Определение упругих постоянных материала. Закон Гука

Упругие постоянные кристаллов. I

Содержание: Общие представления. Введение. Напряжение и деформация. Модули упругости и постоянные упругости. Упругость в «классической форме». Тензорные обозначения и уравнение движения. Физический смысл упругих постоянных. Атомистические теории упругих постоянных. Другие тензорные свойства. Взаимосвязь теории упругости с другими разделами физики. Экспериментальные методы. Статические измерения. Динамические измерения. Использование взаимодействия решетки с излучением. Упругие постоянные различных веществ. Щелочно-галоидные соединения. Одновалентные металлы. Многовалентные металлы. Кристаллы с решеткой алмаза или цинковой обманки. Инертные газы в твердом состоянии. Ферромагнитные материалы. Пьезоэлектрические материалы. Поликристаллические материалы. Изменение упругих постоянных с температурой и давлением. Сводка экспериментальных результатов. Теория уравнения состояния. Влияние состава, фазовых изменений и релаксационных явлений. Неупругие эффекты. Некоторые сплавы и смеси.Влияние разбавленных твердых растворов. Влияние фазовых переходов на упругие постоянные. Влияние сверхпроводимости. Влияние дислокаций. Действие радиационных нарушений. Электронная релаксация при низких температурах.

Последний вопрос в теории упругости, который я разберу,— это попытка вычислить упругие постоянные материала, исходя иэ некоторых свойств атомов, составляющих этот материал. Мы рассмотрим простой случай ионного кубического кристалла типа хлористого натрия. Размер или форма деформированного кристалла изменяются. Такие изменения приводят к увеличению потенциальной энергии кристалла. Для вычисления изменения энергии деформации следует знать, куда идет каждый атом. Чтобы сделать полную энергию как можно меньше, атомы в решетке сложных кристаллов перегруппировываются весьма сложным образом. Это довольно сильно затрудняет вычисление энергии деформации. Но понять, что получается в случае простого кубического кристалла, все-таки можно. Возмущения внутри кристалла будут геометрически подобны возмущениям его внешних граней.

Упругие постоянные кубического кристалла можно вычислить следующим образом. Прежде всего мы предположим наличие некоего закона взаимодействия между каждой парой атомов в кристалле. Затем вычислим изменение внутренней энергии кристалла при отклонении от равновесной формы. Это даст нам соотношения между энергией и деформацией, которая квадратична по деформациям. Сравнивая энергию, полученную таким способом, с уравнением (39.13), можно идентифицировать коэффициенты при каждом слагаемом с упругими постоянными C ¡jkl .

В нашем примере мы будем предполагать следующий простой закон взаимодействия: между соседними атомами действуют центральные силы, имея в виду, что они действуют по линии, соединяющей два соседних атома. Мы ожидаем, что силы в ионных кристаллах должны быть именно такого типа, ибо в основе их лежит простое кулоновское взаимодействие. (При ковалентной связи силы обычно более сложны, ибо они приводят и к боковому давлению на соседние атомы; но нам все эти усложнения ни к чему.) Кроме того, мы собираемся учесть только силу взаимодействия каждого атома с ближайшим к нему и следующими поблизости соседями. Другими словами, мы будем делать приближение, в котором пренебрежем силами между далекими атомами. На фиг. 39.10,а показаны силы в плоскости ху, которые мы будем учитывать. Следует еще учесть соответствующие силы в плоскостях yz и zx .

Поскольку нас интересуют только упругие постоянные, которые описывают малые деформации, и, следовательно, в выражении для энергии нам нужны только слагаемые, квадратичные по деформациям, то можно считать, что силы между каждой парой атомов изменяются с перемещением линейно. Поэтому для наглядности можно представлять, что каждая пара атомов соединена «линейной» пружинкой (фиг. 39.10, б). Все пружинки между атомами натрия и хлора должны иметь одну и ту же упругую постоянную, скажем k 1 . Пружинки между двумя атомами натрия и двумя атомами хлора могут иметь различные постоянные, но я хочу упростить наши рассуждения, и поэтому буду считать эти постоянные равными. Обозначим их через k 2 . (Позднее, когда мы посмотрим, как пойдут вычисления, вы сможете вернуться назад и сделать их разными.)

