Определение устойчивости по критерию гурвица. Минимаксное решение

Для принципа выбора Гурвица характерно использование взвешенных значений принципа гарантированного результата (пессимизма) и принципа оптимизма . Здесь каждая стратегия характеризуется своим коэффициентом важности стратегии α,β = . Функция выбора, описывающая принцип Гурвица, может быть записана в виде:

u (y*)= α·u 1 (y)+(1-α)·u 2 (y),

где u 1 (y) - стратегия выбора, характеризующая принцип гарантированного результата;

u 2 (y) - стратегия выбора, характеризующая принцип оптимизма.

Учитывая, что

u 1 (y) = max min U i j

u 2 (y) = max max U i j

можно представить общее выражение для принципа Гурвица в виде

u (y*)= α max min U i j + (1-α)· max max U i j (3)

u (y*)= max [α min U i j + (1-α)· max U i j ]. (4)

Следовательно, наиболее предпочтительна стратегия Y*, для которой выполняется условие (4). При этом в зависимости от значения весового коэффициента α можно получить различные стратегии выбора при изменении его в диапазоне 0≤ α ≤ 1:

если α = 1, то получим принцип гарантированного результата ;

если α = 0, получим принцип оптимизма .

Проведем решение исходной задачи (табл.9)с использованием данной методики.

Решение задачи по принципу Гурвица.

    Задаём коэффициент , который характеризует ориентацию на принцип максимина или принцип оптимизма и     . Пусть  = 0,6.

    Решаем задачу по формуле Y *  max i ( min U ij + (1 - ) max j U ij) в два этапа:

2.1. Для каждой альтернативы находим *min j U ij +(1-)* max j U ij , для чего используем уже вычисленные значения по предыдущим задачам (значения Min U ij , Max U ij в табл.10). Расчет этих значений формируется так.

Исходными данными для выбора по методу Гурвица будут данные, полученные по стратегиям:

Для стратегии гарантированного результата:

Для стратегии оптимизма:

Принцип Гурвица Таблица 10

Альтернати-

Критерии (цели)

Знач. предпочт. по Гурвицу

Пусть весовой коэффициент характеризует степень важности соответствующей первой стратегии и его значение примем  = 0,6. Тогда получим для первого этапа

Подставляя соответствующие значения в систему получим:

Подставим их в графу «Значение предпочтений по Гурвицу» табл.10.

2.2. На втором этапе производим выбор в соответствии с правилом:

Оптимальной (по комбинированному принципу Гурвица) будет альтернатива Y 3 , значение функции полезности которой равно 4,2.

Для оценки влияния коэффициента  на уровень предпочтений по Гурвицу, проведем анализ значений для различных коэффициентов (табл.11).

Таблица 11

возможные значения весового коэффициента а

На основании данных значений можно сказать, что общим правилом выбора по всем значениям  будет метрика с  = 0,1, при этом, эффективной альтернативой является вариант 1 (Y1) с функцией предпочтения = 7,3.

Решение данной задачи в интегрированной системе Excel предполагает процедуру расчета показателей приведенных в табл.10-11, по алгоритму и формулам, приведенным в табл.12 и табл.13. Экранная форма указанных таблиц приведена на рис.10, 11.

Алгоритм расчета показателей по принципу Гурвица, в виде экранной формы приведен на рис.12.

Рис.10. Решение задачи по принципу Гурвица

Рис.11. Анализ оптимального решения (по Гурвицу) при различных значениях коэффициента 

Таблица 12

Принцип Гурвица

Критерии (цели)

Знач. предпочт. по Гурвицу

МАКС(B5:D5)

H5*E5+(1-H5)*F5

МАКС(B6:D6)

H6*E6+(1-H6)*F6

МАКС(B7:D7)

H7*E7+(1-H7)*F7

МАКС(B5:B7)

МАКС(C5:C7)

МАКС(D5:D7)

МАКС(E5:E7)

МАКС(G5:G7)

