Определение погрешности онлайн. Расчет погрешностей прямых измерений

Задача ставится так: пусть искомая величина z определяется через другие величины a, b, c , ..., полученные при прямых измерениях

z = f (a, b, c,...) (1.11)

Необходимо найти среднее значение функции и погрешность ее измерений, т.е. найти доверительный интервал

при надежности a и относительную погрешность.

Что касается, то оно находится путем подстановки в правую часть (11) вместо a, b, c ,... их средних значений

3. Оценить полуширину доверительного интервала для результата косвенных измерений

,

где производные... вычисляются при

4. Определить относительную погрешность результата

5. Если зависимость z от a, b, c ,... имеет вид , где k, l, m ‒ любые действительные числа, то сначала следует найти относительную ошибку

а затем абсолютную .

6. Окончательный результат записать в виде

z = ± Dz , ε = …% при a= … .

Примечание:

При обработке результатов прямых измерений нужно следовать следующему правилу: численные значения всех рассчитываемых величин должны содержать на один разряд больше, чем исходные (определенные экспериментально) величины.

При косвенных измерениях вычисления производить по правилам приближенных вычислений :

Правило 1. При сложении и вычитании приближенных чисел необходимо:

а) выделить слагаемое, у которого сомнительная цифра имеет наиболее высокий разряд;

б) все остальные слагаемые округлить до следующего разряда (сохраняется одна запасная цифра);

в) произвести сложение (вычитание);

г) в результате отбросить последнюю цифру путем округления (разряд сомнительной цифры результата при этом совпадает со старшим из разрядов сомнительных цифр слагаемых).

Пример: 5,4382·10 5 – 2,918·10 3 + 35,8 + 0,064.

В этих числах последние значащие цифры сомнительные (неверные уже отброшены). Запишем их в виде 543820 – 2918 + 35,8 + 0,064.

Видно, что у первого слагаемого сомнительная цифра 2 имеет наиболее высокий разряд (десятки). Округлив все другие числа до следующего разряда и сложив, получим

543820 – 2918 + 36 + 0 = 540940 = 5,4094·10 5 .

Правило 2. При умножении (делении) приближенных чисел необходимо:

а) выделить число (числа) с наименьшим количеством значащих цифр (ЗНАЧАЩИЕ – цифры отличные от ноля и ноли стоящие между ними );

б) округлить остальные числа так, чтобы в них было на одну значащую цифру больше (сохраняется одна запасная цифра), чем выделенном по п. а;

в) перемножить (разделить) полученные числа;

г) в результате оставить столько значащих цифр, сколько их было в числе (числах) с наименьшим количеством значащих цифр.

Пример: .

Правило 3. При возведении в степень, при извлечении корня в результате сохраняется столько значащих цифр, сколько их в исходном числе.

Пример: .

Правило 4. При нахождении логарифма числа мантисса логарифма должна иметь столько значащих цифр, сколько их в исходном числе:

Пример: .

В окончательной записиабсолютной погрешности следует оставлять только одну значащую цифру . (Если этой цифрой окажется 1, то после нее сохраняют еще одну цифру).

Среднее значение округляется до того же разряда, что и абсолютная погрешность.

Например: V = (375,21 0,03) см 3 = (3,7521 0,0003) см 3 .

I = (5,530 0,013) А, A = Дж.

Порядок выполнения работы

Определение диаметра цилиндра .

1. Штангенциркулем измерить 7 раз (в разных местах и направлениях) диаметр цилиндра. Результаты записать в таблицу.

№ п/п d i , мм d i - (d i - ) 2 h i , мм и

Похожая информация:

Погрешности измеряемых и табличных величин обуславливают погрешности DХ ср косвенно определяемой величины, причем наибольший вклад в DХ ср дают наименее точные величины, имеющие максимальную относительную погрешность d . Поэтому, для повышения точности косвенных измерений, необходимо добиваться равноточности прямых измерений

(d А, d В, d С, …).

Правила нахождения погрешностей косвенных измерений:

1. Находят натуральный логарифм от заданной функции

ln{X = f(A,B,C,…)};

2. Находят полный дифференциал (по всем переменным) от найденного натурального логарифма заданной функции;

3. Заменяют знак дифференциала d на знак абсолютной погрешности D;

4. Заменяют все «минусы», стоящими перед абсолютными погрешностями DА, DВ, DС , … на «плюсы».

