Определение устойчивости по критерию гурвица. Минимаксное решение


к.э.н., директор по науке и развитию ЗАО "КИС"

Минимаксное решение. Критерий Гурвица

Решения, принимаемые в условиях неопределенности, занимают весомую часть всего множества решений, принимаемых менеджерами. Но, как правило, на практике решения, принимаемые в условиях полной неопределенности, не встречаются. Для принятия решений предприятие должно собрать необходимый дополнительный объем релевантной информации и проанализировать ситуацию, либо принять решение на основе суждений, интуиции, анализа накопленного опыта руководителя. Для принятия оптимальных решений необходимо использовать научный подход при использовании различных методов.

К правилам принятия решений, при которых не учитывается численное значение вероятных исходов, относятся рассмотренные ранее максимаксное и максиминное решение, а также минимаксное решение и критерий Гурвица.

Минимаксное решение - это решение, при котором минимизируются максимальные потери. Это наиболее осторожный подход к принятию решений и наиболее учитывающий все возможные риски.

Правило минимакса (минимаксное правило возможных потерь ) состоит в том, чтобы для каждого решения выбрать максимально возможные потери. Затем выбирается решение, которое ведет к минимальному значению максимальных потерь.

Под потерями учитываются не только реальные потери, но и упущенные возможности. При использовании данного правила внимание уделяется возможным потерям, чем доходам.

На основании данных предыдущего примера по реализации пирожных составим таблицу возможных потерь, которая дает представление о прибылях каждого исхода, потерянных в результате принятия неправильного решения (число закупленных единиц).

Таблица возможных потерь за день

Таблица заполняется следующим образом.

Если количество закупленных пирожных равняется спросу за день, то возможные потери равняются нулю.

Если было принято решение приобрести, например, 1 пирожное, а спрос в этот день составил 2 штуки, то упущенная выгода составит 1*(60-50)=10 руб. Это и есть возможные потери. Для 2 штук пирожных, которые могли бы продать, сумма возможных потерь составляет 20 руб., для 3-х пирожных - 30 руб.

В тех случаях, когда закупленная единица не была реализована, она приносит убыток 1* (50-30)=20, это тоже возможные потери.

Для каждого решения выбирается максимальное число возможных потерь. Это числа 30, 20, 40, 60 и определяем из них минимальное 20. Данное значение соответствует решению о закупке 2 штук. Следовательно, руководствуясь правилом минимакса, минимальная величина максимальных потерь возникает в результате закупки двух пирожных в день.

Критерий Гурвица (Hurwicz criterion)- это компромиссный способ принятия решений.

При выборе решения из двух крайностей: пессимистической оценкой по критерию максимина и оптимистической оценкой максимакса рационально придерживаться промежуточной позиции, граница которой регулируется показателем пессимизма-оптимизма µ, называемым степенью оптимизма в критерии Гурвица.

В соответствии с этим компромиссным решением будет линейная комбинация минимального и максимального выигрыша

где 0 < µ < 1,

gnm - размер возможного дохода, который соответствует решениям при данных исходах.

Причем величину µ определяет исследователь или лицо, принимающее решение, при этом значению µ=1 критерию Гурвица соответствует правилу максимина (критерий Вальда), а значению µ =0 - правило максимакса (критерий Сэвиджа).

Критерий Гурвица заключается в том, что минимальному и максимальному результатам каждого решения присваивается "вес". Умножив результаты на соответствующие веса и суммируя их, лицо, принимающее решение, получает общий результат. Далее выбирается решение с наибольшим результатом.

Вернемся к предыдущему примеру и заполним таблицу по методу Гурвица.

Для четырех возможных решение были ранее получены максимаксное и максминное решения. Пусть вес минимального результата равен 0,4, следовательно, вес максимального - 0,6.


Таблица возможных решений

В данном примере критерий Гурвица свидетельствует в пользу решения о закупке одного пирожного, максимальная сумма составила 10. Очевидно, что при выборе других весов результат получается иным.

