Оксид серы в природе и жизни человека. Химические свойства соединений серы

Часть I

1. Сероводород.
1) Строение молекулы:

2) Физические свойства: бесцветный газ, с резким запахом тухлых яиц, тяжелее воздуха.

3) Химические свойства (закончите уравнения реакций и рассмотрите уравнения в свете ТЭД или с позиций окисления-восстановления).

4) Сероводород в природе: в виде соединений – сульфидов, в свободном виде – в вулканических газах.

2. Оксид серы (IV) – SO2
1) Получение в промышленности. Запишите уравнения реакций и рассмотрите их с позиций окисления-восстановления.

2) Получение в лаборатории. Запишите уравнение реакции и рассмотрите её в свете ТЭД:

3) Физические свойства: газ с резким удушливым запахом.

4) Химические свойства.

3. Оксид серы (VI)- SO3.
1) Получение синтезом из оксида серы (IV):

2) Физические свойства: жидкость, тяжелее воды, в смеси с серной кислотой – олеум.

3) Химические свойства. Проявляет типичные свойства кислотных оксидов:

Часть II

1. Охарактеризуйте реакцию синтеза оксида серы (VI) по всем классификационным признакам.

а) каталитическая
б) обратимая
в) ОВР
г) соединения
д) экзотермическая
е) горения

2. Охарактеризуйте реакцию взаимодействия оксида серы (IV) с водой по всем классификационным признакам.

а) обратимая
б) соединения
в) не ОВР
г) экзотермическая
д) некаталитическая

3. Объясните, почему сероводород проявляет сильные восстановительные свойства.

4. Объясните, почему оксид серы (IV) может проявлять как окислительные, так и восстановительные свойства:

Подтвердите этот тезис уравнениями соответствующих реакций.

5. Сера вулканического происхождения образуется в результате взаимодействия сернистого газа и сероводорода. Запишите уравнения реакции и рассмотрите с позиций окисления-восстановления.


6. Запишите уравнения реакций переходов, расшифровав неизвестные формулы:


7. Напишите синквейн на тему «Сернистый газ».
1) Сернистый газ
2) Удушливый и резкий
3) Кислотный оксид, ОВР
4) Используется для получения SO3
5) Серная кислота H2SO4

8. Используя дополнительные источники информации, в том числе и Интернет, подготовьте сообщение о токсичности сероводорода (обратите внимание на его характерный запах!) и первой помощи при отравлении этим газом. Запишите план сообщения в особой тетради.

Сероводород
Бесцветный газ с запахом тухлых яиц. Обнаруживается в воздухе по запаху даже в малых концентрациях. В природе встречается в воде минеральных источников, морей, вулканических газах. Образуется при разложении белков без доступа кислорода. Может выделяться в воздух в ряде производств химической, текстильной промышленности, при добыче и переработке нефти, из канализации.
Сероводород - сильный яд, вызывающий острые и хронические отравления. Оказывает местное раздражающее и общетоксическое действие. При концентрации 1,2 мг/л отравление развивается молниеносно, смерть наступает вследствие острого угнетения процессов тканевого дыхания. При прекращении воздействия даже при тяжелых формах отравления пострадавший может быть возвращен к жизни.
При концентрации 0,02-0,2 мг/л наблюдается головная боль, головокружение, стеснение в груди, тошнота, рвота, понос, потеря сознания, судороги, поражение слизистой оболочки глаз, конъюнктивит, светобоязнь. Опасность отравления увеличивается в связи с потерей обоняния. Постепенно нарастает сердечная слабость и нарушение дыхания, коматозное состояние.
Первая помощь - удаление пострадавшего из загрязненной атмосферы, вдыхание кислорода, искусственное дыхание; средства, возбуждающие дыхательный центр, согревание тела. Рекомендуются также глюкоза, витамины, препараты железа.
Профилактика - достаточная вентиляция, герметизация некоторых производственных операций. При спуске рабочих в колодцы и емкости, содержащие сероводород, они должны обязательно пользоваться противогазами и спасательными поясами на тросах. Обязательна газоспасательная служба в шахтах, в местах добычи и на предприятиях по переработке нефти.