В результате получается формула наибольшей относительной погрешности d x косвенно измеренной величины Х:

d x = = j (A ср, B ср, C ср, …, DA ср, DB ср, DC ср, …). (18)

По найденной относительной погрешности d x определяют абсолютную погрешность косвенного измерения:

DХ ср = d x . Х ср . (19)

Результат косвенных измерений записывают в стандартном виде и изображают на числовой оси:

X = (X ср ± DХ ср), ед.изм. (20)


Пример :

Найти значения относительной и средней погрешностей физической величины L , определяемой косвенно по формуле:

, (21)

где π, g, t, k, α, β – величины, значения которых измерены или взяты из справочных таблиц и занесены в таблицу результатов измерений и табличных данных (подобную табл.1).

1. Вычисляют среднее значение L ср , подставляя в (21) средние значения из таблицы – π ср, g ср, t ср, k ср, α ср, β ср.

2. Определяют наибольшую относительную погрешность δ L :

a). Логарифмируют формулу (21):

b). Дифференцируют полученное выражение (22):

c).Заменяют знак дифференциала d на Δ, а «минусы» перед абсолютными погрешностями – на «плюсы», и получают выражение для наибольшей относительной погрешности δ L :

d). Подставляя в полученное выражение средние значения входящих величин и их погрешностей из таблицы результатов измерений, вычисляют δ L .

3. Затем вычисляют абсолютную погрешность ΔL ср :

Результат записывают в стандартном виде и изображают графически на оси L :

, ед. изм.

ЭЛЕМЕНТАРНЫЕ ОЦЕНКИ ПОГРЕШНОСТЕЙ ИЗМЕРЕНИЙ

Измерение есть нахождение значения физической величины опытным путем с помощью специальных технических средств - мер, измерительных приборов.

Мера есть средство измерений, воспроизводящее физическую величину заданного размера - единица измерения, ее кратное или дробное значение. Например, гири 1 кг, 5 кг, 10 кг.

Измерительный прибор есть средство измерений, предназначенное для выработки сигнала измерительной информации в форме, доступной для непосредственного восприятия наблюдателем. Измерительный прибор позволяет прямо или косвенно сравнивать измеряемую величину с мерами. Измерения также разделяют на прямые и косвенные.

При прямых измерениях искомое значение величины находят непосредственно из основных (опытных) данных.

При косвенных измерениях искомое значение величины находят на основании известной зависимости между этой величиной и величинами, подвергаемыми прямым измерениям. Принцип измерений есть совокупность физических явлений, на которых основаны измерения.

Метод измерений - совокупность приемов использования принципов и средств измерений. Значение физической величины, которое идеальным образом отражало бы в качественном и количественном отношениях соответствующее свойство данного объекта есть истинное значение физической величины. Значение физической величины, найденное путем ее измерения есть результат измерения.

Отклонение результата измерения от истинного значения измеряемой величины есть погрешность измерения.

Абсолютная погрешность измерения есть погрешность измерения, выраженная в единицах измеряемой величины и равная разности результата и истинного значения измеряемой величины. Отношение абсолютной погрешности к истинному значению измеряемой величины есть относительная погрешность измерения.

Вклад в погрешность измерения вносят погрешности средств измерений (инструментальная или приборная погрешность), несовершенство метода измерений, погрешность отсчитывания по шкале прибора, внешние влияния на средства и объекты измерений, запаздывание реакции человека на световой и звуковой сигналы.

По характеру проявления погрешности делят на систематические и случайные. Случайным называется событие, которое при заданном комплексе факторов может произойти или не произойти.

Случайная погрешность - составляющая погрешности измерения, изменяющаяся случайным образом при повторных измерениях одной и той же величины. Характерным признаком случайных погрешностей является изменение величин и знака погрешности в неизменных условиях измерений.

Систематическая погрешность - составляющая погрешности измерения, остающаяся постоянной или закономерно изменяющаяся при повторных измерениях одной и той же величины. Систематические погрешности в принципе могут быть исключены путем поправок, применением более точных приборов и методов (хотя на практике обнаружить систематическую погрешность не всегда легко). Исключить случайные погрешности отдельных измерений невозможно, математическая теория случайных явлений (теория вероятности) позволяет лишь установить обоснованную оценку их величины.

Погрешности прямых измерений

Положим, что систематические погрешности исключены и погрешности результатов измерений являются только случайными. Обозначим буквами - результаты измерений физической величины, истинное значение которого равно. Абсолютные погрешности результатов отдельных измерений обозначены:

Суммируя получено левые и правые стороны равенства (1), получим:


(2)

В основе теории случайных погрешностей лежат подтверждаемые опытом предположения:

    погрешности могут принимать непрерывный ряд значений;

    при большом числе измерений случайные погрешности одинаковой величины, но разного знака встречаются одинаково часто;

    вероятность появления погрешности уменьшается с ростом ее величины. Необходимо также, чтобы погрешности были малы по сравнению с измеряемой величиной и независимы.