Поэтому к достоинству и одновременно недостатку критерия Гурвица относится необходимость присваивания весов возможным исходам: это позволяет учесть специфику ситуации, однако при этом всегда присутствует субъективный человеческий фактор - предпочтения аналитика.

  • Его представители находятся в невыгодном положении в сравнении с большей частью населения вследствие дискриминации, которая, как правило, не декларируется.
  • Иногда права проксенов давались всем гражданам дружественного государства. Как правило, звания ксенов и проксенов были наследственными.
  • Как правило, сложные белки классифицируют по небелковому компоненту.
  • Келейное правило, заповеданное преподобным Серафимом инокиням Дивеевского монастыря
  • Краткое молитвенное правило преподобного Серафима для мирян.
  • Критерий MAXIMAX не учитывает при принятии инвестиционного решения риска, связанного с неблагоприятным развитием внешней среды.

    В соответствии с этим правилом правила максимакс и максимин сочетаются связыванием максимума минимальных значений альтернатив. Это правило называют ещё правилом оптимизма – пессимизма. Оптимальную альтернативу можно рассчитать по формуле:

    а* = maxi [(1-α) minj Пji+ α maxj Пji]

    где α- коэффициент оптимизма, α =1…0 при α =1 альтернатива выбирается по правилу максимакс, при α =0 – по правилу максимин. Учитывая боязнь риска, целесообразно задавать α =0,3. Наибольшее значение целевой величины и определяет необходимую альтернативу.

    Правило Гурвица применяют, учитывая более существенную информацию, чем при использовании правил максимин и максимакс.

    Таким образом, при принятии управленческого решения в общем случае необходимо:

    · спрогнозировать будущие условия, например, уровни спроса;

    · разработать список возможных альтернатив

    · оценить окупаемость всех альтернатив;

    · определить вероятность каждого условия;

    · оценить альтернативы по выбранному критерию решения.

    Критерий пессимизма-оптимизма Гурвица устанавливает баланс между критерием MAXIMIN и критерием MAXIMAX посредством выпуклой линейной комбинации. При использовании этого метода из всего множества ожидаемых сценариев развития событий в инвестиционном процессе выбираются два, при которых ИПj достигает минимальной и максимальной эффективности. Выбор оптимального ИП по показателю NPV осуществляется по формуле:

    где - коэффициент пессимизма-оптимизма, который принимает значение в зависимости от отношения ЛПР к риску, от его склонности к оптимизму или к пессимизму. При отсутствии ярко выраженной склонности λ = 0,5. При λ = 0 (точка Вальда) критерий Гурвица совпадает с максиминым критерием, при λ = 1 - с максимаксным критерием.

    Общий недостаток рассмотренных выше методов теории игр состоит в том, что предполагается ограниченное количество сценариев развития (конечное множество состояний окружающей среды).

    При выборе решения из двух крайностей, связанных с пессимистической стратегией по критерию Вальда и чрезмерным оптимизмом по критерию Сэвиджа можно выбрать некоторую промежуточную позицию, граница которой определяется показателем пессимизма-оптимизма х, находящимся в пределах 0 ≤ х ≤ 1. Такой критерий называется критерием Гурвица. Как частный случай при х=1 из него следует максиминный критерий Вальда, а при х=0 – минимаксный критерий Сэвиджа.



    В соответствии с критерием Гурвица для каждой стратегии выбирается линейная сумма взвешенных минимального и максимального выигрышей по формуле:

    где g ij – размер прибыли (убытков) от спроса (продаж) (табл. 1), i – строка, j – столбец.

    Положим х=0,8 (близкий к пессимистическому критерий) и рассчитаем G i для трех стратегий S 1 , S 2 , S 3 по данным табл. 1

    G 1 =0,8(1020)+(1-0,8)4200=1656 д.е.

    G 2 =0,8(-60)+(1-0,8)6300=1212 д.е.

    G 3 =0,8(-1140)+(1-0,8)8400=768 д.е.

