О чем говорит значения константы равновесия. Учебная книга по химии

Рассмотрим обратимую химическую реакцию общего вида, в которой все вещества находятся в одном агрегатном состоянии, например, жидком:

аA + вB D сC + d D,

где A и B - исходные вещества прямой реакции; C и D - продукты прямой реакции; а, в, с, и d - стехиометрические коэффициенты.

В начальный момент времени, когда концентрация веществ A и B наибольшая, скорость прямой реакции также будет наибольшей и по закону действующих масс равна

u пр = k 1 C А а C В в (6.1)

где k 1 - константа скорости прямой реакции.

С течением времени концентрация веществ A и B уменьшается, а, следовательно, уменьшается и скорость прямой реакции.

В начальный момент времени концентрация веществ C и D равна нулю, а, следовательно, и скорость обратной реакции равна нулю, с течением времени концентрация веществ C и D возрастает, а, следовательно, возрастает и скорость обратной реакции и она будет равна

u обр = k 2 C C с C D d (6.2)

где k 2 - константа скорости обратной реакции.

В момент достижения равновесия, концентрации принимают значение равновесных, а скорости равны между собой u пр = u обр, следовательно

k 1 C А а C В в = k 2 C C с C D d (6.3)

Перенесем константы скорости в одну сторону, а концентрации в другую:

Отношение двух постоянных величин есть величина постоянная, и называется она константой химического равновесия:

Константа равновесия показывает во сколько раз скорость прямой реакции больше или меньше скорости обратной реакции.

Константа равновесия - это отношение произведения равновесных концентраций продуктов реакции, взятых в степени их стехиометрических коэффициентов к произведению равновесных концентраций исходных веществ, взятых в степени их стехиометрических коэффициентов.

Величина константы равновесия зависит от природы реагирующих веществ и температуры, и не зависит от концентрации в момент равновесия, поскольку их отношение - всегда величина постоянная, численно равная константе равновесия. Если гомогенная реакция идет между веществами в растворе, то константа равновесия обозначается K С, а если между газами, то K Р.

где Р С, Р D , Р А и Р В - равновесные давления участников реакции.

Используя уравнение Клапейрона-Менделеева , можно определить связь между K Р и K С

Перенесем объем в правую сторону

р = RT, т. е. р = CRT (6.9)

Подставим уравнение (6.9) в (6.7), для каждого реагента и упростим

, (6.10)

где Dn - изменение числа молей газообразных участников реакции

Dn = (с + d ) - (а + в) (6.11)

Следовательно,

K Р = К С (RT) D n (6.12)

Из уравнения (6.12) видно, что K Р = К С, если не меняется количество молей газообразных участников реакции (Dn = 0) или газы в системе отсутствуют.


Необходимо отметить, что в случае гетерогенного процесса концентрацию твердой или жидкой фазы в системе не учитывают.

Например, константа равновесия для реакции вида 2А + 3В = С + 4D, при условии, что все вещества газы и имеет вид

а если D - твердое, то

Константа равновесия имеет большое теоретическое и практическое значение. Численное значение константы равновесия позволяет судить о практической возможности и глубине протекания химической реакции.

Если K > 1, то данная реакция протекает со значительным выходом продуктов реакции; если K > 10 4 , то реакция необратима; если K < 1, то такая реакция нетехнологична; если K < 10 -4 , то такая реакция невозможна.

Зная константу равновесия, можно определить состав реакционной смеси в момент равновесия и рассчитать константу выхода продуктов реакции. Константу равновесия можно определить, используя экспериментальные методы, анализируя количественный состав реакционной смеси в момент равновесия, или применяя теоретические расчеты. Для многих реакций при стандартных условиях константа равновесия - это табличная величина.

6.3. Факторы, влияющие на химическое равновесие. Принцип Ле-Шателье

При внешнем воздействии на систему происходит смещение химического равновесия, т. е. изменяются равновесные концентрации исходных веществ и продуктов реакции. Если в результате внешнего воздействия увеличиваются равновесные концентрации продуктов реакции, то говорят о смещении равновесия вправо (в сторону прямой реакции). Если вследствие внешнего воздействия увеличиваются равновесные концентрации исходных веществ, то говорят о смещении равновесия влево (в сторону обратной реакции).

Влияние различных факторов на смещение химического равновесия отражает принцип Ле-Шателье (1884): если на систему, находящуюся в устойчивом химическом равновесии воздействовать извне, изменяя температуру, давление или концентрацию, то химическое равновесие смещается в том направлении, при котором эффект произведенного воздействия уменьшается.

Необходимо отметить, что катализатор не смещает химическое равновесие, а только ускоряет его наступление.

Рассмотрим влияние каждого фактора на смещение химического равновесия для реакции общего вида:

аA + вB = сC + d D ± Q.

Влияние изменения концентрации. Согласно принципу Ле-Шателье, увеличение концентрации одного из компонентов равновесной химической реакции приводит к сдвигу равновесия в сторону усиления той реакции, при которой происходит химическая переработка этого компонента. И наоборот, уменьшение концентрации одного из компонентов приводит к сдвигу равновесия в сторону образования этого компонента.

Таким образом, увеличение концентрации вещества А или В смещает равновесие в прямом направлении; увеличение концентрации вещества С или D смещает равновесие в обратном направлении; уменьшение концентрации А или В смещает равновесие в обратном направлении; уменьшение концентрации вещества С или D смещает равновесие в прямом направлении. (Схематично можно записать: -C А или C В ®; -C С или C D ¬; ¯ C А или C В ¬; ¯ C С или C D ®).