В окислительно-восстановительных процессах сернистый газ может быть как окислителем, так и восстановителем, потому что атом в этом соединении имеет промежуточную степень окисления +4.

Как окислитель SO 2 реагирует с более сильными восстановителями, например с :

SO 2 + 2H 2 S = 3S↓ + 2H 2 O

Как восстановитель SO 2 реагирует с более сильными окислителями, например с в присутствии катализатора, с и т.д.:

2SO 2 + O 2 = 2SO 3

SO 2 + Cl 2 + 2H 2 O = H 2 SO 3 + 2HCl

Получение

1) Сернистый газ образуется при горении серы:

2) В промышленности его получают при обжиге пирита:

3) В лаборатории сернистый газ можно получить:

Cu + 2H 2 SO 4 = CuSO 4 + SO 2 + 2H 2 O

Применение

Сернистый газ находит широкое применение в текстильной промышленности для отбеливания различных изделий. Кроме того, его используют в сельском хозяйстве для уничтожения вредных микроорганизмов в теплицах и погребах. В больших количествах SO 2 идет на получение серной кислоты.

Оксид серы (VI ) – SO 3 (серный ангидрид)

Серный ангидрид SO 3 – это бесцветная жидкость, которая при температуре ниже 17 о С превращается в белую кристаллическую массу. Очень хорошо поглощает влагу (гигроскопичен).

Химические свойства

Кислотно-основные свойства

Как типичный кислотный оксид серный ангидрид взаимодействует:

SO 3 + CaO = CaSO 4

в) с водой:

SO 3 + H 2 O = H 2 SO 4

Особым свойством SO 3 является его способность хорошо растворяться в серной кислоте. Раствор SO 3 в серной кислоте имеет название олеум.

Образование олеума: H 2 SO 4 + n SO 3 = H 2 SO 4 ∙ n SO 3

Окислительно-восстановительные свойства

Оксид серы (VI) характеризуется сильными окислительными свойствами (обычно восстанавливается до SO 2):

3SO 3 + H 2 S = 4SO 2 + H 2 O

Получение и применение

Серный ангидрид образуется при окислении сернистого газа:

2SO 2 + O 2 = 2SO 3

В чистом виде серный ангидрид практического значения не имеет. Он получается как промежуточный продукт при производстве серной кислоты.

H 2 SO 4

Упоминания о серной кислоте впервые встречаются у арабских и европейских алхимиков. Ее получали, прокаливая на воздухе железный купорос (FeSO 4 ∙7H 2 O): 2FeSO 4 = Fe 2 O 3 + SO 3 + SO 2 либо смесь с : 6KNO 3 + 5S = 3K 2 SO 4 + 2SO 3 + 3N 2 , а выделяющиеся пары серного ангидрида конденсировали. Поглощая влагу, они превращались в олеум. В зависимости от способа приготовления H 2 SO 4 называли купоросным маслом или серным маслом. В 1595 г. алхимик Андреас Либавий установил тождественность обоих веществ.

Долгое время купоросное масло не находило широкого применения. Интерес к нему сильно возрос после того, как в XVIII в. был открыт процесс получения из индиго индигокармина – устойчивого синего красителя. Первую фабрику по производству серной кислоты основали недалеко от Лондона в 1736 г. Процесс осуществляли в свинцовых камерах, на дно которых наливали воду. В верхней части камеры сжигали расплавленную смесь селитры с серой, затем туда запускали воздух. Процедуру повторяли до тех пор, пока на дне ёмкости не образовывалась кислота требуемой концентрации.

В XIX в. способ усовершенствовали: вместо селитры стали использовать азотную кислоту (она при разложении в камере даёт ). Чтобы возвращать в систему нитрозные газы были сконструированы специальные башни, которые и дали название всему процессу – башенный процесс. Заводы, работающие по башенному методу, существуют и в наше время.

Серная кислота – это тяжелая маслянистая жидкость без цвета и запаха, гигроскопична; хорошо растворяется в воде. При растворении концентрированной серной кислоты в воде выделяется большое количество тепла, поэтому ее надо осторожно приливать в воду (а не наоборот!) и перемешивать раствор.

Раствор серной кислоты в воде с содержанием H 2 SO 4 менее 70% обычно называют разбавленной серной кислотой, а раствор более 70% — концентрированной серной кислотой.