    Затем выбирается такая стратегия, для которой величина G i получается наибольшей, т.е. S i опт →G imax . В нашем примере G imax =G 1 , следовательно S опт =S 1 , т.е. как по критерию Вальда. Если выбрать х близким к нулю, то получим S опт =S 2 , т.е. как по критерию Сэвиджа.

    Задача отыскания критерия устойчивости для систем, описываемых дифференциальными уравнениями любого порядка, была сформулирована Максвеллом в 1868 году. Эта задача была впервые решена в алгебраической форме Раусом в 1873 году для уравнений четвертой и пятой степени и в 1877 году - полностью.

    Поскольку критерий Рауса дан в форме алгоритма, определяющего последовательность математических операций, необходимых для решения задачи, использование его в практике является неудобным. Поэтому большее распространение получил алгебраический критерий устойчивости, сформулированный в 1895 году математиком А. Гурвицем. Этот критерий был найден Гурвицем по просьбе словацкого профессора Стодолы, занимавшегося исследованием процесса регулирования турбин.

    Ниже критерий Гурвица приводится без доказательства.

    Для характеристического уравнения (6.9) составим квадратную матрицу (таблицу) коэффициентов, содержащую п строк и п столбцов:

    Эта таблица составляется следующим образом.

    Каждая строка дополняется коэффициентами

    с нарастающими индексами слева направо так, чтобы чередовались строки с нечетными и четными индексами. В случае отсутствия данного коэффициента, а также если индекс его меньше нуля или больше п, на месте его пишется нуль.

    должны быть больше

    нуля все п определителей Гурвица, получаемых из квадратной матрицы коэффициентов.

    Определители Гурвица составяются по следующему правилу (см. (6.11)):

    Последний определитель включает в себя всю матрицу. Но так как в последнем столбце матрицы все элементы, кроме нижнего, равны нулю, то последний определитель Гурвица выражается через предпоследний следующим образом:

    т. е. к положительности свободного члена характеристического уравнения.

    Первое условие соответствует границе устойчивости первого типа (апериодическая граница устойчивости) и второе - границе устойчивости второго типа (колебательная граница устойчивости).

    Раскрывая определители, фигурирующие в общей формулировке критерия устойчивости Гурвица, можно получить в виде частных случаев критерии устойчивости для системы первого, второго, третьего, четвертого и более высоких порядков.

    порядка

    Для этого уравнения критерий Гурвица дает

    т. е. коэффициенты характеристического уравнения должны быть положительными.

    порядка

    Для этого уравнения критерий Гурвица требует

    Таким образом, и для уравнения второго порядка необходимым и достаточным условием устойчивости является положительность всех коэффициентов характеристического уравнения.

    3. У р а в н е н и е третьего поря д к а

    Для этого уравнения получаем условия

    4. Уравнение четвертого порядка

    На основании критерия Гурвица можно получить, что для уравнения четвертого порядка, кроме положительности всех коэффициентов, требуется выполнение условия

    пятого поря д к а

    Для уравнения пятого порядка, кроме положительности всех коэффициентов, должны выполняться еще два условия:

    Как видно, уже для уравнения пятой степени условия устойчивости но критерию Гурвица получаются достаточно громоздкими. Поэтому использование этого критерия практически ограничивается уравнениями четвертого порядка.

    Существенным недостатком критерия Гурвица является также то, что для уравнений высоких порядков в лучшем случае можно получить ответ о том, устойчива или неустойчива система автоматического управления. При этом в случае неустойчивости системы критерий не дает ответа на то, каким образом надо изменить параметры системы, чтобы сделать ее устойчивой. Это обстоятельство привело к поискам других критериев, которые были бы более удобными в инженерной практике.

    Для иллюстрации применения критерия Гурвица рассмотрим пример на определение устойчивости дистанционной следящей системы. Принципиальная и структурная схемы изображены на рис. 6.4. В качестве чувствительного элемента использованы два сельсина (СД и СП), включенные по трансформаторной схеме. Передаточная функция сельсинов равна коэффициенту передачи схемы:

    Электромеханическая постоянная времени двигателя совместно с оконечным каскадом усилителя. Передаточная функция редуктора (Р) равна его коэффициенту передачи, определяемому передаточным отношением:

    Так как цепь управления состоит из включенных последовательно звеньев, то передаточная функция разомкнутой цепи будет равна произведению передаточных функций отдельных звеньев:

    Общий коэффициент усиления разомкнутой цепи.