Влияние температуры. Общее правило, определяющее влияние температуры на равновесие, имеет следующую формулировку: повышение температуры способствует сдвигу равновесия в сторону эндотермической реакции (- Q); понижение температуры способствует сдвигу равновесия в сторону экзотермической реакции (+ Q).

Реакции, протекающие без тепловых эффектов, не смещают химического равновесия при изменении температуры. Повышение температуры в этом случае приводит лишь к более быстрому установлению равновесия, которое было бы достигнуто в данной системе и без нагревания, но за более длительное время.

Таким образом, в экзотермической реакции (+ Q) увеличение температуры приводит к сдвигу равновесия в обратном направлении и, наоборот, в эндотермической реакции (- Q) увеличение температуры приводит к сдвигу в прямом направлении, а уменьшение температуры - в обратном направлении. (Схематично можно записать: при +Q -Т ¬; ¯Т ®; при -Q -Т ®; ¯Т ¬).

Влияние давления. Как показывает опыт, давление оказывает заметное влияние на смещение только тех равновесных реакций, в которых участвуют газообразные вещества, и при этом изменение числа молей газообразных участников реакции (Dn) не равно нулю. При увеличении давления равновесие смещается в сторону той реакции, которая сопровождается образованием меньшего количества молей газообразных веществ, а при понижении давления - в сторону образования большего количества молей газообразных веществ.

Таким образом, если Dn = 0, то давление не влияет на смещение химического равновесия; если Dn < 0, то увеличение давления смещает равновесие в прямом направлении, уменьшение давления в сторону обратной реакции; если Dn > 0, то увеличение давления смещает равновесие в обратном направлении, а уменьшение давления - в сторону прямой реакции. (Схематично можно записать: при Dn = 0 Р не влияет; при Dn 0 -Р ¬, ¯Р ®). Принцип Ле-Шателье применим как к гомогенным, так и к гетерогенным системам и дает качественную характеристику сдвига равновесия.

Вернемся к процессу производства аммиака, выражающемуся уравнением:

N 2 (г) + 3H 2 (г) → 2NH 3 (г)

Находясь в закрытом объеме, азот и водород соединяются и образуют аммиак. До каких пор будет протекать этот процесс? Логично предположить, что до тех пор, пока какой-либо из реагентов не закончится. Однако, в реальной жизни это не совсем так. Дело в том, что через некоторое время после того, как началась реакция, образовавшийся аммиак станет разлагаться на азот и водород, т.е., начнется обратная реакция:

2NH 3 (г) → N 2 (г) + 3H 2 (г)

Фактически в закрытом объеме будут протекать сразу две, прямо противоположные друг другу, реакции. Поэтому, данный процесс записывается таким уравнением:

N 2 (г) + 3H 2 (г) ↔ 2NH 3 (г)

Двойная стрелка указывает на то, что реакция идет в двух направлениях. Реакция соединения азота и водорода называется прямой реакцией . Реакция разложения аммиака - обратной реакцией .

В самом начале процесса скорость прямой реакции очень велика. Но с течением времени концентрации реагентов уменьшаются, а количество аммиака возрастает - как следствие скорость прямой реакции уменьшается, а скорость обратной - возрастает. Наступает время, когда скорости прямой и обратной реакций сравниваются - наступает химическое равновесие или динамическое равновесие. При равновесии протекает как прямая, так и обратная реакции, но их скорости одинаковы, поэтому изменений не заметно.

Константа равновесия

Разные реакции протекают по-разному. В одних реакциях до момента наступления равновесия образуется довольно большое количество продуктов реакции; в других - гораздо меньше. Т.о., можно сказать, что конкретное уравнение имеет свою константу равновесия. Зная константу равновесия реакции, можно определить относительное количество реагентов и продуктов реакции, при котором наступает химическое равновесие.

Пусть некоторая реакция описывается уравнением: aA + bB = cC + dD

  • a, b, c, d - коэффициенты уравнения реакции;
  • A, B, C, D - химические формулы веществ.

Константа равновесия:

[C] c [D] d K = ———————— [A] a [B] b

Квадратные скобки показывают, что в формуле участвуют молярные концентрации веществ.

О чем говорит константа равновесия?

Для синтеза аммиака при комнатной температуре К=3,5·10 8 . Это довольно большое число, свидетельствующее о том, что химическое равновесие наступит когда концентрация аммиака будет намного больше оставшихся исходных веществ.

При реальном производстве аммиака задача технолога состоит в том, чтобы получить как можно бОльший коэффициент равновесия, т.е., чтобы прямая реакция прошла до конца. Каким образом этого можно добиться?

Принцип Ле Шателье

Принцип Ле Шателье гласит:

Как это понять? Все очень просто. Нарушить равновесие можно тремя способами:

  • изменив концентрацию вещества;
  • изменив температуру;
  • изменив давление.

Когда реакция синтеза аммиака находится в равновесии, то это можно изобразить так (реакция экзотермическая):

N 2 (г) + 3H 2 (г) → 2NH 3 (г) + Теплота

Меняем концентрацию

Введем дополнительное количество азота в сбалансированную систему. При этом баланс нарушится:


Прямая реакция начнет протекать быстрее, поскольку количество азота увеличилось и он вступает в реакцию в большем количестве. Через некоторое время снова наступит химическое равновесие, но при этом концентрация азота будет больше, чем концентрация водрода:


Но, осуществить "перекос" системы в левую часть можно и другим способом - "облегчив" правую часть, например, отводить аммиак из системы по мере его образования. Т.о., снова будет преобладать прямая реакция образования аммиака.