Согласно предположению (1) при числе измерений n   получим



,

Однако, всегда число измерений конечно и остается неизвестным. Но для практических целей достаточно найти экспериментальным путем значение физической величины настолько приближающееся к истинному, чтоможет быть использована вместо истинного. Вопрос в том, как оценить степень этого приближения?

По теории вероятности среднее арифметическое серии измерений достовернее результатов отдельных измерений, т.к. случайные отклонения от истинного значения в разные стороны равновероятны. За вероятность появления величины a i в интервале шириной 2a i понимают относительную частоту появления значений a i , попадающих в интервал 2a i к числу всех появляющихся значений a i при числе опытов (измерений), стремящихся к бесконечности. Очевидно, что вероятность достоверного события равна единице, вероятность невозможного события равна нулю, т.е. 0    100 %.

Вероятность того, что искомая величина (истинное значение ее) содержится в интервале (a - a, a + a) назовем доверительной вероятностью (надежностью) , а соответствующий  интервал (a - a, a + a) - доверительным интервалом; чем меньше величина погрешности a, тем меньше и вероятность того, что измеряемая величина содержится в интервале, определенной этой погрешностью. Верно и обратное утверждение: чем меньше надежность результата, тем уже доверительный интервал искомой величины.

При большом n (практически при n  100) полуширина доверительного интервала при заданной надежности  равна


, (3)

где K() = 1 при  = 0,68; K() = 2 при  = 0,95; K() = 3 при  = 0,997.

При малом числе измерений, что чаще всего и встречается в студенческом лабораторном практикуме, коэффициент K()в (3) зависит не только от , но еще и от числа измерений n. Поэтому мы всегда будем при наличии только случайной погрешности полуширину доверительного интервала находить по формуле


(4)

В (4) коэффициент t  n называется коэффициентом Стьюдента. Для  = 0,95 принятой в студенческом практикуме, значения t  n таковы:

Величину называют среднеквадратичной погрешностью среднего арифметического из серии измерений.

Погрешность прибора или меры обычно указывается в паспорте его (ее) или условным знаком на шкале прибора. Обычно под погрешностью прибора  понимают полуширину интервала, внутри которого с вероятностью измерений 0,997 может быть заключена измеряемая величина, если погрешность измерений обусловлена только погрешностью прибора. В качестве общей (полной) погрешности результата измерений примем с вероятностью  = 0,95

Абсолютная погрешность позволяет установить в каком знаке полученного результата содержится неточность. Относительная погрешность дает информацию о том, какую долю (процент) измеряемой величины составляет погрешность (полуширина доверительного интервала).

Окончательный результат серии прямых измерений величины a 0 запишем в виде


.

Например


(6)

Таким образом, любая физическая величина, найденная опытным путем, должна быть представлена:


Пусть некоторая случайная величина a измеряется n раз в одинаковых условиях. Результаты измерений дали набор n различных чисел

Абсолютная погрешность - величина размерная. Среди n значений абсолютных погрешностей обязательно встречаются как положительные, так и отрицательные.

За наиболее вероятное значение величины а обычно принимают среднее арифметическое значение результатов измерений

.

Чем больше число измерений, тем ближе среднее значение к истинному.

Абсолютной погрешностью i

.

Относительной погрешностью i -го измерения называется величина

Относительная погрешность - величина безразмерная. Обычноотносительная погрешность выражается в процентах, для этого e i домножают на 100%. Величина относительной погрешности характеризует точность измерения.

Средняя абсолютная погрешность определяется так:

.

Подчеркнем необходимость суммирования абсолютных значений (модулей) величин Dа i . В противном случае получится тождественный нулевой результат.

Средней относительной погрешностью называется величина

.

При большом числе измерений .

Относительную погрешность можно рассматривать как значение погрешности, приходящееся на единицу измеряемой величины.

О точности измерений судят на основании сравнения погрешностей результатов измерений. Поэтому погрешности измерений выражают в такой форме, чтобы для оценки точности достаточно было сопоставить только одни погрешности результатов, не сравнивая при этом размеры измеряемых объектов или зная эти размеры весьма приближенно. Из практики известно, что абсолютная погрешность измерения угла не зависит от значения угла, а абсолютная погрешность измерения длины зависит от значения длины. Чем больше значение длины, тем при данном методе и условиях измерения абсолютная погрешность будет больше. Следовательно, по абсолютной погрешности результата о точности измерения угла судить можно, а о точности измерения длины нельзя. Выражение погрешности в относительной форме позволяет сравнивать в известных случаях точность угловых и линейных измерений.