Таблица 13

Значения предпочтений по Гурвицу для различных коэффициентов 

=$B$19*E5+(1-$B$19)*F5

=$C$19*E5+(1-$C$19)*F5

0,3*E5+(1-0,3)*F5

0,4*E5+(1-0,4)*F5

0,5*E5+(1-0,5)*F5

0,6*E5+(1-0,6)*F5

0,7*E5+(1-0,7)*F5

0,8*E5+(1-0,8)*F5

0,9*E5+(1-0,9)*F5

=$B$19*E6+(1-$B$19)*F6

=$C$19*E6+(1-$C$19)*F6

0,3*E6+(1-0,3)*F6

0,4*E6+(1-0,4)*F6

0,5*E6+(1-0,5)*F6

0,6*E6+(1-0,6)*F6

0,7*E6+(1-0,7)*F6

0,8*E6+(1-0,8)*F6

0,9*E6+(1-0,9)*F6

=$B$19*E7+(1-$B$19)*F7

=$C$19*E7+(1-$C$19)*F7

0,3*E7+(1-0,3)*F7

0,4*E7+(1-0,4)*F7

0,5*E7+(1-0,5)*F7

0,6*E7+(1-0,6)*F7

0,7*E7+(1-0,7)*F7

0,8*E7+(1-0,8)*F7

0,9*E7+(1-0,9)*F7

МАКС(B20:B22)

МАКС(C20:C22)

МАКС(D20:D22)

МАКС(E20:E22)

МАКС(F20:F22)

МАКС(G20:G22)

МАКС(H20:H22)

МАКС(I20:I22)

МАКС(J20:J22)

Рис. 12. Алгоритм расчета показателей по принципу Гурвица

Гурвиц предложил другой критерий устойчивости. Из коэффициентов характеристического уравнения строится определитель Гурвица по алгоритму:

  • 1) по главной диагонали слева направо выставляются все коэффициенты характеристического уравнения от a 1 до a n ;
  • 2) от каждого элемента диагонали вверх и вниз достраиваются столбцы определителя так, чтобы индексы убывали сверху вниз;
  • 3) на место коэффициентов с индексами меньше нуля или больше n ставятся нули.

Критерий Гурвица: для того, чтобы САУ была устойчива, необходимо и достаточно, чтобы все n диагональных миноров определителя Гурвица были положительны. Эти миноры называются определителями Гурвица.

Рисунок 5.2.1 - Определитель Гурвица

Рассмотрим примеры применения критерия Гурвица:

  • 1) n = 1 => уравнение динамики: a 0 p + a 1 = 0. Определитель Гурвица: = 1 = a 1 > 0 при a 0 > 0, то есть условие устойчивости: a 0 > 0, a 1 > 0;
  • 2) n = 2 => уравнение динамики: a 0 p 2 + a 1 p + a 2 = 0. Определители Гурвица: 1 = a 1 > 0, D 2 = a 1 a 2 - a 0 a 3 = a 1 a 2 > 0, так как a 3 = 0, то есть условие устойчивости: a 0 > 0, a 1 > 0, a 2 > 0;
  • 3) n = 3 => уравнение динамики: a 0 p 3 + a 1 p 2 + a 2 p + a 3 = 0. Определители Гурвица: 1 = a 1 > 0, 2 = a 1 a 2 - a 0 a 3 > 0, 3 = a 32 > 0, условие устойчивости: a 0 > 0, a 1 > 0, a 2 > 0, a 3 > 0, a 1 a 2 - a 0 a 3 > 0;

Таким образом при n 2 положительность коэффициентов характеристического уравнения является необходимым и достаточным условием устойчивости САУ. При n > 2 появляются дополнительные условия.

Критерий Гурвица применяют при n 4. При больших порядках возрастает число определителей и процесс становится трудоемким. Имеется ряд модификаций данного критерия, расширяющие его возможности.

Недостаток критерия Гурвица - малая наглядность. Достоинство - удобен для реализации на ЭВМ. Его часто используют для определения влияния одного из параметров САУ на ее устойчивость. Так равенство нулю главного определителя n = a nn-1 = 0 говорит о том, что система находится на границе устойчивости. При этом либо a n = 0 - при выполнении остальных условий система находится на границе апериодической устойчивости, либо предпоследний минор n-1 = 0 - при положительности всех остальных миноров система находится на границе колебательной устойчивости. Параметры САУ определяют значения коэффициентов уравнения динамики, следовательно изменение любого параметра Ki влияет на значение определителя n-1 . Исследуя это влияние можно найти, при каком значении Ki определитель n-1 станет равен нулю, а потом - отрицательным. Это и будет предельное значение исследуемого параметра, после которого система становится неустойчивой.