Меняем температуру

Правую сторону наших "весов" можно изменять путем изменения температуры. Для того, чтобы левая часть "перевесила", необходимо "облегчить" правую часть - уменьшить температуру:


Меняем давление

Нарушить равновесие в системе при помощи давления можно только в реакциях с газами. Увеличить давление можно двумя способами:

  • уменьшением объема системы;
  • введением инертного газа.

При увеличении давления количество столкновений молекул возрастает. При этом повышается концентрация газов в системе и изменяются скорости прямой и обратной реакций - равновесие нарушается. Чтобы восстановить равновесие система "пытается" уменьшить давление.

Во время синтеза аммиака из 4-х молекул азота и водорода образуется две молекулы аммиака. В итоге количество молекул газов уменьшается - давление падает. Как следствие, чтобы придти к равновесию после увеличения давления, скорость прямой реакции возрастает.

Подведем итог. Согласно принципу Ле Шателье увеличить производство аммиака можно:

  • увеличивая концентрацию реагентов;
  • уменьшая концентрацию продуктов реакции;
  • уменьшая температуру реакции;
  • увеличивая давление при котором происходит реакция.

В химической термодинамике имеется соотношение, которое связывает энергию Гиббса с константой равновесия. Это широко известное уравнение Вант-Гоффа, которое записывается в ленейном и экспотенциальном виде:

Или

Рассчитав величину DG 0 298 химической реакции, можно определить константу равновесия. Из уравнения (4.13) следует, что если величина DG 0 отрицательна, то lgК должен быть положительным, что, в свою очередь, означает, что К >1. И наоборот, если DG 0 > 0, то К <1.

Пример 13 . Прямая или обратная реакция будет протекать при стандартных условиях в системе:

CH 4(г) + СО 2 (г) 2СО (г) + 2Н 2 (г) .

Запишите закон действия масс для этой реакции.

Решение : Для ответа на вопрос следует вычислить DG 0 298 или прямой реакции. Последнее выражение и есть ЗДМ. Значения DG 0 298 соответствующих веществ приведены в таблице 4.1. Зная, что значения DG 0 f для простых веществ, находящихся в устойчивых при стандартных условиях агрегатных состояниях, равны нулю, а значения DG 0 ƒ (в кДж/моль) для СO 2 (-394,3), СН 4 (-50,8) и СО (-137,1), используя уравнение (4.7), рассчитываем DG 0 х.р. :

DG 0 х..р. = 2DG 0 ƒ, (СО) - DG 0 ƒ, (СН 4) - DG 0 ƒ, (СО 2) =

2·(-137,1) - (-50,8 - 394,3) = +170,9 кДж = 170900 Дж.

После этого вычисляем константу равновесия

То, что DG > 0, а Kр << 1, указывает на невозможность самопроизвольного протекания прямой реакции при T = 298 К и равенстве давлений взятых газов
1,013×10 5 Па (760 мм рт.ст. или 1 атм.). Самопроизвольно при этих условиях будет протекать обратная реакция, т.к. для нее DG = -170,9 кДж, а К » 10 37 .

Пример 14 . На основании стандартных энтальпий образования и абсолютных стандартных энтропий веществ (табл. 4.1) вычислите DG 0 298 реакции, протекающей по уравнению

CO (г) + Н 2 О (ж) СО 2 (г) + Н 2 (г) ,

DН 0 ƒ, (кДж/моль) -110,5 -285,8 -393,5 0

S 0 (Дж/моль·К) 197,5 70,1 213,6 130,6

Запишите закон действующих масс и вычислите Kp.

Решение :

1) DН 0 = (-393,5 + 0) - (-110,5 - 285,8) = + 2,80 кДж.

2) DS 0 = (213,6 + 130,6) - (197,5 + 70,1) = 0,0766 кДж/моль.

3) DG 0 = +2,80 - 298·0,0766 = -20,0 кДж.

Концентрация Н 2 О (ж) принимается равной 1 и не включена в ЗДМ, т.к. это конденсированное состояние.

Пример 15 . Реакция восстановления Fe 2 O 3 водородом протекает по уравнению

Fe 2 O 3 (к) + 3H 2 = 2Fe (к) + 3Н 2 О (г) ; DH о = +96,61кДж.

Запишите закон действующих масс для этой реакции. Возможна ли эта реакция при стандартных условиях, если изменение энтропии DS 0 = 0,1387 кДж/моль·К? При какой температуре начнется восстановление Fe 2 O 3 ? Каково значение К при этой температуре?

Решение . Вычисляем DG 0 реакции:

DG 0 = DH 0 - TDS 0 = 96,61 - 298·0,1387 = 55,28 кДж.

ЗДМ для этой реакции c учетом агрегатного состояния веществ: .

В то же время

= .

Так как DG >0, то реакция при стандартных условиях невозможна; наоборот, при этих условиях идет обратная реакция окисления железа (коррозия). Найдем температуру, при которой DG = 0. При этом DH 0 = TDS 0 , отсюда

Следовательно, при температуре примерно 696,5 К начнется реакция восстановления Fe 2 O 3 . (“Примерно” потому, что при решении задачи мы не учитываем слабую зависимость DН и DS от температуры, а также то обстоятельство, что условие К < 1 означает не полное отсутствие реакции, а лишь малую степень её протекания). Иногда эту температуру называют температурой начала реакции. Подставляя в выражение для К значение Т = 696,5 К, убеждаемся, что К = 1.

Это значит, что за температуру начала реакции принята температура, при которой = .

Пример 16 . Константа равновесия системы H 2 + I 2 2HI при некоторой температуре равна 40. Определить, какая часть водорода и иода (%) перейдет в HI, если исходные концентрации этих веществ одинаковы и составляют 0,01 моль/л, а исх = 0.