Основные понятия теории вероятности. Случайная погрешность.

Случайной погрешностью называют составляющую погрешности измерений, изменяющуюся случайным образом при повторных измерениях одной и той же величины.

При проведении с одинаковой тщательностью и в одинаковых условиях повторных измерений одной и той же постоянной неизменяющейся величины мы получаем результаты измерений – некоторые из них отличаются друг от друга, а некоторые совпадают. Такие расхождения в результатах измерений говорят о наличии в них случайных составляющих погрешности.

Случайная погрешность возникает при одновременном воздействии многих источников, каждый из которых сам по себе оказывает незаметное влияние на результат измерения, но суммарное воздействие всех источников может оказаться достаточно сильным.

Случайные ошибки являются неизбежным следствием любых измерений и обусловлены:

а) неточностью отсчетов по шкале приборов и инструментов;

б) не идентичностью условий повторных измерений;

в) беспорядочными изменениями внешних условий (температуры, давления, силового поля и т.д.), которые невозможно контролировать;

г) всеми другими воздействиями на измерения, причины которых нам неизвестны. Величину случайной погрешности можно свести к минимуму путем многократного повторения эксперимента и соответствующей математической обработки полученных результатов.

Случайная ошибка может принимать различные по абсолютной величине значения, предсказать которые для данного акта измерения невозможно. Эта ошибка в равной степени может быть как положительной, так и отрицательной. Случайные ошибки всегда присутствуют в эксперименте. При отсутствии систематических ошибок они служат причиной разброса повторных измерений относительно истинного значения.

Допустим, что при помощи секундомера измеряют период колебаний маятника, причем измерение многократно повторяют. Погрешности пуска и остановки секундомера, ошибка в величине отсчета, небольшая неравномерность движения маятника – все это вызывает разброс результатов повторных измерений и поэтому может быть отнесено к категории случайных ошибок.

Если других ошибок нет, то одни результаты окажутся несколько завышенными, а другие несколько заниженными. Но если, помимо этого, часы еще и отстают, то все результаты будут занижены. Это уже систематическая ошибка.

Некоторые факторы могут вызвать одновременно и систематические и случайные ошибки. Так, включая и выключая секундомер, мы можем создать небольшой нерегулярный разброс моментов пуска и остановки часов относительно движения маятника и внести тем самым случайную ошибку. Но если к тому же мы каждый раз торопимся включить секундомер и несколько запаздываем выключить его, то это приведет к систематической ошибке.

Случайные погрешности вызываются ошибкой параллакса при отсчете делений шкалы прибора, сотрясении фундамента здания, влиянием незначительного движения воздуха и т.п.

Хотя исключить случайные погрешности отдельных измерений невозможно, математическая теория случайных явлений позволяем уменьшить влияние этих погрешностей на окончательный результат измерений. Ниже будет показано, что для этого необходимо произвести не одно, а несколько измерений, причем, чем меньшее значение погрешности мы хотим получить, тем больше измерений нужно провести.

В связи с тем, что возникновение случайных погрешностей неизбежно и неустранимо, основной задачей всякого процесса измерения является доведение погрешностей до минимума.

В основе теории погрешностей лежат два основных предположения, подтверждаемых опытом:

1. При большом числе измерений случайные погрешности одинаковой величины, но разного знака, т.е погрешности в сторону увеличения и уменьшения результата встречаются достаточно часто.

2. Большие по абсолютной величине погрешности встречаются реже, чем малые, таким образом, вероятность возникновения погрешности уменьшается с ростом ее величины.

Поведение случайных величин описывают статистические закономерности, которые являются предметом теории вероятностей. Статистическим определением вероятности w i события i является отношение

где n - общее число опытов, n i - число опытов, в которых событие i произошло. При этом общее число опытов должно быть очень велико (n ®¥). При большом числе измерений случайные ошибки подчиняются нормальному распределению (распределение Гаусса), основными признаками которого являются следующие:

1. Чем больше отклонение значения измеренной величины от истинного, тем меньше вероятность такого результата.

2. Отклонения в обе стороны от истинного значения равновероятны.

Из приведенных выше допущений вытекает, что для уменьшения влияния случайных ошибок необходимо произвести измерение данной величины несколько раз. Предположим, что мы измеряем некоторую величину x. Пусть произведено n измерений: x 1 , x 2 , ... x n - одним и тем же методом и с одинаковой тщательностью. Можно ожидать, что число dn полученных результатов, которые лежат в некотором достаточно узком интервале от x до x + dx , должно быть пропорционально:

Величине взятого интервала dx ;

Общему числу измерений n .

