записанные в виде

называются теоремой (правилом) умножения плотностей распределений.

Условные плотности j у (х) и j Х (y). обладают всеми свойствами «безусловной» плотности.

При изучении двумерных случайных величин рассматриваются числовые характеристики одномерных составляющих X и Y - математические ожидания и дисперсии. Для непрерывной случайной величины (X, Y) они определяются по формулам:

Наряду с ними рассматриваются также числовые характеристики условных распределений: условные математические ожидания M х (Y) и М у (Х) и условные дисперсии D х (Y) и D Y (X). Эти характеристики находятся по обычным формулам математически ожидания и дисперсии, в которых вместо вероятностей событий или плотностей вероятности используются условные вероятности или условные плотности вероятности.

Условное математическое ожидание случайной величины Y при X = х, т.е. M x (Y), есть функция от х, называемая функцией регрессии или просто регрессией Y по Х. Аналогично М Y (Х) называется функцией регрессии или просто регрессией X по Y. Графики этих функций называются соответственно линиями регрессии (или кривыми регрессии) Y по X или X по У.

Зависимые и независимые случайные величины.

Определение. Случайные величины X и Y называются независимыми, если их совместная функция распределения F(x,y) представляется в виде произведения функций распределений F 1 (x) и F 2 (y) этих случайных величин, т.е.

В противном случае, случайные величины Х и Y называются зависимыми.

Дифференцируя дважды равенство по аргументам х и у, получим

т.е. для независимых непрерывных случайных величин X и Y их совместная плотность j(х,у) равна произведению плотностей вероятности j 1 (х) и j 2 (у) этих случайных величин.

До сих пор мы сталкивались с понятием функциональной зависимости между переменными X и Y, когда каждому значению х одной переменной соответствовало строго определенное значение у другой. Например, зависимость между двумя случайными величинами - числом вышедших из строя единиц оборудования за определенный период времени и их стоимостью - функциональная.

В общем случае, сталкиваются с зависимостью другого типа, менее жесткой, чем функциональная.

Определение. Зависимость между двумя случайными величинами называется вероятностной (стохастической или статистической), если каждому значению одной из них соответствует определенное (условное) распределение другой.

В случае вероятностной (стохастической) зависимости нельзя, зная значение одной из них, точно определить значение другой, а можно указать лишь распределение другой величины. Например, зависимости между числом отказов оборудования и затрат на его профилактический ремонт, весом и ростом человека, затратами времени школьника на просмотр телевизионных передач и чтение книг и т.п. являются вероятностными (стохастическими).

На рис. 5.10 приведены примеры зависимых и независимых случайных величин X и Y.

Две случайные величины $X$ и $Y$ называются независимыми, если закон распределения одной случайной величины не изменяется от того, какие возможные значения приняла другая случайная величина. То есть, для любых $x$ и $y$ события $X=x$ и $Y=y$ являются независимыми. Поскольку события $X=x$ и $Y=y$ независимые, то по теореме произведения вероятностей независимых событий $P\left(\left(X=x\right)\left(Y=y\right)\right)=P\left(X=x\right)P\left(Y=y\right)$.

Пример 1 . Пусть случайная величина $X$ выражает денежный выигрыш по билетам одной лотереи «Русское лото», а случайная величина $Y$ выражает денежный выигрыш по билетам другой лотереи «Золотой ключ». Очевидно, что случайные величины $X,\ Y$ будут независимыми, так как выигрыш по билетам одной лотереи не зависит от закона распределения выигрышей по билетам другой лотереи. В том случае, когда случайные величины $X,\ Y$ выражали бы выигрыш по одной и той же лотереи, то, очевидно, данные случайные величины были бы зависимыми.

Пример 2 . Двое рабочих трудятся в разных цехах и изготавливают различные изделия, несвязанные между собой технологиями изготовления и используемым сырьем. Закон распределения числа бракованных изделий, изготовленных первым рабочим за смену, имеет следующий вид:

$\begin{array}{|c|c|}
\hline
Число \ бракованных \ изделий \ x & 0 & 1 \\
\hline
Вероятность & 0,8 & 0,2 \\
\hline
\end{array}$

Число бракованных изделий, изготовленных вторым рабочим за смену, подчиняется следующими закону распределения.

$\begin{array}{|c|c|}
\hline
Число \ бракованных \ изделий \ y & 0 & 1 \\
\hline
Вероятность & 0,7 & 0,3 \\
\hline
\end{array}$

Найдем закон распределения числа бракованных изделий, изготовленных двумя рабочими за смену.

Пусть случайная величина $X$ - число бракованных изделий, изготовленных первым рабочим за смену, а $Y$ - число бракованных изделий, изготовленных вторым рабочим за смену. По условию, случайные величины $X,\ Y$ независимы.