Это графоаналитические методы, позволяющие по виду частотных характеристик САУ судить об их устойчивости. Их общее достоинство в простой геометрической интерпретации, наглядности и в отсутствии ограничений на порядок дифференциального уравнения.

В 1895 г. немецким математиком А. Гурвицем был разработан алгебраический критерий устойчивости в форме определителей, составляемых из коэффициентов характеристического уравнения системы.

Из коэффициентов характеристического уравнения (3 30) строят сначала главный определитель Гурвица

(см. скан)

по следующему правилу: по главной диагонали определителя слева направо выписывают все коэффициенты характеристического уравнения от до в порядке возрастания индексов. Столбцы вверх от главной диагонали дополняют коэффициентами характеристического уравнения с последовательно возрастающими индексами, а столбцы вниз - коэффициентами с последовательно убывающими индексами. На место коэффициентов с индексами больше порядок характеристического уравнения) и меньше нуля проставляют нули.

Отчеркивая в главном определителе Гурвица, как показано пунктиром, диагональные миноры, получаем определители Гурвица низшего порядка:

Номер определителя Гурвица определяется номером коэффициента по диагонали, для которого составляют данный определитель. Критерий устойчивости Гурвица формулируется следующим образом: для того чтобы система автоматического управления была устойчива, необходимо и достаточно, чтобы все определители Гурвица имели знаки, одинаковые со знаком первого коэффициента характеристического уравнения т. е. при были положительными.

Таким образом, при для устойчивости системы необходимо и достаточно выполнения следующих условий:

Раскрывая, например, определители Гурвица для характеристических уравнений первого, второго, третьего и четвертого порядков, можно получить следующие условия устойчивости:

1) для уравнения первого порядка условия устойчивости

2) для уравнения второго порядка условия устойчивости

3) для уравнения третьего порядка условия устойчивости

4) для уравнения четвертого порядка условия устойчивости

Таким образом, необходимым и достаточным условием устойчивости для систем первого и второго порядков является положительность коэффициентов характеристического уравнения. Для уравнения третьего и четвертого порядков кроме положительности коэффициентов необходимо соблюдение дополнительных неравенств (3.44) и (3.46).

При 5 число подобных дополнительных неравенств возрастает, процесс раскрытия определителей становится довольно трудоемким и громоздким. Поэтому критерий устой- чивости Гурвица обычно применяют при При 5 целесообразно применять формулируемый ниже критерий устойчивости Льенара - Шипара либо при использовании критерия устойчивости Гурвица переходить к численным методам с использованием ЭВМ.

В последнем столбце главного определителя Гурвица (3.38) отличен от нуля только один коэффициент поэтому

Из (3.47), видно, что при для проверки устойчивости системы достаточно найти только определители Гурвица от до Если все определители Гурвица низшего порядка положительны, то система находится на границе устойчивости, когда главный определитель равен нулю:

Последнее равенство возможно в двух случаях: или . В первом случае система находится на границе апериодической устойчивости (один из корней характеристического уравнения равен нулю); во втором случае - на границе колебательной устойчивости (два комплексно-сопряженных корня характеристического уравнения находятся на мнимой оси).

Используя критерий Гурвица, можно при заданных параметрах системы принять за неизвестный какой-либо один параметр (например, коэффициент усиления, постоянную времени и т. д.) и определить его предельное (критическое) значение, при котором система будет находиться на границе устойчивости.

Следует заметить, что критерий Гурвица можно получить из критерия Рауса, поэтому иногда критерий Гурвица называют критерием Рауса - Гурвица.

Задача отыскания критерия устойчивости для систем, описываемых дифференциальными уравнениями любого порядка, была сформулирована Максвеллом в 1868 году. Эта задача была впервые решена в алгебраической форме Раусом в 1873 году для уравнений четвертой и пятой степени и в 1877 году - полностью.

Поскольку критерий Рауса дан в форме алгоритма, определяющего последовательность математических операций, необходимых для решения задачи, использование его в практике является неудобным. Поэтому большее распространение получил алгебраический критерий устойчивости, сформулированный в 1895 году математиком А. Гурвицем. Этот критерий был найден Гурвицем по просьбе словацкого профессора Стодолы, занимавшегося исследованием процесса регулирования турбин.