Предположим теперь, что кристалл возмущен однородной деформацией, описываемой тензором е ¡j . В общем случае у него будут компоненты, содержащие х, у и z, но мы для большей наглядности рассмотрим только деформации с тремя компонентами: е хх,е xy и е yy . Если один из атомов выбрать в качестве начала координат, то перемещение любого другого атома задается уравнением типа (39.9):

Назовем атом с координатами х=у=0 «атомом 1», а номера его соседей показаны на фиг. 39.11. Обозначая постоянную решетки через а, мы получаем х- и y-компоненты перемещения u x , u y , выписанные в табл. 39.1

Теперь можно вычислить энергию, запасенную в пружинках, которая равна произведению k 2 /2 на квадрат растяжения каждой пружинки. Так, энергия горизонтальной пружинки между атомами 1 и 2 будет равна

Заметьте, что с точностью до первого порядка (1-перемещение атома 2 не изменяет длины пружинки между атомами 1 и 2. Однако, чтобы получить энергию деформации диагональной пружинки, той, что идет к атому 3, нам нужно вычислить изменение длины как из-за вертикального, так и из-за горизонтального перемещений.

Для малых отклонений от начала координат куба изменение расстояния до атома 3 можно записать в виде суммы компонент и х и u y в диагональном направлении:

Воспользовавшись величинами и х и u у. можно получить выражение для энергии

Для полной энергии всех пружинок в плоскости ху нам нужна сумма восьми членов типа (39.43) и (39.44). Обозначая эту энергию через U 0 , получаем

Чтобы найти полную энергию всех пружинок, связанных с атомом 1, мы должны сделать некую добавку к уравнению (39.45). Хотя нам нужны только х- и y-компоненты деформации, вклад в них дает еще некоторая добавочная энергия, связанная с диагональными соседями вне плоскости ху. Эта добавочная энергия равна

Упругие постоянные связаны с плотностью энергии w уравнением (39.13). Энергия, которую мы вычислили, связана с одним атомом, точнее это удвоенная энергия, приходящаяся на один атом, ибо на каждый из двух атомов, соединенных пружинкой, должно приходиться по 1/2 ее энергии. Поскольку в единице объема находится 1/а 3 атомов, то w и U o связаны соотношением

Чтобы найти упругие постоянные С ¡jkl , нужно только возвести в квадрат суммы в скобках в уравнении (39.45), прибавить (39.46) и сравнить коэффициенты при е ¡j е kl с соответствующими коэффициентами в уравнении (39.13). Например, собирая слагаемые с е 2 xx и е 2 y у, мы находим, что множитель при нем равен

В остальных слагаемых нам встретится небольшое усложнение. Поскольку мы не можем отличить произведения e xx e yy от е yy е xx , то коэффициент при нем в выражении для энергии равен сумме двух членов в уравнении (39.13). Коэффициент при e xx e yy в уравнении (39.45) равен 2k 2 , так что получаем

Однако из-за симметрии выражения для энергии при перестановке двух первых значений с двумя последними можно считать, что С xxyy - С у ухx , поэтому

Таким же способом можно получить

Заметьте, наконец, что любой член, содержащий один раз значок х или у, равен нулю, как это было найдено ранее из соображений симметрии. Подытожим наши результаты:

Итак, оказалось, что мы способны связать макроскопические упругие постоянные с атомными свойствами, которые проявляются в постоянных k 1 и k 2 . В нашем частном случае С xyxy =С xxyy . Эти члены для кубического кристалла, как вы, вероятно, заметили из хода вычислений, оказываются всегда равными, какие бы силы мы ни принимали во внимание, но только при условии, что силы действуют вдоль линии, соединяющей каждую пару атомов, т. е. до тех пор, пока силы между атомами подобны пружинкам и не имеют боковой составляющей (которая несомненно существует при ковалентной связи).

Наши вычисления можно сравнить с экспериментальными измерениями упругих постоянных. В табл. 39.2 приведены наблюдаемые величины трех упругих коэффициентов для некоторых кубических кристаллов. Вы, вероятно, обратили внимание на то, что С xxyy , вообще говоря, не равно С xyxy . Причина заключается в том, что в металлах, подобных натрию и калию, межатомные силы не направлены по линии, соединяющей атомы, как предполагалось в нашей модели. Алмаз тоже не подчиняется этому закону, ибо силы в алмазе — это ковалентные силы, которые обладают особым свойством направленности: «пружинки» предпочитают связывать атомы, расположенные в вершинах тетраэдра. Такие ионные кристаллы, как фтористый литий или хлористый натрий и т. д., обладают почти всеми физическими свойствами, предположенными в нашей модели; согласно данным табл. 39.2, постоянные С xxyy и С xyxy у них почти равны. Только хлористое серебро почему-то недочет подчиняться условию С ххуу — С хуху.