Решение . При решении подобных задач используется стехиометрическое уравнение реакции. Обозначим через x расход водорода к моменту наступления равновесия. Следовательно, равновесная концентрация Н 2 составит p =
(0,01 - x). Так как I 2 расходуется столько же, сколько и H 2 (по уравнению на 1 моль H 2 расходуется 1 моль I 2), то p = (0,01 - x). Из уравнения видно, что к моменту равновесия HI получается в 2 раза больше, чем расходуется H 2 , следовательно,
p = 2x. Запишем выражение для константы равновесия и подставим числовые значения равновесных концентраций:

Уравнение имеет два корня: х 1 = 0,0146, х 2 = 0,0076. Из двух значений х следует выбрать то, которое отвечает условию задачи. Исходные концентрации Н 2 и I 2 равны 0,01 моль/л. Следовательно, х не может иметь значение больше 0,01 и решение имеет одно значение -0,0076 моль/л. Таким образом, из 0,01 моль Н 2 и I 2 прореагировало 0,0076 моль, что составляет 76 %.

Пример 17. В системе CO + Cl 2 COCl 2 равновесные концентрации веществ составляют p = 0,3; p = 0,2; p = 1,2 моль/л. Вычислить константу равновесия системы и исходные концентрации CO и Cl 2 .

Решение. Найдем константу равновесия, подставив числовые значения равновесных концентраций в выражение константы равновесия:

Исходная концентрация реагента равна сумме равновесной и израсходованной к моменту равновесия. Из уравнения реакции видно, что для образования 1 моль COCl 2 расходуется по 1 моль СО и Cl 2 . Следовательно,

исх = p + изр = 0,2 + 1,2 = 1,4 моль/л.

исх = p + изр = 0,3 + 1,2 = 1,5 моль/л.

Принцип Ле Шателье

Химическое равновесие, отвечающее минимуму энергии Гиббса
(DG = 0), является наиболее устойчивым состоянием системы при данных условиях. Изменение условий равновесия может его нарушить, в результате чего реакция начинает протекать в прямом или обратном направлении (при этом говорят, что равновесие смещается в сторону прямой или обратной реакции). Через некоторое время система вновь становится равновесной с новыми равновесными концентрациями всех реагирующих веществ. Направление смещения равновесия определяется принципом Ле Шателье: если на систему, находящуюся в равновесии, подействовать извне, то равновесие смещается в том направлении, которое ослабляет это воздействие . Этот принцип вытекает из уравнений закона действия масс и Вант-Гоффа для константы равновесия.

Проиллюстрируем принцип смещения равновесия на следующих примерах.

Пример 18 . В каком направлении должно смещаться равновесие реакции

N 2 O 4 (г) 2NO 2 (г) , DH O = 58,0 кДж

при а) добавлении N 2 O 4 ; б) удалении NO 2 ; в) повышении давления;
г) увеличении температуры?

Решение . Согласно принципу Ле Шателье:

а) при добавлении N 2 O 4 равновесие должно сместиться в направлении реакции, в результате которой концентрация этого вещества должна уменьшиться, т.е. в сторону прямой реакции (®);

б) при удалении NO 2 из системы равновесие будет смещаться в направлении того процесса, в результате которого образуется дополнительное количество NO 2 (вправо ®);

в) при повышении давления равновесие смещается в направлении процесса, идущего с уменьшением объема (уменьшения числа молекул газа), т.е. в сторону обратного процесса (←);

г) при повышении температуры равновесие смещается в направлении реакции, идущей с поглощением теплоты (т.е. эндотермической, DH > 0), т.е. вправо (®).

Пример 19. Определите, как изменится константа равновесия рассматриваемой реакции при изменении температуры:

N 2 + 3H 2 2NH 3 , DH O = -92,4 кДж.

Решение. Процесс синтеза аммиака является экзотермическим (DH O < 0). Следовательно, согласно принципу Ле Шателье, при повышении температуры равновесие сместится в сторону обратной реакции, т. е. в сторону образования дополнительных количеств реагентов (N 2 ,H 2). При этом К уменьшается. При понижении температуры К увеличивается, а равновесие смещается в направлении роста концентрации аммиака.

Это обстоятельство имеет важное практическое значение. Для получения аммиака с достаточно большой скоростью необходимо вести процесс при повышенных температурах. Однако при этом К уменьшается, это означает уменьшение выхода аммиака. Чтобы скомпенсировать этот недостаток, приходится прибегать к высоким давлениям, поскольку повышение давления смещает равновесие в сторону образования аммиака (®), что согласуется с принципом Ле Шателье (уменьшается объем газов, так как уменьшается количество газа с 4-х до 2-х моль).

Если слить растворы кислоты и щелочи, образуется соль и вода, например,

HCl + NaOH = NaCl + H 2 O, и если вещества были взяты в нужных пропорциях, раствор имеет нейтральную реакцию и в нем не остается даже следов соляной кислоты и гидроксида натрия. Если попытаться провести реакцию в растворе между образовавшимися веществами – хлоридом натрия и водой, то никаких изменений не обнаружится. В подобных случаях говорят, что реакция кислоты со щелочью необратима, т.е. обратная реакция не идет. Практически необратимы при комнатной температуре очень многие реакции, например,

H 2 + Cl 2 = 2HCl, 2H 2 + O 2 = 2H 2 O и др.