Ниже критерий Гурвица приводится без доказательства.

Для характеристического уравнения (6.9) составим квадратную матрицу (таблицу) коэффициентов, содержащую п строк и п столбцов:

Эта таблица составляется следующим образом.

Каждая строка дополняется коэффициентами

с нарастающими индексами слева направо так, чтобы чередовались строки с нечетными и четными индексами. В случае отсутствия данного коэффициента, а также если индекс его меньше нуля или больше п, на месте его пишется нуль.

должны быть больше

нуля все п определителей Гурвица, получаемых из квадратной матрицы коэффициентов.

Определители Гурвица составяются по следующему правилу (см. (6.11)):

Последний определитель включает в себя всю матрицу. Но так как в последнем столбце матрицы все элементы, кроме нижнего, равны нулю, то последний определитель Гурвица выражается через предпоследний следующим образом:

т. е. к положительности свободного члена характеристического уравнения.

Первое условие соответствует границе устойчивости первого типа (апериодическая граница устойчивости) и второе - границе устойчивости второго типа (колебательная граница устойчивости).

Раскрывая определители, фигурирующие в общей формулировке критерия устойчивости Гурвица, можно получить в виде частных случаев критерии устойчивости для системы первого, второго, третьего, четвертого и более высоких порядков.

порядка

Для этого уравнения критерий Гурвица дает

т. е. коэффициенты характеристического уравнения должны быть положительными.

порядка

Для этого уравнения критерий Гурвица требует

Таким образом, и для уравнения второго порядка необходимым и достаточным условием устойчивости является положительность всех коэффициентов характеристического уравнения.

3. У р а в н е н и е третьего поря д к а

Для этого уравнения получаем условия

4. Уравнение четвертого порядка

На основании критерия Гурвица можно получить, что для уравнения четвертого порядка, кроме положительности всех коэффициентов, требуется выполнение условия

пятого поря д к а

Для уравнения пятого порядка, кроме положительности всех коэффициентов, должны выполняться еще два условия:

Как видно, уже для уравнения пятой степени условия устойчивости но критерию Гурвица получаются достаточно громоздкими. Поэтому использование этого критерия практически ограничивается уравнениями четвертого порядка.

Существенным недостатком критерия Гурвица является также то, что для уравнений высоких порядков в лучшем случае можно получить ответ о том, устойчива или неустойчива система автоматического управления. При этом в случае неустойчивости системы критерий не дает ответа на то, каким образом надо изменить параметры системы, чтобы сделать ее устойчивой. Это обстоятельство привело к поискам других критериев, которые были бы более удобными в инженерной практике.

Для иллюстрации применения критерия Гурвица рассмотрим пример на определение устойчивости дистанционной следящей системы. Принципиальная и структурная схемы изображены на рис. 6.4. В качестве чувствительного элемента использованы два сельсина (СД и СП), включенные по трансформаторной схеме. Передаточная функция сельсинов равна коэффициенту передачи схемы:

Электромеханическая постоянная времени двигателя совместно с оконечным каскадом усилителя. Передаточная функция редуктора (Р) равна его коэффициенту передачи, определяемому передаточным отношением:

Так как цепь управления состоит из включенных последовательно звеньев, то передаточная функция разомкнутой цепи будет равна произведению передаточных функций отдельных звеньев:

Общий коэффициент усиления разомкнутой цепи.

Характеристическое уравнение:

получаем

В данном случае характеристическое уравнение имеет третий порядок. Нетрудно видеть, что условие положительности всех коэффициентов выполняется всегда, если выполнено условие К> О, что будет при правильном согласовании направления вращения двигателя со знаком рассогласования.

накладываемое на коэффициенты характеристического уравнения, сводится при подстановке значений коэффициентов

К неравенству

которое и является условием устойчивости рассматриваемой системы.

Из этого неравенства, в частности, можно заметить, что увеличение каждой постоянной времени сказывается отрицательно на устойчивости системы, так как при

этом снижается предельное значение общего коэффициента усиления к, при котором система еще остается устойчивой.