Последний вопрос в теории упругости, который я разберу, - это попытка вычислить упругие постоянные материала, исходя из некоторых свойств атомов, составляющих этот материал. Мы рассмотрим простой случай ионного кубического кристалла типа хлористого натрия. Размер или форма деформированного кристалла изменяются. Такие изменения приводят к увеличению потенциальной энергии кристалла. Для вычисления изменения энергии деформации следует знать, куда идет каждый атом. Чтобы сделать полную энергию как можно меньше, атомы в решетке сложных кристаллов перегруппировываются весьма сложным образом. Это довольно сильно затрудняет вычисление энергии деформации. Но понять, что получается в случае простого кубического кристалла, все-таки можно. Возмущения внутри кристалла будут геометрически подобны возмущениям его внешних граней.

Упругие постоянные кубического кристалла можно вычислить следующим образом. Прежде всего мы предположим наличие некоего закона взаимодействия между каждой парой атомов в кристалле. Затем вычислим изменение внутренней энергии кристалла при отклонении от равновесной формы. Это даст нам соотношения между энергией и деформацией, которая квадратична по деформациям. Сравнивая энергию, полученную таким способом, с уравнением (39.13), можно идентифицировать коэффициенты при каждом слагаемом с упругими постоянными .

В нашем примере мы будем предполагать следующий простой закон взаимодействия: между соседними атомами действуют центральные силы, имея в виду, что они действуют по линии, соединяющей два соседних атома. Мы ожидаем, что силы в ионных кристаллах должны быть именно такого типа, ибо в основе их лежит простое кулоновское взаимодействие. (При ковалентной связи силы обычно более сложны, ибо они приводят и к боковому давлению на соседние атомы; но нам все эти усложнения ни к чему.) Кроме того, мы собираемся учесть только силу взаимодействия каждого атома с ближайшим к нему и следующими поблизости соседями. Другими словами, мы будем делать приближение, в котором пренебрежем силами между далекими атомами. На фиг. 39.10,а показаны силы в плоскости , которые мы будем учитывать. Следует еще учесть соответствующие силы в плоскостях и .

Фиг. 39.10. Принимаемые нами в расчет межатомные силы (а) и модель, в которой атомы связаны пружинками (б).

Поскольку нас интересуют только упругие постоянные, которые описывают малые деформации, и, следовательно, в выражении для энергии нам нужны только слагаемые, квадратичные по деформациям, то можно считать, что силы между каждой парой атомов изменяются с перемещением линейно. Поэтому для наглядности можно представлять, что каждая пара атомов соединена «линейной» пружинкой (фиг. 39.10,б). Все пружинки между атомами натрия и хлора должны иметь одну и ту же упругую постоянную, скажем . Пружинки между двумя атомами натрия и двумя атомами хлора могут иметь различные постоянные, но я хочу упростить наши рассуждения, и поэтому буду считать эти постоянные равными. Обозначим их через . (Позднее, когда мы посмотрим, как пойдут вычисления, вы сможете вернуться назад и сделать их разными.)

Предположим теперь, что кристалл возмущен однородной деформацией, описываемой тензором . В общем случае у него будут компоненты, содержащие , и , но мы для большей наглядности рассмотрим только деформации с тремя компонентами: , и . Если один из атомов выбрать в качестве начала координат, то перемещение любого другого атома задается уравнением типа (39.9):

(39.42)

Назовем атом с координатами «атомом 1», а номера его соседей показаны на фиг. 39.11. Обозначая постоянную решетки через , мы получаем - и -компоненты перемещения , , выписанные в табл. 39.1.

Таблица 39.1 КОМПОНЕНТЫ ПЕРЕМЕЩЕНИЯ ,

Положение ,

Фиг. 39.11. Перемещение ближайших и следующих поблизости соседей атома 1. (Масштаб сильно искажен.)