    Характеристическое уравнение:

    получаем

    В данном случае характеристическое уравнение имеет третий порядок. Нетрудно видеть, что условие положительности всех коэффициентов выполняется всегда, если выполнено условие К> О, что будет при правильном согласовании направления вращения двигателя со знаком рассогласования.

    накладываемое на коэффициенты характеристического уравнения, сводится при подстановке значений коэффициентов

    К неравенству

    которое и является условием устойчивости рассматриваемой системы.

    Из этого неравенства, в частности, можно заметить, что увеличение каждой постоянной времени сказывается отрицательно на устойчивости системы, так как при

    этом снижается предельное значение общего коэффициента усиления к, при котором система еще остается устойчивой.

    Измеряется датчиком угла (нотенциометрическим, индукционным или др.), установленным на гиростабилизированной платформе. Передаточная функция датчика

    Для формирования алгоритма управления дополнительно устанавливается датчик угловой скорости (ДУС). Напряжение на его выходе пропорционально производной от отклонения. Передаточная функция ДУС в идеальном случае

    суммируются:

    И производной от отклонения (см. § 2.2). Передаточная функция усилительно-преобразовательного устройства

    Задача отыскания критерия устойчивости для систем, описываемых дифференциальными уравнениями любого порядка, была сформулирована Максвеллом в 1868 году. Эта задача была впервые решена в алгебраической форме Раусом в 1873 году для уравнений четвертой и пятой степени и в 1877 году – полностью.

    Поскольку критерий Рауса дан в форме алгоритма, определяющего последовательность математических операций, необходимых для решения задачи, использование его в практике является неудобным. Поэтому большее распространение получил алгебраический критерий устойчивости, сформулированный в 1895 году математиком А. Гурвицем. Этот критерий был найден Гурвицем по просьбе словацкого профессора Стодолы, занимавшегося исследованием процесса регулирования турбин.

    Ниже критерий Гурвица приводится без доказательства.

    Для характеристического уравнения (5.9) составим квадратную матрицу (таблицу) коэффициентов, содержащую п строк и п столбцов:

    Эта таблица составляется следующим образом.

    По диагонали от левого верхнего до правого нижнего углов выписывают­ся все коэффициенты по порядку от а 1 до а п. Каждая строка дополняется коэффициентами с возрастающими индексами слева направо так, чтобы чередовались строки с нечетными и четными индексами. В случае отсутствия данного коэффициента, а также если индекс его меньше нуля или больше п, на месте его пишется нуль.

    Критерий устойчивости сводится к тому, что при а 0 > 0 должны быть больше нуля все п определителей Гурвица, получаемых из квадратной матри­цы коэффициентов.

    Определители Гурвица составляются по следующему правилу (см. (5.11)):

    (5.12)

    (5.13)

    (5.14)

    Последний определитель включает в себя всю матрицу. Но так как в последнем столбце матрицы все элементы, кроме нижнего, равны нулю, то последний определитель Гурвица выражается через предпоследний сле­дующим образом:

    (5.15)

    Однако в устойчивой системе предпоследний определитель тоже должен быть положительным. Поэтому условие положительности последнего опреде­лителя сводится к условию а п > 0, т. е. к положительности свободного члена характеристического уравнения.

    Условия нахождения системы на границе устойчивости можно получить, приравнивая нулю последний определитель:
    , при положительности всех остальных определителей. Как следует из (5.15), это условие распадает­ся на два условия:а п =0 и
    . Первое условие соответствует границе устойчивости первого типа (апериодическая граница устойчивости) и вто­рое – границе устойчивости второго типа (колебательная граница устойчи­вости).

    Раскрывая определители, фигурирующие в общей формулировке критерия устойчивости Гурвица, можно получить в виде частных случаев критерии устойчивости для системы первого, второго, третьего, четвертого и более них порядков.