Многие реакции обратимы уже в обычных условиях, это означает, что в заметной степени протекает обратная реакция. Например, если попытаться нейтрализовать щелочью водный раствор очень слабой хлорноватистой кислоты, то окажется, что реакция нейтрализации до конца не идет и раствор имеет сильнощелочную среду. Это означает, что реакция HClO + NaOH NaClO + H 2 O обратима, т.е. продукты этой реакции, реагируя друг с другом, частично переходят в исходные соединения. В результате раствор имеет щелочную реакцию. Обратима реакция образования сложных эфиров (обратная реакция называется омылением): RCOOH + R"OH RCOOR" + H 2 O, многие другие процессы.

Как и многие другие понятия в химии, понятие обратимости во многом условно. Обычно необратимой считают реакцию, после завершения которой концентрации исходных веществ настолько малы, что их не удается обнаружить (конечно, это зависит от чувствительности методов анализа). При изменении внешних условий (прежде всего температуры и давления) необратимая реакция может стать обратимой и наоборот. Так, при атмосферном давлении и температурах ниже 1000° С реакцию 2Н 2 + О 2 = 2Н 2 О еще можно считать необратимой, тогда как при температуре 2500° С и выше вода диссоциирует на водород и кислород примерно на 4%, а при температуре 3000° С – уже на 20%.

В конце 19 в. немецкий физикохимик Макс Боденштейн (1871–1942) детально изучил процессы образования и термической диссоциации иодоводорода: H 2 + I 2 2HI. Изменяя температуру, он мог добиться преимущественного протекания только прямой или только обратной реакции, но в общем случае обе реакции шли одновременно в противоположных направлениях. Подобных примеров множество. Один из самых известных – реакция синтеза аммиака 3H 2 + N 2 2NH 3 ; обратимы и многие другие реакции, например, окисление диоксида серы 2SO 2 + O 2 2SO 3 , реакции органических кислот со спиртами и т.д.

Скорость реакции и равновесие.

Пусть есть обратимая реакция A + B C + D. Если предположить, что прямая и обратная реакция проходят в одну стадию, то скорости этих реакций будут прямо пропорциональны концентрациям реагентов: скорость прямой реакции v 1 = k 1 [A][B], скорость обратной реакции v 2 = k 2 [C][D] (квадратными скобками обозначены молярные концентрации реагентов). Видно, что по мере протекания прямой реакции концентрации исходных веществ А и В снижаются, соответственно, уменьшается и скорость прямой реакции. Скорость же обратной реакции, которая в начальный момент равна нулю (нет продуктов C и D), постепенно увеличивается. Рано или поздно наступит момент, когда скорости прямой и обратной реакций сравняются. После этого концентрации всех веществ – А, В, С и D не изменяются со временем. Это значит, что реакция достигла положения равновесия, а неизменяющиеся со временем концентрации веществ называются равновесными. Но, в отличие от механического равновесия, при котором всякое движение прекращается, при химическом равновесии обе реакции – и прямая, и обратная – продолжают идти, однако их скорости равны и поэтому кажется, что никаких изменений в системе не происходит.

Доказать протекание прямой и обратной реакций после достижения равновесия можно множеством способов. Например, если в смесь водорода, азота и аммиака, находящуюся в положении равновесия, ввести немного изотопа водорода – дейтерия D 2 , то чувствительный анализ сразу обнаружит присутствие атомов дейтерия в молекулах аммиака. И наоборот, если ввести в систему немного дейтерированного аммиака NH 2 D, то дейтерий тут же появится в исходных веществах в виде молекул HD и D 2 . Другой эффектный опыт был проведен на химическом факультете МГУ. Серебряную пластинку поместили в раствор нитрата серебра, при этом никаких изменений не наблюдалось. Затем в раствор ввели ничтожное количество ионов радиоактивного серебра, после чего серебряная пластинка стала радиоактивной. Эту радиоактивность не могло «смыть» ни споласкивание пластинки водой, ни промывание ее соляной кислотой. Только травление азотной кислотой или механическая обработка поверхности мелкой наждачной бумагой сделало ее неактивной. Объяснить этот эксперимент можно единственным образом: между металлом и раствором непрерывно происходит обмен атомами серебра, т.е. в системе идет обратимая реакция Ag(тв) – е – = Ag + . Поэтому добавление радиоактивных ионов Ag + к раствору приводило к их «внедрению» в пластинку в виде электронейтральных, но по-прежнему радиоактивных атомов.

Таким образом, равновесными бывают не только химические реакции между газами или растворами, но и процессы растворения металлов, осадков. Например, твердое вещество быстрее всего растворяется, если его поместить в чистый растворитель, когда система далека от равновесия, в данном случае – от насыщенного раствора. Постепенно скорость растворения снижается, и одновременно увеличивается скорость обратного процесса – перехода вещества из раствора в кристаллический осадок. Когда раствор становится насыщенным, система достигает состояния равновесия, при этом скорости растворения и кристаллизации равны, а масса осадка со временем не меняется.

Константа равновесия.

Важнейший параметр, характеризующий обратимую химическую реакцию – константа равновесия К . Если записать для рассмотренной обратимой реакции A + D C + D условие равенства скоростей прямой и обратной реакции в состоянии равновесия – k 1 [A] равн [B] равн = k 2 [C] равн [D] равн, откуда [C] равн [D] равн /[A] равн [B] равн = k 1 /k 2 = К , то величина К называется константой равновесия химической реакции.