Химические свойства

Кислотно-основные свойства

Разбавленная серная кислота проявляет все характерные свойства сильных кислот. Она реагирует:

H 2 SO 4 + NaOH = Na 2 SO 4 + 2H 2 O

H 2 SO 4 + BaCl 2 = BaSO 4 ↓ + 2HCl

Процесс взаимодействия ионов Ва 2+ с сульфат-ионами SO 4 2+ приводит к образованию белого нерастворимого осадка BaSO 4 . Это качественная реакция на сульфат-ион .

Окислительно – восстановительные свойства

В разбавленной H 2 SO 4 окислителями являются ионы Н + , а в концентрированной – сульфат-ионы SO 4 2+ . Ионы SO 4 2+ являются более сильными окислителями, чем ионы Н + (см.схему).

В разбавленной серной кислоте растворяются металлы, которые в электрохимическом ряду напряжений находятся до водорода . При этом образуются сульфаты металлов и выделяется :

Zn + H 2 SO 4 = ZnSO 4 + H 2

Металлы, которые в электрохимическом ряду напряжений находятся после водорода, не реагируют с разбавленной серной кислотой:

Cu + H 2 SO 4 ≠

Концентрированная серная кислота является сильным окислителем, особенно при нагревании. Она окисляет многие , и некоторые органические вещества.

При взаимодействии концентрированной серной кислоты с металлами, которые в электрохимическом ряду напряжений находятся после водорода (Cu, Ag, Hg), образуются сульфаты металлов, а также продукт восстановления серной кислоты – SO 2 .

Реакция серной кислоты с цинком

Более активными металлами (Zn, Al, Mg) концентрированная серная кислота может восстанавливаться до свободной . Например, при взаимодействии серной кислоты с , в зависимости от концентрации кислоты одновременно могут образовываться различные продукты восстановления серной кислоты – SO 2 , S, H 2 S:

Zn + 2H 2 SO 4 = ZnSO 4 + SO 2 + 2H 2 O

3Zn + 4H 2 SO 4 = 3ZnSO 4 + S↓ + 4H 2 O

4Zn + 5H 2 SO 4 = 4ZnSO 4 + H 2 S + 4H 2 O

На холоде концентрированная серная кислота пассивирует некоторые металлы, например и , поэтому ее перевозят в железных цистернах:

Fe + H 2 SO 4 ≠

Концентрированная серная кислота окисляет некоторые неметаллы ( , и др.), восстанавливаясь до оксида серы (IV) SO 2:

S + 2H 2 SO 4 = 3SO 2 + 2H 2 O

C + 2H 2 SO 4 = 2SO 2 + CO 2 + 2H 2 O

Получение и применение

В промышленности серную кислоту получают контактным способом. Процесс получения происходит в три стадии:

  1. Получение SO 2 путем обжига пирита:

4FeS 2 + 11O 2 = 2Fe 2 O 3 + 8SO 2

  1. Окисление SO 2 в SO 3 в присутствии катализатора – оксида ванадия (V):

2SO 2 + O 2 = 2SO 3

  1. Растворение SO 3 в серной кислоте:

H 2 SO 4 + n SO 3 = H 2 SO 4 ∙ n SO 3

Полученный олеум перевозят в железных цистернах. Из олеума получают серную кислоту нужной концентрации, приливая его в воду. Это можно выразить схемой:

H 2 SO 4 ∙ n SO 3 + H 2 O = H 2 SO 4

Серная кислота находит разнообразное применение в самых различных областях народного хозяйства. Ее используют для осушки газов, в производстве других кислот, для получения удобрений, различных красителей и лекарственных средств.

Соли серной кислоты


Большинство сульфатов хорошо растворимы в воде (малорастворим CaSO 4 , еще менее PbSO 4 и практически нерастворим BaSO 4). Некоторые сульфаты, содержащие кристаллизационную воду, называются купоросами:

CuSO 4 ∙ 5H 2 O медный купорос

FeSO 4 ∙ 7H 2 O железный купорос

Соли серной кислоты имеют все . Особенным является их отношение к нагреванию.