    1. Уравнение первого порядка

    Для этого уравнения критерий Гурвица дает

    т. е. коэффициенты характеристического уравнения должны быть положительными.

    2. Уравнение второго порядка

    Для этого уравнения критерий Гурвица требует

    Последний определитель, как отмечалось выше, сводится к условию положительности последнего коэффициента: а 2 >0.

    Таким образом, и для уравнения второго порядка необходимым и достаточным условием устойчивости является положительность всех коэффициентов характеристического уравнения.

    3. Уравнение третьего порядка

    Для этого уравнения получаем условия

    Третий (последний) определитель Δ 3 дает условие а 3 > 0. Условие Δ 2 >0 , при а 0 > 0, а 1 > 0 и а 3 > 0 может выполняться только при а 2 >. 0.

    Следовательно, для уравнения третьего порядка уже недостаточно положительности всех коэффициентов характеристического уравнения. Требуется еще выполнение определенного соотношения между коэффициентами:

    4. Уравнение четвертого порядка

    На основании критерия Гурвица можно получить, что для уравнения четвертого порядка, кроме положительности всех коэффициентов, требуется выполнение условия

    5. Уравнение пятого порядка

    Для уравнения пятого порядка, кроме положительности всех коэффи­циентов, должны выполняться еще два условия:

    Как видно, уже для уравнения пятой степени условия устойчивости по критерию Гурвица получаются достаточно громоздкими. Поэтому использование этого критерия практически ограничивается уравнениями четвертого порядка.

    Существенным недостатком крите­рия Гурвица является также то, что для уравнений высоких порядков в лучшем случае можно получить ответ о том, устойчива или неустойчива си­стема автоматического регулирования. При этом в случае неустойчивой системы критерий не дает ответа на то, каким образом надо изменить параметры системы, чтобы сделать ее устойчивой. Это обстоятельство привело к поискам других критериев, которые были бы бо­лее удобными в инженерной практике.

    Для иллюстрации применения кри­терия Гурвица рассмотрим пример на определение устойчивости дистанционной следящей системы. Принципи­альная и структурная схемы изображены на рис. 5.4. В качестве чувстви­тельного элемента использованы два сельсина (СД и СП), включенные по трансформаторной схеме. Передаточная функция сельсинов равна коэффи­циенту передачи схемы:

    где
    ошибка, равная разности углов поворота командной и испол­нительной осей.

    Передаточная функция усилителя:

    где k 2 – коэффициент усиления и Т у – постоянная времени усилителя.

    Передаточная функция двигателя (Д):

    где
    коэффициент передачи двигателя но скорости, аT M – электромеханическая постоянная времени двигателя совместно с оконечным каска­дом усилителя.

    Передаточная функция редуктора (Р) равна его коэффициенту передачи, определяемому передаточным отношением:

    Так как цепь регулирования состоит из включенных последовательно звеньев, то передаточная функция разомкнутой цепи будет равна произведению передаточных функций отдельных звеньев:

    где
    общий коэффициент усиления разомкнутой цепи.

    Характеристическое уравнение:

    После подстановки
    получаем

    В данном случае характеристическое уравнение имеет третий порядок. Нетрудно видеть, что условие положительности всех коэффициентов выпол­няется всегда, если выполнено условие К >0, что будет при правильном согласовании направления вращения двигателя со знаком рассогласования.

    Дополнительное условие
    , накладываемое на коэффициенты характеристического уравнения, сводится при подстановке значений коэффициентов ( и
    ) к неравенству

    которое и является условием устойчивости рассматриваемой системы.

    Из этого неравенства, в частности, можно заметить, что увеличение каждой постоянной времени сказывается отрицательно на устойчивости системы, так как при этом снижается предельное значение общего коэффи­циента усиления К, при котором система еще остается устойчивой.