Измеряется датчиком угла (нотенциометрическим, индукционным или др.), установленным на гиростабилизированной платформе. Передаточная функция датчика

Для формирования алгоритма управления дополнительно устанавливается датчик угловой скорости (ДУС). Напряжение на его выходе пропорционально производной от отклонения. Передаточная функция ДУС в идеальном случае

суммируются:

И производной от отклонения (см. § 2.2). Передаточная функция усилительно-преобразовательного устройства

  • Его представители находятся в невыгодном положении в сравнении с большей частью населения вследствие дискриминации, которая, как правило, не декларируется.
  • Иногда права проксенов давались всем гражданам дружественного государства. Как правило, звания ксенов и проксенов были наследственными.
  • Как правило, сложные белки классифицируют по небелковому компоненту.
  • Келейное правило, заповеданное преподобным Серафимом инокиням Дивеевского монастыря
  • Краткое молитвенное правило преподобного Серафима для мирян.
  • Критерий MAXIMAX не учитывает при принятии инвестиционного решения риска, связанного с неблагоприятным развитием внешней среды.

    В соответствии с этим правилом правила максимакс и максимин сочетаются связыванием максимума минимальных значений альтернатив. Это правило называют ещё правилом оптимизма – пессимизма. Оптимальную альтернативу можно рассчитать по формуле:

    а* = maxi [(1-α) minj Пji+ α maxj Пji]

    где α- коэффициент оптимизма, α =1…0 при α =1 альтернатива выбирается по правилу максимакс, при α =0 – по правилу максимин. Учитывая боязнь риска, целесообразно задавать α =0,3. Наибольшее значение целевой величины и определяет необходимую альтернативу.

    Правило Гурвица применяют, учитывая более существенную информацию, чем при использовании правил максимин и максимакс.

    Таким образом, при принятии управленческого решения в общем случае необходимо:

    · спрогнозировать будущие условия, например, уровни спроса;

    · разработать список возможных альтернатив

    · оценить окупаемость всех альтернатив;

    · определить вероятность каждого условия;

    · оценить альтернативы по выбранному критерию решения.

    Критерий пессимизма-оптимизма Гурвица устанавливает баланс между критерием MAXIMIN и критерием MAXIMAX посредством выпуклой линейной комбинации. При использовании этого метода из всего множества ожидаемых сценариев развития событий в инвестиционном процессе выбираются два, при которых ИПj достигает минимальной и максимальной эффективности. Выбор оптимального ИП по показателю NPV осуществляется по формуле:

    где - коэффициент пессимизма-оптимизма, который принимает значение в зависимости от отношения ЛПР к риску, от его склонности к оптимизму или к пессимизму. При отсутствии ярко выраженной склонности λ = 0,5. При λ = 0 (точка Вальда) критерий Гурвица совпадает с максиминым критерием, при λ = 1 - с максимаксным критерием.

    Общий недостаток рассмотренных выше методов теории игр состоит в том, что предполагается ограниченное количество сценариев развития (конечное множество состояний окружающей среды).

    При выборе решения из двух крайностей, связанных с пессимистической стратегией по критерию Вальда и чрезмерным оптимизмом по критерию Сэвиджа можно выбрать некоторую промежуточную позицию, граница которой определяется показателем пессимизма-оптимизма х, находящимся в пределах 0 ≤ х ≤ 1. Такой критерий называется критерием Гурвица. Как частный случай при х=1 из него следует максиминный критерий Вальда, а при х=0 – минимаксный критерий Сэвиджа.



    В соответствии с критерием Гурвица для каждой стратегии выбирается линейная сумма взвешенных минимального и максимального выигрышей по формуле:

    где g ij – размер прибыли (убытков) от спроса (продаж) (табл. 1), i – строка, j – столбец.

    Положим х=0,8 (близкий к пессимистическому критерий) и рассчитаем G i для трех стратегий S 1 , S 2 , S 3 по данным табл. 1

    G 1 =0,8(1020)+(1-0,8)4200=1656 д.е.

    G 2 =0,8(-60)+(1-0,8)6300=1212 д.е.

    G 3 =0,8(-1140)+(1-0,8)8400=768 д.е.

    Затем выбирается такая стратегия, для которой величина G i получается наибольшей, т.е. S i опт →G imax . В нашем примере G imax =G 1 , следовательно S опт =S 1 , т.е. как по критерию Вальда. Если выбрать х близким к нулю, то получим S опт =S 2 , т.е. как по критерию Сэвиджа.



    Понравилась статья? Поделитесь с друзьями!