Сульфаты активных металлов ( , ) не разлагаются даже при 1000 о С, а других (Cu, Al, Fe) – распадаются при небольшом нагревании на оксид металла и SO 3:

CuSO 4 = CuO + SO 3

Скачать:

Скачать бесплатно реферат на тему: «Производство серной кислоты контактным способом»

Скачать рефераты по другим темам можно

*на изображении записи фотография медного купороса

Оксид серы (IV) и сернистая кислота

Оксид серы (IV), или сернистый газ, при обычных условиях бесцветный газ с резким удушливым запахом. При охлаждении до -10°С сжижается в бесцветную жидкость.

Получение

1. В лабораторных условиях оксид серы (IV) получают из солей сернистой кислоты действием на них сильными кислотами:

Na 2 SO 3 +H 2 SO 4 =Na 2 SO 4 +S0 2 ­+H 2 O 2NaHSO 3 +H 2 SO 4 =Na 2 SO 4 +2SO 2 ­+2H 2 O 2HSO - 3 +2H + =2SO 2 ­+2H 2 O

2. Также сернистый газ образуется при взаимодействии концент­рированной серной кислоты при нагревании с малоактивными металлами:

Cu+2H 2 SO 4 =CuSO 4 +SO 2 ­+2Н 2 О

Cu+4Н + +2SO 2- 4 =Cu 2+ + SO 2- 4 +SO 2 ­+2H 2 O

3. Оксид серы (IV) образуется также при сжигании серы в воздухе или кислороде:

4. В промышленных условиях SO 2 получают при обжиге пирита FeS 2 или сернистых руд цветных металлов (цинковой обманки ZnS, свинцового блеска PbS и др.):

4FeS 2 +11О 2 =2Fe 2 O 3 +8SO 2

Структурная формула молекулы SO 2:

В образовании связей в молекуле SO 2 принимают участие че­тыре электрона серы и четыре электрона от двух атомов кислоро­да. Взаимное отталкивание связывающих электронных пар и не­поделенной электронной пары серы придает молекуле угловую форму.

Химические свойства

1. Оксид серы (IV) проявляет все свойства кислотных оксидов:

Взаимодействие с водой,

Взаимодействие с щелочами,

Взаимодействие с основными оксидами.

2. Для оксида серы (IV) характерны восстановительные свойства:

S +4 O 2 +O 0 2 «2S +6 O -2 3 (в присутствии катализатора, при нагревании)

Но в присутствии сильных восстановителей SO 2 ведет себя как окислитель:

Окислительно-восстановительная двойственность оксида серы (IV) объясняется тем, что сера имеет в нем степень окисления +4, и поэтому она может, отдавая 2 электрона, окисляться до S +6 , а принимая 4 электрона, восстанавливаться до S°. Проявление этих или других свойств зависит от природы реагирующего ком­понента.

Оксид серы (IV) хорошо растворим в воде (в 1 объеме при 20°С растворяется 40 объемов SO 2). При этом образуется существую­щая только в водном растворе сернистая кислота:

SO 2 +Н 2 О«H 2 SO 3

Реакция обратимая. В водном растворе оксид серы (IV) и сер­нистая кислота находятся в химическом равновесии, которое можно смещать. При связывании H 2 SO 3 (нейтрализация кисло-

ты) реакция протекает в сторону образования сернистой кислоты; при удалении SO 2 (продувание через раствор азота или нагрева­ние) реакция протекает в сторону исходных веществ. В растворе сернистой кислоты всегда имеется оксид серы (IV), который при­дает ему резкий запах.

Сернистая кислота обладает всеми свойствами кислот. В рас­творе диссоциирует ступенчато:

H 2 SO 3 «Н + +HSO - 3 HSO - 3 «Н + +SO 2- 3

Термически неустойчива, летуча. Сернистая кислота, как двухосновная, образует два типа солей:

Средние - сульфиты (Na 2 SO 3);

Кислые - гидросульфиты (NaHSO 3).

Сульфиты образуются при полной нейтрализации кислоты щелочью:

H 2 SO 3 +2NaOH=Na 2 SO 3 +2Н 2 О

Гидросульфиты получаются при недостатке щелочи:

H 2 SO 3 +NaOH=NaHSO 3 +Н 2 О

Сернистая кислота и ее соли обладают как окислительными, так и восстановительными свойствами, что определяется приро­дой партнера по реакции.