Итак, при равновесии отношение концентрации продуктов реакции к произведению концентрации реагентов постоянно, если постоянна температура (константы скорости k 1 и k 2 и, следовательно, константа равновесия К зависят от температуры, но не зависят от концентрации реагентов). Если в реакции участвуют несколько молекул исходных веществ и образуется несколько молекул продукта (или продуктов), концентрации веществ в выражении для константы равновесия возводятся в степени, соответствующие их стехиометрическим коэффициентам. Так для реакции 3H 2 + N 2 2NH 3 выражение для константы равновесия записывается в виде K = 2 равн / 3 равн равн. Описанный способ вывода константы равновесия, основанный на скоростях прямой и обратной реакций, в общем случае использовать нельзя, так как для сложных реакций зависимость скорости от концентрации обычно не выражается простым уравнением или вообще неизвестна. Тем не менее, в термодинамике доказывается, что конечная формула для константы равновесия оказывается верной.

Для газообразных соединений вместо концентраций при записи константы равновесия можно использовать давление; очевидно, численное значение константы при этом может измениться, если число газообразных молекул в правой и левой частях уравнения не одинаковы.

Графики, показывающие, как система приближается к равновесию (такие графики называются кинетическими кривыми), приведены на рисунках.

1. Пусть реакция необратима. Тогда k 2 = 0. Примером может служить реакция водорода с бромом при 300° С. Кинетические кривые показывают изменение концентрации веществ А, B, C, D (в данном случае H 2 , Br 2 и HBr) в зависимости от времени. Для простоты предполагается равенство исходных концентраций реагентов H 2 и Br 2 . Видно, что концентрации исходных веществ в результате необратимой реакции снижаются до нуля, тогда как сумма концентраций продуктов достигает суммы концентраций реагентов. Видно также, что скорость реакции (крутизна кинетических кривых) максимальна в начале реакции, а после завершения реакции кинетические кривые выходят на горизонтальный участок (скорость реакции равна нулю). Для необратимых реакций константу равновесия не вводят, поскольку она не определена (К ® Ґ).

2. Пусть k 2 = 0, причем k 2 k 1 и К > 1 (реакция водорода с иодом при 300° С). Вначале кинетические кривые почти не отличаются от предыдущего случая, так как скорость обратной реакции мала (мала концентрация продуктов). По мере накопления HI скорость обратной реакции возрастает, а прямой – уменьшается. В какой-то момент они сравняются, после чего концентрации всех веществ уже не изменяются со временем – скорость реакции стала нулевой, хотя реакция не прошла до конца. В данном случае (K > 1) до достижения равновесия (заштрихованная часть) прямая реакция успевает пройди на значительную глубину, поэтому в равновесной смеси больше продуктов (C и D), чем исходных веществ А и В – равновесие сдвинуто вправо.

3. Для реакции этерификации уксусной кислоты (А) этанолом (В) при 50° С константа скорости прямой реакции меньше, чем обратной: k 1 k 2 , поэтому K

4. В сравнительно редком случае, когда константы скорости прямой и обратной реакций равны (k 1 = k 2 , K = 1), для реакции A + B = C + D при [A] 0 = [B] 0 в равновесной смеси концентрации исходных веществ и продуктов будут одинаковыми и кинетические кривые сольются. Иногда такие условия можно создать соответствующим подбором температуры. Например, для обратимой реакции СО + Н 2 О = Н 2 + СО 2 К = 1 при температуре около 900° С. При более высоких температурах константа равновесия для этой реакции меньше 1 (например, при 1000° С К = 0,61) и равновесие сдвинуто в сторону СО и Н 2 О. При более низких температурах K > 1 (например, при 700° С К = 1,64) и равновесие сдвинуто в сторону СО 2 и Н 2 .

Значение K может служить характеристикой необратимости реакции в данных условиях. Так, если K очень велика, это значит, что концентрации продуктов реакции намного превышают концентрации исходных веществ при равновесии, т.е. реакция прошла почти до конца. Например, для реакции NiO + H 2 Ni + H 2 O при 523 К (250° С) К = [Н 2 О] равн /[Н 2 ] равн = 800 (концентрации твердых веществ постоянны и в выражение для К не входят). Следовательно, в замкнутом объеме после достижения равновесия концентрация паров воды будет в 800 раз больше, чем водорода (здесь концентрации можно заменить пропорциональными им давлениями). Итак, эта реакция при указанной температуре проходит почти до конца. А вот для реакции WO 2 + 2H 2 W + 2H 2 O при той же температуре К = ([Н 2 ] равн /[Н 2 О] равн) 2 = 10 –27 , следовательно, диоксид вольфрама практически не восстанавливается водородом при 500 К.

Значения К для некоторых реакций приведены в таблице.

ДЛЯ УЧИТЕЛЕЙ СРЕДНИХ ШКОЛ, СТУДЕНТОВ ПЕДАГОГИЧЕСКИХ ВУЗОВ И ШКОЛЬНИКОВ 9–10 КЛАССОВ, РЕШИВШИХ ПОСВЯТИТЬ СЕБЯ ХИМИИ И ЕСТЕСТВОЗНАНИЮ
УЧЕБНИК · ЗАДАЧНИК · ЛАБОРАТОРНЫЙ ПРАКТИКУМ · НАУЧНЫЕ РАССКАЗЫ ДЛЯ ЧТЕНИЯ

§ 3.2. Константа равновесия
и изобарный потенциал реакции

Константа равновесия легко может быть найдена из значения изобарного потенциала, который вычисляется по табличным данным об энтальпии образования и энтропии исходных веществ и продуктов реакции

Вам эта формула понадобится, когда нужно будет вычислить константу равновесия изучаемой реакции.

В этом учебнике мы стараемся не давать готовых формул, а выводить их простейшими методами математической логики, поэтому ниже приводится вывод этой формулы. Прочитав этот материал, вы познакомитесь с простейшими представлениями теории вероятности, с энтропией активации и др.