Теперь можно вычислить энергию, запасенную в пружинках, которая равна произведению на квадрат растяжения каждой пружинки. Так, энергия горизонтальной пружинки между атомами 1 и 2 будет равна

Заметьте, что с точностью до первого порядка -перемещение атома 2 не изменяет длины пружинки между атомами 1 и 2. Однако, чтобы получить энергию деформации диагональной пружинки, той, что идет к атому 3, нам нужно вычислить изменение длины как из-за вертикального, так и из-за горизонтального перемещений. Для малых отклонений от начала координат куба изменение расстояния до атома 3 можно записать в виде суммы компонент и в диагональном направлении:

Воспользовавшись величинами и можно получить выражение для энергии

. (39.44)

Для полной энергии всех пружинок в плоскости нам нужна сумма восьми членов типа (39.43) и (39.44). Обозначая эту энергию через , получаем

(39.45)

Чтобы найти полную энергию всех пружинок, связанных с атомом 1, мы должны сделать некую добавку к уравнению (39.45). Хотя нам нужны только - и -компоненты деформации, вклад в них дает еще некоторая добавочная энергия, связанная с диагональными соседями вне плоскости . Эта добавочная энергия равна

. (39.46)

Упругие постоянные связаны с плотностью энергии уравнением (39.13). Энергия, которую мы вычислили, связана с одним атомом, точнее это удвоенная энергия, приходящаяся на один атом, ибо на каждый из двух атомов, соединенных пружинкой, должно приходиться по 1/2 ее энергии. Поскольку в единице объема находится атомов, то и связаны соотношением

Чтобы найти упругие постоянные , нужно только возвести в квадрат суммы в скобках в уравнении (39.45), прибавить (39.46) и сравнить коэффициенты при с соответствующими коэффициентами в уравнении (39.13). Например, собирая слагаемые с и , мы находим, что множитель при нем равен

.

В остальных слагаемых нам встретится небольшое усложнение. Поскольку мы не можем отличить произведения от , то коэффициент при нем в выражении для энергии равен сумме двух членов в уравнении (39.13). Коэффициент при в уравнении (39.45) равен , так что получаем

.

Однако из-за симметрии выражения для энергии при перестановке двух первых значений с двумя последними можно считать, что , поэтому

.

Таким же способом можно получить

.

Заметьте, наконец, что любой член, содержащий один раз значок или , равен нулю, как это было найдено ранее из соображений симметрии. Подытожим наши результаты:

(39.47)

Итак, оказалось, что мы способны связать макроскопические упругие постоянные с атомными свойствами, которые проявляются в постоянных и . В нашем частном случае . Эти члены для кубического кристалла, как вы, вероятно, заметили из хода вычислений, оказываются всегда равными, какие бы силы мы ни принимали во внимание, но только при условии, что силы действуют вдоль линии, соединяющей каждую пару атомов, т. е. до тех пор, пока силы между атомами подобны пружинкам и не имеют боковой составляющей (которая несомненно существует при ковалентной связи).

Наши вычисления можно сравнить с экспериментальными измерениями упругих постоянных. В табл. 39.2 приведены наблюдаемые величины трех упругих коэффициентов для некоторых кубических кристаллов. Вы, вероятно, обратили внимание на то, что , вообще говоря, не равно . Причина заключается в том, что в металлах, подобных натрию и калию, межатомные силы не направлены по линии, соединяющей атомы, как предполагалось в нашей модели. Алмаз тоже не подчиняется этому закону, ибо силы в алмазе - это ковалентные силы, которые обладают особым свойством направленности: «пружинки» предпочитают связывать атомы, расположенные в вершинах тетраэдра. Такие ионные кристаллы, как фтористый литий или хлористый натрий и т. д., обладают почти всеми физическими свойствами, предположенными в нашей модели; согласно данным табл. 39.2, постоянные и у них почти равны. Только хлористое серебро почему-то не хочет подчиняться условию .

Таблица 39.2 УПРУГИЕ ПОСТОЯННЫЕ КУБИЧЕСКИХ КРИСТАЛЛОВ. В (В )

Кристалл

Константы упругости

Количественно упругость характеризуется константами, свойственными каждому материалу. При этом необходимо учитывать, что большинство свойств, кроме плотности и теплоемкости, связано с анизотропией структуры. Упругость является ярко выраженным анизотропным свойством. Поэтому следует различать упругость кристаллов и анизотпропных материалов и упругость изотропных тел.

Поликристаллические тела и материалы в целом изотропны, анизотропия их свойств проявляется только в результате формования или обработки, например прессования, штампования, прокатки, уплотнения и т.п. Таким образом, формируется анизотропия свойств керамической плитки, черепицы, стального листа и т.д. В дальнейшем рассматривается упругость только изотропных свойств, для которых не применимы представления об ориентированных кристаллографических осях и пр.

С учетом вышеизложенного для большинства природных и искусственных материалов (горные породы, керамика, бетон, металлы и т.д.) при малых деформациях зависимости между напряжениями «σ» и деформациями «ε» можно считать линейными (рис. 5.2) и описывать обобщенным законом Гука :

где Е - модуль упругости (модуль Юнга).