1. Так, под действием кислорода сульфиты окисляются до суль­фатов:

2Na 2 S +4 O 3 +О 0 2 =2Na 2 S +6 O -2 4

Еще легче протекает окисление сернистой кислоты бромом и перманганатом калия:

5H 2 S +4 O 3 +2KMn +7 O 4 =2H 2 S +6 O 4 +2Mn +2 S +6 O 4 +K 2 S +6 O 4 +3Н 2 O

2. В присутствии же более энергичных восстановителей сульфиты проявляют окислительные свойства:

Из солей сернистой кислоты растворяются почти все гидро­сульфиты и сульфиты щелочных металлов.

3. Поскольку H 2 SO 3 является слабой кислотой, при действии кис­лот на сульфиты и гидросульфиты происходит выделение SO 2 . Этот метод обычно используют при получении SO 2 в лаборатор­ных условиях:

NaHSO 3 +H 2 SO 4 =Na 2 SO 4 +SO 2 ­+H 2 O

4. Растворимые в воде сульфиты легко подвергаются гидролизу, вследствие чего в растворе увеличивается концентрация OH - -ионов:

Na 2 SO 3 +НОН«NaHSO 3 +NaOH

Применение

Оксид серы (IV) и сернистая кислота обесцвечивают многие красители, образуя с ними бесцветные соединения. Последние могут снова разлагаться при нагревании или на свету, в результа­те чего окраска восстанавливается. Следовательно, белящее дей­ствие SO 2 и H 2 SO 3 отличается от белящего действия хлора. Обычно рксидом серы (IV) белят шерсть, шелк и солому.

Оксид серы (IV) убивает многие микроорганизмы. Поэтому для уничтожения плесневых грибков им окуривают сырые подва­лы, погреба, винные бочки и др. Используется также при перевоз­ке и хранении фруктов и ягод. В больших количествах оксид серы IV) применяется для получения серной кислоты.

Важное применение находит раствор гидросульфита кальция CaHSO 3 (сульфитный щелок), которым обрабатывают древесину и бумажную массу.

Степень окисления +4 для серы является довольно устойчивой и проявляется в тетрагалогенидах SHal 4 , оксодигалогенидах SOHal 2 , диоксиде SO 2 и в отвечающих им анионах. Мы познакомимся со свойствами диоксида серы и сернистой кислоты.

1.11.1. Оксид серы (IV) Строение молекулы so2

Строение молекулы SO 2 аналогично строению молекулы озона. Атом серы находится в состоянии sp 2 -гибридизации, форма расположения орбиталей – правильный треугольник, форма молекулы – угловая. На атоме серы имеется неподеленная электронная пара. Длина связи S – O равна 0,143 нм, валентный угол составляет 119,5°.

Строение соответствует следующим резонансным структурам:

В отличие от озона, кратность связи S – O равна 2, то есть основной вклад вносит первая резонансная структура. Молекула отличается высокой термической устойчивостью.

Физические свойства

При обычных условиях диоксид серы или сернистый газ – бесцветный газ с резким удушливым запахом, температура плавления -75 °С, температура кипения -10 °С. Хорошо растворим в воде, при 20 °С в 1 объеме воды растворяется 40 объемов сернистого газа. Токсичный газ.

Химические свойства оксида серы (IV)

    Сернистый газ обладает высокой реакционной способностью. Диоксид серы – кислотный оксид. Он довольно хорошо растворим в воде с образованием гидратов. Также он частично взаимодействует с водой, образуя слабую сернистую кислоту, которая не выделена в индивидуальном виде:

SO 2 + H 2 O = H 2 SO 3 = H + + HSO 3 - = 2H + + SO 3 2- .

В результате диссоциации образуются протоны, поэтому раствор имеет кислую среду.

    При пропускании газообразного диоксида серы через раствор гидроксида натрия образуется сульфит натрия. Сульфит натрия реагирует с избытком диоксида серы и образуется гидросульфит натрия:

2NaOH + SO 2 = Na 2 SO 3 + H 2 O;

Na 2 SO 3 + SO 2 = 2NaHSO 3 .