Не только энергия активации определяет скорость химической реакции. Огромную роль играют размеры и форма реагирующих молекул и расположение в них реакционноспособных атомов или их групп. В связи с этим при столкновении двух частиц важна их определенная ориентация, т. е. контакт именно тех центров, которые являются реакционноспособными.

Обозначим вероятность необходимой для взаимодействия ориентации молекул при столкновении W:

Натуральный логарифм величины W, умноженный на газовую постоянную R, называется энтропией активации S a:

Из этого выражения следует:

Откуда по определению логарифма получаем вероятность необходимой ориентации:

Чем больше вероятность необходимой ориентации для прохождения реакции, тем выше ее скорость и соответственно константа скорости, что можно записать:

Раньше мы узнали, что константа скорости зависит от энергии активации и температуры:

Таким образом, константа скорости зависит от энергии активации, температуры и энтропии активации:

Введем коэффициент пропорциональности Z и поставим знак равенства:

Полученное выражение называется основным уравнением химической кинетики .

Это уравнение объясняет некоторые стороны катализа: катализатор понижает энергию активации реакции и повышает энтропию активации, т. е. повышает вероятность надлежащей для взаимодействия ориентации реагирующих частиц.

Интересно отметить, что энтропия активации учитывает не только определенную ориентацию частиц, но и продолжительность контакта в момент столкновения. Если продолжительность контакта частиц очень мала, то их электронные плотности не успевают перераспределиться для образования новых химических связей, и частицы, отталкиваясь, расходятся в разные стороны. Катализатор также в значительной мере увеличивает продолжительность контакта реагирующих частиц.

Еще одна особенность каталитического действия: катализатор забирает избыток энергии с вновь образовавшейся частицы, и она не распадается на исходные частицы из-за своей высокой энергетической активности.

Вы знаете, что константа равновесия – это отношение констант скоростей прямой и обратной реакций:

Заменим константы скоростей прямой и обратной реакций на выражения основного уравнения химической кинетики:

Отношение двух коэффициентов пропорциональности Z пр /Z обр – величина постоянная, которую внесем в значение константы равновесия, отчего она останется, как и прежде, константой.

Если вы вспомните правила действий с показательными функциями, вам будет понятно преобразование формулы:

В соответствии с законом Гесса разность энергий активации обратной и прямой реакций есть изменение энтальпии (убедитесь в этом, нарисовав энтальпийную диаграмму реакции, проходящей с выделением теплоты, и не забыв, что в данном случае D Н < 0 ):

Точно так же разность обозначим D S :

Объяснить, почему перед скобками поставлен знак минус.

Получаем уравнение:

Прологарифмируем обе части этого уравнения:

Откуда имеем:

Это уравнение настолько важно для химии и других естественных наук, что многие зарубежные студенты-химики носят рубашки с изображением этой формулы.

Если D G выражается в Дж/моль, то формула приобретает вид:

У этой формулы есть одна особенность: если константу равновесия определяют через давления газообразных веществ, то в выражение константы равновесия подставляют давления этих веществ в атмосферах (1атм=101325Па=760мм рт.ст.).

Эта формула позволяет по известному значению D G реакции вычислить константу равновесия и таким образом узнать состав равновесной системы при заданной температуре. Формула показывает, что чем выше константа равновесия и чем больше в равновесной реакционной смеси содержится продуктов реакции (веществ, стоящих в правой части уравнения реакции), тем более отрицательное значение имеет изменение изобарного потенциала реакции. И наоборот, чем ниже значение константы равновесия и чем меньше в равновесной смеси содержится продуктов реакции и больше исходных веществ, тем меньше отрицательное значение D G .

Когда константа равновесия больше 1 и изобарный потенциал отрицателен, принято говорить, что равновесие смещено в сторону продуктов реакции, или вправо. Когда константа равновесия меньше 1 и изобарный потенциал положителен, принято говорить, что равновесие смещено в сторону исходных веществ, или влево.

При равенстве константы равновесия 1 изобарный потенциал равен 0. Такое состояние системы принято считать границей между смещением равновесия вправо или влево. Когда для данной реакции изменение изобарного потенциала отрицательно (D G<0 ), принято говорить, что реакция может проходить в прямом направлении; если D G>0 , говорят, что реакция не проходит.

Таким образом,

D G<0 – реакция может проходить (термодинамически возможна);

D G<0 , то К>1 – равновесие смещено в сторону продуктов, вправо;

D G>0 , то К<1 – равновесие смещено в сторону исходных веществ, влево.

Если вам понадобится узнать, возможна ли интересующая вас реакция (например, узнать, возможен ли синтез нужного красителя, будет ли спекаться данный минеральный состав, влияние кислорода воздуха на окраску и т. п.), достаточно рассчитать для этой реакции D G . Если окажется, что изменение изобарного потенциала отрицательно, то реакция возможна, и вы можете смешивать различные исходные вещества для получения желаемого продукта.

Прочитайте, что нужно сделать, чтобы рассчитать изменение изобарного потенциала и константу равновесия при различных температурах (алгоритм расчета).

1. Выпишите из справочных таблиц значения (для температуры 298 К) энтальпий образования из простых веществ D Н обр и энтропии S всех веществ, записанных в уравнении химической реакции. Если D Н обр выражены в кДж/моль, то их следует перевести в Дж/моль (почему?).