Вероятность dw (x ) того, что некоторое значение x лежит в интервале от x до x + dx, определяется следующим образом:

(при числе измерений n ®¥).

Функция f (х ) называется функцией распределения или плотностью вероятности.

В качестве постулата теории ошибок принимается, что результаты прямых измерений и их случайные погрешности при большом их количестве подчиняются закону нормального распределения.

Найденная Гауссом функция распределения непрерывной случайной величины x имеет следующий вид:

, где mиs - параметры распределения.

Параметрmнормального распределения равен среднему значению áx ñ случайной величины, которое при произвольной известной функции распределения определяется интегралом

.

Таким образом, величина m является наиболее вероятным значением измеряемой величины x, т.е. ее наилучшей оценкой.

Параметр s 2 нормального распределения равен дисперсии D случайной величины, которая в общем случае определяется следующим интегралом

.

Квадратный корень из дисперсии называется средним квадратическим отклонением случайной величины .

Среднее отклонение (погрешность) случайной величины ásñ определяется с помощью функции распределения следующим образом

Средняя погрешность измерений ásñ, вычисленная по функции распределения Гаусса, соотносится с величиной среднего квадратического отклонения s следующим образом:

< s> = 0,8s .

Параметры s и m связаны между собой следующим образом:

.

Это выражение позволяет находить среднее квадратическое отклонение s , если имеется кривая нормального распределения.

График функции Гаусса представлен на рисунках. Функция f (x ) симметрична относительно ординаты, проведенной в точке x = m; проходит через максимум в точке x = m и имеет перегиб в точках m ±s. Таким образом, дисперсия характеризует ширину функции распределения, или показывает, насколько широко разбросаны значения случайной величины относительно ее истинного значения. Чем точнее измерения, тем ближе к истинному значению результаты отдельных измерений, т.е. величина s - меньше. На рисунке A изображена функция f (x ) для трех значений s.

Площадь фигуры, ограниченной кривой f (x ) и вертикальными прямыми, проведенными из точек x 1 и x 2 (рис.Б), численно равна вероятности попадания результата измерения в интервал Dx = x 1 - x 2 , которая называется доверительной вероятностью. Площадь под всей кривой f (x ) равна вероятности попадания случайной величины в интервал от 0 до ¥, т.е.

,

так как вероятность достоверного события равна единице.

Используя нормальное распределение, теория ошибок ставит и решает две основные задачи. Первая - оценка точности проведенных измерений. Вторая - оценка точности среднего арифметического значения результатов измерений.5. Доверительный интервал. Коэффициент Стъюдента.

Теория вероятностей позволяет определить величину интервала, в котором с известной вероятностью w находятся результаты отдельных измерений. Эта вероятность называется доверительной вероятностью , а соответствующий интервал (<x > ± Dx ) w называется доверительным интервалом. Доверительная вероятность также равна относительной доле результатов, оказавшихся внутри доверительного интервала.

Если число измерений n достаточно велико, то доверительная вероятность выражает долю из общего числа n тех измерений, в которых измеренная величина оказалась в пределах доверительного интервала. Каждой доверительной вероятности w соответствует свой доверительный интервал.w 2 80%. Чем шире доверительный интервал, тем больше вероятность получить результат внутри этого интервала. В теории вероятностей устанавливается количественная связь между величиной доверительного интервала, доверительной вероятностью и числом измерений.

Если в качестве доверительного интервала выбрать интервал, соответствующий средней погрешности, то есть Da = áDа ñ, то при достаточно большом числе измеренийон соответствует доверительной вероятности w 60%. При уменьшении числа измерений доверительная вероятность, соответствующая такому доверительному интервалу (áа ñ ± áDа ñ), уменьшается.

Таким образом, для оценки доверительного интервала случайной величины можно пользоваться величиной средней погрешностиáDа ñ.

Для характеристики величины случайной погрешности необходимо задать два числа, а именно, величину доверительного интервала и величину доверительной вероятности. Указание одной только величины погрешности без соответствующей ей доверительной вероятности в значительной мере лишено смысла.

Если известна средняя погрешность измерения ásñ, доверительный интервал, записанный в виде (<x > ± ásñ) w , определен с доверительной вероятностью w = 0,57.

Если известно среднее квадратическое отклонение s распределения результатов измерений, указанный интервал имеет вид (<x t w s) w , где t w - коэффициент, зависящий от величины доверительной вероятности и рассчитывающийся по распределению Гаусса.

Наиболее часто используемые величиныDx приведены в таблице 1.

Часто в жизни нам приходится сталкиваться с различными приближенными величинами. Приближенные вычисления - всегда вычисления с некоторой погрешностью.