    Для сернистого газа характерна окислительно-восстановительная двойственность, например, он, проявляя восстановительные свойства, обесцвечивает бромную воду:

SO 2 + Br 2 + 2H 2 O = H 2 SO 4 + 2HBr

и раствор перманганата калия:

5SO 2 + 2KMnO 4 + 2H 2 O = 2KНSO 4 + 2MnSO 4 + H 2 SO 4 .

окисляется кислородом в серный ангидрид:

2SO 2 + O 2 = 2SO 3 .

Окислительные свойства проявляет при взаимодействии с сильными восстановителями, например:

SO 2 + 2CO = S + 2CO 2 (при 500 °С, в присутствии Al 2 O 3);

SO 2 + 2H 2 = S + 2H 2 O.

Получение оксида серы (IV)

    Сжигание серы на воздухе

S + O 2 = SO 2 .

    Окисление сульфидов

4FeS 2 + 11O 2 = 2Fe 2 O 3 + 8SO 2 .

    Действие сильных кислот на сульфиты металлов

Na 2 SO 3 + 2H 2 SO 4 = 2NaHSO 4 + H 2 O + SO 2 .

1.11.2. Сернистая кислота и её соли

При растворении диоксида серы в воде образуется слабая сернистая кислота, основная масса растворенного SO 2 находится в виде гидратированной формы SO 2 ·H 2 O, при охлаждении также выделяется кристаллогидрат, лишь небольшая часть молекул сернистой кислоты диссоциирует на сульфит- и гидросульфит-ионы. В свободном состоянии кислота не выделена.

Будучи двухосновной, образует два типа солей: средние – сульфиты и кислые – гидросульфиты. В воде растворяются лишь сульфиты щелочных металлов и гидросульфиты щелочных и щелочно-земельных металлов.

В этой статье вы найдете информацию о том, что такое оксид серы. Будут рассмотрены его основные свойства химического и физического характера, существующие формы, способы их получения и отличия между собой. А также будут упомянуты области применения и биологическая роль данного оксида в его разнообразных формах.

Что представляет собой вещество

Оксид серы - это соединение простых веществ, серы и кислорода. Существует три формы оксидов серы, отличающиеся между собой степенью проявленной валентности S, а именно: SO (монооксид, моноокись серы), SO 2 (серный диоксид или сернистый газ) и SO 3 (триоксид или ангидрид серы). Все перечисленные вариации оксидов серы имеют схожие как химические, так и физические характеристики.

Общие данные о моноокисиде серы

Двухвалентный серный монооксид, или иначе серная моноокись - это неорганическое вещество, состоящее из двух простых элементов - серы и кислорода. Формула - SO. В условиях нормальной обстановки является газом без цвета, но с резким и специфическим запахом. Вступает в реакции с водным раствором. Довольно редкое соединение в земной атмосфере. К воздействию температур неустойчив, существует в димерной форме - S 2 O 2 . Иногда способен, взаимодействуя с кислородом, в результате реакции образовывать диоксид серы. Солей не образует.

Получают оксид серы (2) обычно при помощи сжигания серы или разложении ее ангидрида:

  • 2S2+O 2 = 2SO;
  • 2SO2 = 2SO+O2.

В воде вещество растворяется. В результате оксид серы образует тиосерную кислоту:

  • S 2 O 2 +H 2 O = H 2 S 2 O 3 .

Общие данные о сернистом газе

Оксид серы - очередная форма оксидов серы с химической формулой SO 2 . Имеет неприятный специфический запах и не имеет цвета. Подвергаясь давлению, может зажигаться при комнатной температуре. При растворении в воде образует нестойкую сернистую кислоту. Может растворяться в растворах этанола и серной кислоты. Является компонентом вулканического газа.

В промышленности получают сжиганием серы или обжигом ее сульфидов:

  • 2FeS 2 +5O 2 = 2FeO+4SO 2 .

В лабораториях, как правило, SO 2 получают при помощи сульфитов и гидросульфитов, подвергая их воздействию сильной кислоты, а также воздействию на металлы с маленькой степенью активности концентрированной H 2 SO 4 .