2. Подсчитайте изменение энтальпии в реакции (298 К) как разность между суммой энтальпий образования продуктов и суммой энтальпий образования исходных веществ, помня о стехиометрических коэффициентах:

3. Подсчитайте изменение энтропии в реакции (298 К) как разность между суммой энтропий продуктов и суммой энтропий исходных веществ, помня о стехиометрических коэффициентах:

4. Составьте уравнение зависимости изменения изобарного потенциала от изменений энтальпии реакции, энтропии и температуры, подставив в известное вам уравнение полученные только что численные значения D Н р-ции и D S р-ции :

5. Подсчитайте изменение изобарного потенциала при стандартной температуре 298 К:

6. По знаку D G р-ции , 298 сделайте вывод о возможности прохождения реакции при стандартной температуре: если знак «минус», то реакция термодинамически возможна; если знак «плюс», то реакция невозможна.

7. Подсчитайте D G р-ции при интересующей вас температуре Т:

и сделайте вывод, как влияет изменение температуры на возможность прохождения реакции. Если окажется, что при этой температуре изменение изобарного потенциала стало менее положительное или более отрицательное по сравнению с D G 298 , то, следовательно, при этой температуре реакция становится более вероятной.

8. Вычислите из известного вам уравнения константу равновесия K при интересующей вас температуре Т:

9. Сделайте вывод о смещении равновесия в сторону исходных веществ (К<1) или в сторону продуктов (К>1).

Для заключения о возможности прохождения реакции при отрицательном значении изменения изобарного потенциала (D G р-ции <0 ) одних термодинамических данных часто оказывается недостаточно. Термодинамически возможная реакция может оказаться кинетически заторможенной и осуществимой при изменении условий (концентрации веществ, давление, температура), через другие реакционные пути или в присутствии правильно подобранного катализатора.

Рассмотрим на примере реакции кристаллического железа с газообразной водой (пары воды):

как узнать о термодинамической возможности реакции.

Эта реакция интересна тем, что показывает причины уменьшения блеска металлического изделия и разрушения его от коррозии.

Прежде всего подберем стехиометрические коэффициенты уравнения реакции:

Выпишем из справочных таблиц термодинамические данные (температура 298 К) для всех участников реакции:

Рассчитаем изменение энтальпии в этой реакции, вспомнив, что энтальпии простых веществ равны нулю:

Выразим изменение энтальпии в Дж:

Реакция сопровождается выделением теплоты, Q>0, Q=+50 300 Дж/моль, и это дает возможность предположить, что она проходит самопроизвольно. Однако уверенно сказать, что реакция самопроизвольна, можно только по знаку изменения изобарного потенциала.

Рассчитаем изменение энтропии в этой реакции, не забыв про стехиометрические коэффициенты:

Энтропия системы в результате реакции понижается, поэтому можно отметить, что в системе происходит повышение порядка.

Теперь составим уравнение зависимости изменения изобарного потенциала от изменений энтальпии, энтропии и температуры:

Рассчитаем изменение изобарного потенциала в реакции при стандартной температуре 298 К:

Высокое отрицательное значение изменения изобарного потенциала говорит о том, что при комнатной температуре железо может быть окислено кислородом. Если бы вы смогли получить тончайший порошок железа, то увидели бы, как железо на воздухе сгорает. Почему на воздухе не горят железные изделия, статуэтки, гвозди и т. п.? Результаты расчета показывают, что на воздухе железо корродирует, т. е. разрушается, превращаясь в оксиды железа.

Теперь посмотрим, как влияет повышение температуры на возможность прохождения этой реакции. Рассчитаем изменение изобарного потенциала при температуре 500 К:

Получили результат, показывающий, что при повышении температуры изменение изобарного потенциала реакции становится менее отрицательной величиной. Это означает, что с повышением температуры реакция становится менее термодинамически вероятной, т. е. равновесие реакции все сильнее смещается в сторону исходных веществ.

Интересно узнать, при какой температуре равновесие в одинаковой мере смещено и в сторону продуктов реакции, и в сторону исходных веществ. Это происходит при D G р-ции =0 (константа равновесия равна 1):

Откуда получаем:

Т=150300/168,2=894К , или 621°С .

При этой температуре равновероятно прохождение реакции как в прямом, так и в обратном направлении. При температуре выше 621°С начинает преобладать обратная реакция восстановления Fe 3 O 4 водородом. Эта реакция является одним из способов получения чистого железа (в металлургии оксиды железа восстанавливают углеродом).

При температуре 298 К:

Таким образом, при повышении температуры константа равновесия понижается.

Оксид железа Fe 3 O 4 называется магнетитом (магнитный железняк). Этот оксид железа в отличие от оксидов FeО (вюстит) и Fe 2 О 3 (гематит), притягивается магнитом. Существует легенда, что в древности пастух по имени Магнус нашел очень маленький продолговатый камушек, который он своими жирными (почему это важно?) руками положил на поверхность воды в миске. Камушек не утонул и стал плавать по воде, причем, как ни поворачивал миску пастух, камушек всегда указывал только в одну сторону. Будто бы так был изобретен компас, а минерал получил название от имени этого пастуха. Хотя, возможно, магнетит был так назван по имени древнего города Малой Азии – Магнесии. Магнетит – главная руда, из которой добывают железо.

Иногда формулу магнетита изображают так: FeО Fe 2 O 3 , подразумевая, что магнетит состоит из двух оксидов железа. Это неправильно: магнетит – индивидуальное вещество.

Другой оксид Fe 2 О 3 (гематит) – красный железняк – так назван из-за своего красного цвета (в пер. с греч. – кровь). Из гематита получают железо.

Оксид FeО почти не встречается в природе и не имеет промышленного значения.



Понравилась статья? Поделитесь с друзьями!