Понятие абсолютной погрешности

Абсолютная погрешность приближенного значения это модуль разности точного значения и приближенного значения.
То есть из точного значения нужно вычесть приближенное значение и взять полученное число по модулю. Таким образом, абсолютная погрешность всегда величина положительная.

Как вычислять абсолютную погрешность

Покажем, как это может выглядеть на практике. Например, у нас имеется график некоторой величины, пускай это будет парабола: y=x^2.

По графику мы сможем определить приблизительное значение в некоторых точках. Например, при x=1.5 значение у приблизительно равно 2.2 (y≈2.2).

По формуле y=x^2 мы можем найти точное значение в точке x=1.5 у= 2.25.

Теперь вычислим абсолютную погрешность наших измерений. |2.25-2.2|=|0.05| = 0.05.

Абсолютная погрешность равна 0.05. В таких случаях еще говорят значение вычислено с точность до 0.05.

Часто бывает так, что точное значение не всегда можно найти, а, следовательно, абсолютную погрешность не всегда возможно найти.

Например, если мы будем вычислять расстояние между двумя точками с помощью линейки, или значение угла между двумя прямыми с помощью транспортира, то мы получим приближенные значения. А вот точное значение вычислить невозможно. В данном случае, мы можем указать такое число, больше которого значение абсолютной погрешности быть не может.

В примере с линейкой это будет 0.1 см, так как цена деления на линейке 1 миллиметр. В примере для транспортира 1 градус потому, что шкала транспортира проградуирована через каждый градус. Таким образом, значения абсолютной погрешности в первом случае 0.1, а во втором случае 1.

Нужна помощь в учебе?



Предыдущая тема:

1. Введение

Работа химиков, физиков и представителей других естественно-научных профессий часто связана с выполнением количественных измерений различных величин. При этом возникает вопрос анализа достоверности получаемых значений, обработки результатов непосредственных измерений и оценки погрешностей расчетов, в которых используются значения непосредственно измеряемых характеристик (последний процесс также называется обработкой результатов косвенных измерений). По целому ряду объективных причин знания выпускников химического факультета МГУ о расчете погрешностей не всегда достаточны для правильной обработки получаемых данных. В качестве одной из таких причин можно назвать отсутствие в учебном плане факультета курса по статистической обработке результатов измерений.

К данному моменту вопрос вычисления погрешностей, безусловно, изучен исчерпывающе. Существует большое количество методических разработок, учебников и т.д., в которых можно почерпнуть информацию о расчете погрешностей. К сожалению, большинство подобных работ перегружено дополнительной и не всегда нужной информации. В частности, большинство работ студенческих практикумов не требует таких действий, как сравнение выборок, оценка сходимости и др. Поэтому кажется целесообразным создание краткой разработки, в которой изложены алгоритмы наиболее часто употребляемых вычислений, чему и посвящена данная разработка.

2. Обозначения, принятые в данной работе

Измеряемая величина, -среднее значение измеряемой величины, - абсолютная погрешность среднего значения измеряемой величины, - относительная погрешность среднего значения измеряемой величины.

3. Расчет погрешностей непосредственных измерений

Итак, предположим, что были проведены n измерений одной и той же величины в одних и тех же условиях. В этом случае можно рассчитать среднее значение этой величины в проведенных измерениях:

(1)

Как вычислить погрешность ? По следующей формуле:

(2)

В этой формуле используется коэффициент Стьюдента . Его значения при разных доверительных вероятностях и значениях приведены в .

3.1. Пример расчета погрешностей непосредственных измерений:

Задача.

Проводили измерения длины металлического бруска. Было сделано 10 измерений и получены следующие значения: 10 мм, 11 мм, 12 мм, 13 мм, 10 мм, 10 мм, 11 мм, 10 мм, 10 мм, 11 мм. Требуется найти среднее значение измеряемой величины (длины бруска) и его погрешность .

Решение.

С использованием формулы (1) находим:

мм

Теперь с использованием формулы (2) найдем абсолютную погрешность среднего значения при доверительной вероятности и числе степеней свободы (используем значение =2,262, взятое из ):


Запишем результат:

10,8±0,7 0.95 мм

4. Расчет погрешностей косвенных измерений

Предположим, что в ходе эксперимента измеряются величины , а затем c использованием полученных значений вычисляется величина по формуле . При этом погрешности непосредственно измеряемых величин рассчитываются так, как это было описано в пункте 3.

Расчет среднего значения величины производится по зависимости с использованием средних значений аргументов .