Как и другие серные оксиды, SO 2 является кислотным оксидом. Взаимодействуя со щелочами, образуя различные сульфиты, вступает в реакции с водой, создавая серную кислоту.

SO 2 чрезвычайно активен, и это ярко выражается в его восстановительных свойствах, где окислительная степень оксида серы возрастает. Может проявлять свойства окислителя, если на него воздействует сильный восстановитель. Последнюю характерную особенность используют для производства фосфорноватистой кислоты, или для отделения S от газов металлургической области деятельности.

Оксид серы (4) широко используется человеком для получения сернистой кислоты или ее солей - это его основная область применения. А также он участвует в процессах виноделия и выступает там в роли консерванта (E220), иногда им протравливают овощехранилища и склады, так как он уничтожает микроорганизмы. Материалы, которые нельзя подвергать отбеливанию хлором, обрабатывают оксидом серы.

SO 2 - довольно токсичное соединение. Характерные симптомы, указывающие на отравление им, - это откашливание, появление проблем с дыханием, как правило, в виде насморка, охриплости, появление необычного привкуса и першение в горле. Вдыхание такого газа может вызвать удушье, нарушение речевой способности индивида, рвоту, затруднение процесса глотания, а также легочный отек в острой форме. Максимально допустимой концентрацией этого вещества в рабочем помещении является 10мг/м 3 . Однако у различных людей организм может проявлять и разную чувствительность к сернистому газу.

Общие данные о серном ангидриде

Серный газ, или, как его называют, серный ангидрид, - это высший оксид серы с химической формулой SO 3 . Жидкость с удушливым запахом, легколетучая при стандартных условиях. Способна застывать, образовывая смеси кристаллического типа из его твердых модификаций, при температуре от 16.9 °C и ниже.

Детальный разбор высшего оксида

При окислении SO 2 воздухом под воздействием высоких температур, необходимым условием является наличие катализатора, например V 2 O 5 , Fe 2 O 3 , NaVO 3 или Pt.

Термическое разложение сульфатов либо взаимодействие озона и SO 2:

  • Fe 2 (SO 4)3 = Fe 2 O 3 +3SO 3 ;
  • SO 2 +O 3 = SO 3 +O 2 .

Окисление SO 2 при помощи NO 2:

  • SO 2 +NO 2 = SO 3 +NO.

К физическим качественным характеристикам относятся: наличие в состоянии газа плоского строения, тригонального типа и D 3 h симметрии, во время перехода от газа к кристаллу или жидкости образует тример циклического характера и зигзагообразную цепь, имеет ковалентную полярную связь.

В твердой форме SO 3 встречается в альфа, бета, гамма и сигма формах, при этом он имеет, соответственно, разную температуру плавления, степень проявления полимеризации и разнообразную кристаллическую форму. Существование такого количества видов SO 3 обусловлено образованием связей донорно-акцепторного типа.

К свойствам ангидрида серы можно отнести множество его качеств, основными из них являются:

Способность взаимодействовать с основаниями и оксидами:

  • 2KHO+SO 3 = K 2 SO 4 +H 2 O;
  • CaO+SO 3 = CaSO 4 .

Высший серный оксид SO 3 имеет достаточно большую активность и создает серную кислоту, взаимодействуя с водой:

  • SO 3 +H 2 O = H2SO 4.

Вступает в реакции взаимодействия с хлороводородом и образует хлоросульфатную кислоту:

  • SO 3 +HCl = HSO 3 Cl.

Для оксида серы характерным является проявление сильных окислительных свойств.

Применение серный ангидрид находит в создании серной кислоты. Небольшое его количество выделяется в окружающую среду во время использования серных шашек. SO 3 , образуя серную кислоту после взаимодействия с влажной поверхностью, уничтожает разнообразные опасные организмы, например грибки.

Подводя итоги

Оксид серы может находиться в разных агрегатных состояниях, начиная с жидкости и заканчивая твердой формой. В природе встречается редко, а способов его получения в промышленности довольно много, как и сфер, где его можно использовать. Сам оксид имеет три формы, в которых он проявляет различную степень валентности. Может быть очень токсичным и вызывать серьезные проблемы со здоровьем.



Понравилась статья? Поделитесь с друзьями!