Число бракованных изделий, изготовленных двумя рабочими за смену, есть случайная величина $X+Y$. Ее возможные значения равны $0,\ 1$ и $2$. Найдем вероятности, с которыми случайная величина $X+Y$ принимает свои значения.

$P\left(X+Y=0\right)=P\left(X=0,\ Y=0\right)=P\left(X=0\right)P\left(Y=0\right)=0,8\cdot 0,7=0,56.$

$P\left(X+Y=1\right)=P\left(X=0,\ Y=1\ или\ X=1,\ Y=0\right)=P\left(X=0\right)P\left(Y=1\right)+P\left(X=1\right)P\left(Y=0\right)=0,8\cdot 0,3+0,2\cdot 0,7=0,38.$

$P\left(X+Y=2\right)=P\left(X=1,\ Y=1\right)=P\left(X=1\right)P\left(Y=1\right)=0,2\cdot 0,3=0,06.$

Тогда закон распределения числа бракованных изделий, изготовленных двумя рабочими за смену:

$\begin{array}{|c|c|}
\hline
Число \ бракованных \ изделий & 0 & 1 & 2 \\
\hline
Вероятность & 0,56 & 0,38 & 0,06 \\
\hline
\end{array}$

В предыдущем примере мы выполняли операцию над случайными величинами $X,\ Y$, а именно находили их сумму $X+Y$. Дадим теперь более строгое определение операций (сложение, разность, умножение) над случайными величинами и приведем примеры решений.

Определение 1 . Произведением $kX$ случайной величины $X$ на постоянную величину $k$ называется случайная величина, которая принимает значения $kx_i$ с теми же вероятностями $p_i$ $\left(i=1,\ 2,\ \dots ,\ n\right)$.

Определение 2 . Суммой (разностью или произведением) случайных величин $X$ и $Y$ называется случайная величина, которая принимает все возможные значения вида $x_i+y_j$ ($x_i-y_i$ или $x_i\cdot y_i$), где $i=1,\ 2,\dots ,\ n$, с вероятностями $p_{ij}$ того, что случайная величина $X$ примет значение $x_i$, а $Y$ значение $y_j$:

$$p_{ij}=P\left[\left(X=x_i\right)\left(Y=y_j\right)\right].$$

Так как случайные величины $X,\ Y$ независимые, то по теореме умножения вероятностей для независимых событий: $p_{ij}=P\left(X=x_i\right)\cdot P\left(Y=y_j\right)=p_i\cdot p_j$.

Пример 3 . Независимые случайные величины $X,\ Y$ заданы своими законами распределения вероятностей.

$\begin{array}{|c|c|}
\hline
x_i & -8 & 2 & 3 \\
\hline
p_i & 0,4 & 0,1 & 0,5 \\
\hline
\end{array}$

$\begin{array}{|c|c|}
\hline
y_i & 2 & 8 \\
\hline
p_i & 0,3 & 0,7 \\
\hline
\end{array}$

Составим закон распределения случайной величины $Z=2X+Y$. Суммой случайных величин $X$ и $Y$, то есть $X+Y$, называется случайная величина, которая принимает все возможные значения вида $x_i+y_j$, где $i=1,\ 2,\dots ,\ n$, с вероятностями $p_{ij}$ того, что случайная величина $X$ примет значение $x_i$, а $Y$ значение $y_j$: $p_{ij}=P\left[\left(X=x_i\right)\left(Y=y_j\right)\right]$. Так как случайные величины $X,\ Y$ независимые, то по теореме умножения вероятностей для независимых событий: $p_{ij}=P\left(X=x_i\right)\cdot P\left(Y=y_j\right)=p_i\cdot p_j$.

Итак, имеет законы распределения случайных величины $2X$ и $Y$ соответственно.

$\begin{array}{|c|c|}
\hline
x_i & -16 & 4 & 6 \\
\hline
p_i & 0,4 & 0,1 & 0,5 \\
\hline
\end{array}$

$\begin{array}{|c|c|}
\hline
y_i & 2 & 8 \\
\hline
p_i & 0,3 & 0,7 \\
\hline
\end{array}$

Для удобства нахождения всех значений суммы $Z=2X+Y$ и их вероятностей составим вспомогательную таблицу, в каждой клетке которой поместим в левом углу значения суммы $Z=2X+Y$, а в правом углу - вероятности этих значений, полученные в результате перемножения вероятностей соответствующих значений случайных величин $2X$ и $Y$.

В результате получим распределение $Z=2X+Y$:

$\begin{array}{|c|c|}
\hline
z_i & -14 & -8 & 6 & 12 & 10 & 16 \\
\hline
p_i & 0,12 & 0,28 & 0,03 & 0,07 & 0,15 & 0,35 \\
\hline
\end{array}$



Понравилась статья? Поделитесь с друзьями!