Погрешность величины рассчитывается по следующей формуле:

,(3)

где - количество аргументов , - частные производные функции по аргументам , - абсолютная погрешность среднего значения аргумента .

Абсолютная погрешность, как и в случае с прямыми измерениями, рассчитывается по формуле .

4.1. Пример расчета погрешностей непосредственных измерений:

Задача.

Было проведено 5непосредственных измерений величин и . Для величины получены значения: 50, 51, 52, 50, 47; для величины получены значения: 500, 510, 476, 354, 520. Требуется рассчитать значение величины , определяемой по формуле и найти погрешность полученного значения.

Абсолютная погрешность вычислений находится по формуле:

Знак модуля показывает, что нам без разницы, какое значение больше, а какое меньше. Важно, насколько далеко приближенный результат отклонился от точного значения в ту или иную сторону.

Относительная погрешность вычислений находится по формуле:
, или, то же самое:

Относительная погрешность показывает, на сколько процентов приближенный результат отклонился от точного значения. Существует версия формулы и без домножения на 100%, но на практике я почти всегда вижу вышеприведенный вариант с процентами.

После короткой справки вернемся к нашей задаче, в которой мы вычислили приближенное значение функции с помощью дифференциала.

Вычислим точное значение функции с помощью микрокалькулятора:
, строго говоря, значение всё равно приближенное, но мы будем считать его точным. Такие уж задачи встречаются.

Вычислим абсолютную погрешность :

Вычислим относительную погрешность:
, получены тысячные доли процента, таким образом, дифференциал обеспечил просто отличное приближение.

Ответ : , абсолютная погрешность вычислений , относительная погрешность вычислений

Следующий пример для самостоятельного решения:

Пример 4

в точке . Вычислить более точное значение функции в данной точке, оценить абсолютную и относительную погрешность вычислений.

Примерный образец чистового оформления и ответ в конце урока.

Многие обратили внимание, что во всех рассмотренных примерах фигурируют корни. Это не случайно, в большинстве случаев в рассматриваемой задаче действительно предлагаются функции с корнями.

Но для страждущих читателей я раскопал небольшой пример с арксинусом:

Пример 5

Вычислить приближенно с помощью дифференциала значение функции в точке

Этот коротенький, но познавательный пример тоже для самостоятельного решения. А я немного отдохнул, чтобы с новыми силами рассмотреть особое задание:

Пример 6

Вычислить приближенно с помощью дифференциала , результат округлить до двух знаков после запятой.

Решение: Что нового в задании? По условию требуется округлить результат до двух знаков после запятой. Но дело не в этом, школьная задача округления, думаю, не представляет для вас сложностей. Дело в том, что у нас дан тангенс с аргументом, который выражен в градусах. Что делать, когда вам предлагается для решения тригонометрическая функция с градусами? Например, и т. д.

Алгоритм решения принципиально сохраняется, то есть необходимо, как и в предыдущих примерах, применить формулу

Записываем очевидную функцию

Значение нужно представить в виде . Серьёзную помощь окажет таблица значений тригонометрических функций . Кстати, кто её не распечатал, рекомендую это сделать, поскольку заглядывать туда придется на протяжении всего курса изучения высшей математики.


Анализируя таблицу, замечаем «хорошее» значение тангенса, которое близко располагается к 47 градусам:

Таким образом :

После предварительного анализа градусы необходимо перевести в радианы . Так, и только так!

В данном примере непосредственно из тригонометрической таблицы можно выяснить, что . По формуле перевода градусов в радианы: (формулы можно найти в той же таблице).

Дальнейшее шаблонно:

Таким образом : (при вычислениях используем значение ). Результат, как и требовалось по условию, округлён до двух знаков после запятой.

Ответ:

Пример 7

Вычислить приближенно с помощью дифференциала , результат округлить до трёх знаков после запятой.

Это пример для самостоятельного решения. Полное решение и ответ в конце урока.

Как видите, ничего сложного, градусы переводим в радианы и придерживаемся обычного алгоритма решения.

Приближенные вычисления с помощью полного дифференциала функции двух переменных

Всё будет очень и очень похоже, поэтому, если вы зашли на эту страницу именно этим заданием, то сначала рекомендую просмотреть хотя бы пару примеров предыдущего пункта.

Для изучения параграфа необходимо уметь находить частные производные второго порядка , куда ж без них. На вышеупомянутом уроке функцию двух переменных я обозначал через букву . Применительно к рассматриваемому заданию удобнее использовать эквивалентное обозначение .

Как и для случая функции одной переменной, условие задачи может быть сформулировано по-разному, и я постараюсь рассмотреть все встречающиеся формулировки.