    Обычный (или простой) критерий Гурвица учитывает только крайние исходы x i max и x i min каждой альтернативы:

    x i max = max (x ij ) , x i min = min (x ij ) , j = 1..M

    Он позволяет учесть субъективное отношение применяющего данный критерий ЛПР за счет придания этим исходам разных "весов". Для этого в расчет критерия введен "коэффициент оптимизма" λ, 0 ≤ λ ≤ 1 . Формула для расчета критерия Гурвица для i -й альтернативы с коэффициентом оптимизма λ выглядит следующим образом:

    H i (λ) = λ x i max + (1 - λ) x i min

    Если исходы представляют возможные выигрыши, то оптимальной признается альтернатива с максимальным значением критерия Гурвица:

    Х* = Х k , H k (λ) = max (H i (λ) ) , i = 1..N

    Как видно из формулы, правильный выбор коэффициента оптимизма λ оказывает существенное влияние на результат применения критерия. Остановимся подробнее на логике подбора λ .

    Если ЛПР настроен пессимистически, то для него важнее меньше потерять при плохом развитии событий, пусть даже это означает не такой большой выигрыш при удачном состоянии. Значит, удельный вес наихудшего исхода x i min в оценке альтернативы должен быть выше, чем для x i mах . Это обеспечивается, когда λ находится в пределах от 0 до 0.5 , исключая последнее значение.

    При λ = 0 критерий Гурвица "вырождается" в критерий Вальда и подходит только для очень пессимистично настроенных ЛПР.

    Оптимистичный ЛПР, напротив, ориентируется на лучшие исходы, так как для него важнее больше выиграть, а не меньше проиграть. Больший удельный вес в оценке наилучшего исхода достигается при λ больше 0.5 и до 1 включительно. При λ = 1 критерий Гурвица становится критерием "максимакса", который учитывает исключительно наибольший исход каждой альтернативы.

    Если у ЛПР нет ярко выраженного уклона ни в сторону пессимизма, ни оптимизма, коэффициент λ принимается равным 0.5 .

    Пример применения критерия Гурвица

    В условиях задачи из п.2.7 (табл.2.2) рассмотрим принятие решения по критерию Гурвица для ЛПР, настроенного оптимистически (λ = 0.8 ), и ЛПР-пессимиста (λ = 0.3 ). Порядок действий таков:

    1. Найдем максимальные x i max и минимальные x i min исходы для каждого проекта:

    x 1 max = max (45, 25, 50) = 50 x 1 min = min (45, 25, 50) = 25

    x 2 max = max (20, 60, 25) = 60 x 2 min = min (20, 60, 25) = 20

    2. Рассчитаем величину критерия Гурвица при заданных значениях коэффициента оптимизма:

    ЛПР-оптимист (λ=0.8 ):

    H 1 (0.8) = λ x 1 max + (1 - λ) x 1 min = 0.8×50 + (1 - 0.8) ×25 = 45

    H 2 (0.8) = λ x 2 max + (1 - λ) x 2 min = 0.8×60 + (1 - 0.8) ×20 = 52

    ЛПР-пессимист (λ=0.3 ):

    H 1 (0.3) = λ x 1 max + (1- λ) x 1 min = 0.3×50 + (1 - 0.3) ×25 = 32.5

    H 2 (0.3) = λ x 2 max + (1- λ) x 2 min = 0.3×60 + (1 - 0.3) ×20 = 32

    3. Сравним полученные величины. Оптимальными для каждого ЛПР будут альтернативы с максимальным значением критерия Гурвица:

    ЛПР-оптимист (λ = 0.8 ):

    45 < 52 => H 1 (0.8) < H 2 (0.8) => X* = X 2

    ЛПР-пессимист (λ = 0.3 ):

    32.5 < 32 => H 1 (0.3) > H 2 (0.3) => X* = X 1

    Как мы видим, выбор оптимальной альтернативы в одних и тех же условиях существенным образом зависит от отношения ЛПР к риску. Если для пессимиста оба проекта примерно равноценны, то оптимист, который надеется на лучшее, выберет второй проект. Его высокая наилучшая прибыль (60 ) при больших значениях коэффициента λ значительно повышает ценность данного проекта по критерию Гурвица.



    Понравилась статья? Поделитесь с друзьями!