Подобным образом напряжение сдвига «τ» прямо пропорционально относительной деформации сдвига или углу сдвига у(рис. 5.3):

где G - модуль сдвига.

Рис. 5.2. Классическая зависимость напряжение - деформация:

А - керамики; В - металлов; С - полимеров

Рис. 5.3. Упругая деформация твердого тела при сдвиге

Удлинение образца при растяжении сопровождается уменьшением его толщины (рис. 5.4). Относительное изменение толщины Δl/l к относительному изменению длины Δd/d называется коэффициентом Пуассона «μ» или коэффициентом поперечного сжатия:

μ = (Δl/l) / (Δd/d).

Рис. 5.4. Упругая деформация твердого тела при растяжении

Если при деформации тела его объем не изменяется, а это может иметь место только при пластическом или вязком течении, то μ = 0,5. Однако, практически, эта величина значительно ниже теоретического показателя и для разных материалов она различна. Упругие материалы (бетон, керамика и др.) имеют невысокие значения коэффициента Пуассона (0,15-0,25), пластичные (полимерные материалы) - более высокие (0,3-0,4). Это объясняется зависимостью между силами притяжения и отталкивания и изменением межатомного расстояния при деформации.

Модуль Юнга

Модуль Юнга, или модуль продольной деформации Е показывает критическое напряжение, которое может иметь структура материала при максимальной ее деформации до разрушения; имеет размерность напряжений (МПа).

Где: σ р – критическое напряжение.

У поликристаллических материалов обычно наблюдаются отклонение от линейной σ = ƒ(ε,), несвязанное с энергией кристаллической решетки, а зависящей от структуры материала. Для оценки упругих свойств таких материалов применяют два модуля упругости: касательный Е = tgα и секущий V= tgβ, который называют модулем деформаций (рис. 5.5).

Рис. 5.5. Схематическое изображение деформации огнеупоров:

а - кривая деформации; б - точка разрушения;

σ; - предельное напряжение при разрушении; ε - деформация

Величина модуля упругости двухфазной системы является средней между величинами модулей упругости каждой из фаз, и аналитическое выражения для ее нахождения аналогичны тем, что используются при различных значениях линейного КТР.

Код для блога:

МОДУЛИ УПРУГОСТИ (упругие постоянные), величины, характеризующие упругие свойства твердых тел (см. Упругость). Модули упругости - коэффициент в зависимости деформации от приложенных механических напряжений (и наоборот). В простейшем случае малых деформаций эта зависимость линейная, а модуль упругости - коэффициент пропорциональности (см. Гука закон).

Число модулей упругости для анизотропных кристаллов достигает 21 и зависит от симметрии кристалла. Упругие свойства изотропного вещества можно описать 2 постоянными (см. Ламе постоянные), связанными с модулем Юнга Е = ?/? (? - растягивающее напряжение, ? - относительное удлинение), коэффициент Пуассона? = ??y?/?х (?y - относительное поперечное сжатие, ?х - относительное продольное удлинение), модулем сдвига G = ?/? (? - угол сдвига, ? - касательное напряжение) и с модулем объемного сжатия К = ?/? (? - уменьшение объема).

Модули упругости данного материала зависят от его химического состава, предварительной обработки, температуры и др.

Как это будет выглядеть:

МОДУЛИ УПРУГОСТИ (упругие постоянные), величины, характеризующие упругие свойства твердых тел (см. Упругость). Модули упругости - коэффициент в зависимости деформации от приложенных механических напряжений (и наоборот). В простейшем случае малых деформаций эта зависимость линейная, а модуль упругости - коэффициент пропорциональности (см. Гука закон).

Число модулей упругости для анизотропных кристаллов достигает 21 и зависит от симметрии кристалла. Упругие свойства изотропного вещества можно описать 2 постоянными (см. Ламе постоянные), связанными с модулем Юнга Е = ?/? (? - растягивающее напряжение, ? - относительное удлинение), коэффициент Пуассона? = ??y?/?х (?y - относительное поперечное сжатие, ?х - относительное продольное удлинение), модулем сдвига G = ?/? (? - угол сдвига, ? - касательное напряжение) и с модулем объемного сжатия К = ?/? (? - уменьшение объема).

Модули упругости данного материала зависят от его химического состава, предварительной обработки, температуры и др.



Понравилась статья? Поделитесь с друзьями!