Пример 8

Решение: Как бы ни было записано условие, в самом решении для обозначения функции, повторюсь, лучше использовать не букву «зет», а .

А вот и рабочая формула:

Перед нами фактически старшая сестра формулы предыдущего параграфа. Переменная только прибавилась. Да что говорить, сам алгоритм решения будет принципиально таким же !

По условию требуется найти приближенное значение функции в точке .

Число 3,04 представим в виде . Колобок сам просится, чтобы его съели :
,

Число 3,95 представим в виде . Дошла очередь и до второй половины Колобка:
,

И не смотрите на всякие лисьи хитрости, Колобок есть - надо его съесть.

Вычислим значение функции в точке :

Дифференциал функции в точке найдём по формуле:

Из формулы следует, что нужно найти частные производные первого порядка и вычислить их значения в точке .

Вычислим частные производные первого порядка в точке :

Полный дифференциал в точке :

Таким образом, по формуле приближенное значение функции в точке :

Вычислим точное значение функции в точке :

Вот это значение является абсолютно точным.

Погрешности рассчитываются по стандартным формулам, о которых уже шла речь в этой статье.

Абсолютная погрешность:

Относительная погрешность:

Ответ: , абсолютная погрешность: , относительная погрешность:

Пример 9

Вычислить приближенное значение функции в точке с помощью полного дифференциала, оценить абсолютную и относительную погрешность.

Это пример для самостоятельного решения. Кто остановится подробнее на данном примере, тот обратит внимание на то, что погрешности вычислений получились весьма и весьма заметными. Это произошло по следующей причине: в предложенной задаче достаточно велики приращения аргументов: .

Общая закономерность таков а - чем больше эти приращения по абсолютной величине, тем ниже точность вычислений. Так, например, для похожей точки приращения будут небольшими: , и точность приближенных вычислений получится очень высокой.

Данная особенность справедлива и для случая функции одной переменной (первая часть урока).

Пример 10


Решение: Вычислим данное выражение приближенно с помощью полного дифференциала функции двух переменных:

Отличие от Примеров 8-9 состоит в том, что нам сначала необходимо составить функцию двух переменных: . Как составлена функция, думаю, всем интуитивно понятно.

Значение 4,9973 близко к «пятерке», поэтому: , .
Значение 0,9919 близко к «единице», следовательно, полагаем: , .

Вычислим значение функции в точке :

Дифференциал в точке найдем по формуле:

Для этого вычислим частные производные первого порядка в точке .

Производные здесь не самые простые, и следует быть аккуратным:

;


.

Полный дифференциал в точке :

Таким образом, приближенное значение данного выражения:

Вычислим более точное значение с помощью микрокалькулятора: 2,998899527

Найдем относительную погрешность вычислений:

Ответ: ,

Как раз иллюстрация вышесказанному, в рассмотренной задаче приращения аргументов очень малы , и погрешность получилась фантастически мизерной.

Пример 11

С помощью полного дифференциала функции двух переменных вычислить приближенно значение данного выражения. Вычислить это же выражение с помощью микрокалькулятора. Оценить в процентах относительную погрешность вычислений.

Это пример для самостоятельного решения. Примерный образец чистового оформления в конце урока.

Как уже отмечалось, наиболее частный гость в данном типе заданий - это какие-нибудь корни. Но время от времени встречаются и другие функции. И заключительный простой пример для релаксации:

Пример 12

С помощью полного дифференциала функции двух переменных вычислить приближенно значение функции , если

Решение ближе к дну страницы. Еще раз обратите внимание на формулировки заданий урока, в различных примерах на практике формулировки могут быть разными, но это принципиально не меняет сути и алгоритма решения.

Если честно, немного утомился, поскольку материал был нудноватый. Непедагогично это было говорить в начале статьи, но сейчас-то уже можно =) Действительно, задачи вычислительной математики обычно не очень сложны, не очень интересны, самое важное, пожалуй, не допустить ошибку в обычных расчётах.

Да не сотрутся клавиши вашего калькулятора!

Решения и ответы:

Пример 2 :

Решение: Используем формулу:
В данном случае: , ,


Таким образом:

Ответ:

Пример 4:

Решение: Используем формулу:
В данном случае: , ,


Таким образом:

Вычислим более точное значение функции с помощью микрокалькулятора:

Абсолютная погрешность:

Относительная погрешность:


Ответ: , абсолютная погрешность вычислений , относительная погрешность вычислений

Пример 5:

Решение: Используем формулу:

В данном случае: , ,


Таким образом :

Ответ:

Пример 7:

Решение: Используем формулу:
В данном случае: , ,



Понравилась статья? Поделитесь с друзьями!