Основание кислород. Сообщение о применении кислорода

Кислород

КИСЛОРО́Д -а; м. Химический элемент (O), газ без цвета и запаха, входящий в состав воздуха, необходимый для дыхания и горения и образующий в соединении с водородом воду.

Перекрыть кислоро́д кому-л. Создать невыносимые условия жизни, работы.

Кислоро́дный, -ая, -ое. К-ая среда. К-ые соединения. К-ая резка (газовая резка). К-ая сварка (газовая сварка). К-ое голодание; к-ая недостаточность (мед.; понижение содержания кислорода в тканях организма; гипоксия).

Кислоро́дная подушка (см. Поду́шка).

кислоро́д

(лат. Oxygenium), химический элемент VI группы периодической системы. В свободном виде встречается в виде двух модификаций - О 2 («обычный» кислород) и О 3 (озон). О 2 - газ без цвета и запаха, плотность 1,42897 г/л, t пл –218,6ºC, t кип –182,96ºC. Химически самый активный (после фтора) неметалл. С большинством других элементов (водородом, галогенами, серой, многими металлами и т. д.) взаимодействует непосредственно (окисление) и, как правило, с выделением энергии. При повышении температуры скорость окисления возрастает и может начаться горение. Животные и растения получают необходимую для жизни энергию за счёт биологического окисления различных веществ кислородом, поступающим в организмы при дыхании. Самый распространённый на Земле элемент; в виде соединений составляет около 1 / 2 массы земной коры; входит в состав воды (88,8% по массе) и многих тканей живых организмов (около 70% по массе). Свободный кислород атмосферы (20,95% по объёму) образовался и сохраняется благодаря фотосинтезу. Кислород (или обогащённый им воздух) применяется в металлургии, химической промышленности, в медицине, кислородно-дыхательных аппаратах. Жидкий кислород - компонент ракетного топлива.

КИСЛОРОД

Энциклопедический словарь . 2009 .

Синонимы :

Смотреть что такое "кислород" в других словарях:

    - (Охуgenum). Бесцветный газ без запаха и вкуса. Мало растворим в воде (приблизительно 1:43). Ингаляциями кислорода широко пользуются при различных заболеваниях, сопровождающихся гипоксией: при заболеваниях органов дыхания (пневмония, отек легких … Словарь медицинских препаратов

План:

    История открытия

    Происхождение названия

    Нахождение в природе

    Получение

    Физические свойства

    Химические свойства

    Применение

10. Изотопы

Кислород

Кислоро́д - элемент 16-й группы (по устаревшей классификации - главной подгруппы VI группы), второго периода периодической системы химических элементов Д. И. Менделеева, с атомным номером 8. Обозначается символом O(лат. Oxygenium). Кислород - химически активный неметалл, является самым лёгким элементом из группы халькогенов. Простое вещество кислород (CAS-номер: 7782-44-7) при нормальных условиях - газ без цвета, вкуса и запаха, молекула которого состоит из двух атомов кислорода (формула O 2), в связи с чем его также называют дикислород.Жидкий кислород имеет светло-голубой цвет, а твёрдый представляет собой кристаллы светло-синего цвета.

Существуют и другие аллотропные формы кислорода, например, озон (CAS-номер: 10028-15-6) - при нормальных условиях газ голубого цвета со специфическим запахом, молекула которого состоит из трёх атомов кислорода (формула O 3).

    История открытия

Официально считается, что кислород был открыт английским химиком Джозефом Пристли 1 августа 1774 года путём разложения оксида ртути в герметично закрытом сосуде (Пристли направлял на это соединение солнечные лучи с помощью мощной линзы).

Однако Пристли первоначально не понял, что открыл новое простое вещество, он считал, что выделил одну из составных частей воздуха (и назвал этот газ «дефлогистированным воздухом»). О своём открытии Пристли сообщил выдающемуся французскому химику Антуану Лавуазье. В 1775 году А. Лавуазье установил, что кислород является составной частью воздуха, кислот и содержится во многих веществах.

Несколькими годами ранее (в 1771 году) кислород получил шведский химик Карл Шееле. Он прокаливал селитру с серной кислотой и затем разлагал получившийся оксид азота. Шееле назвал этот газ «огненным воздухом» и описал своё открытие в изданной в 1777 году книге (именно потому, что книга опубликована позже, чем сообщил о своём открытии Пристли, последний и считается первооткрывателем кислорода). Шееле также сообщил о своём опыте Лавуазье.

Важным этапом, который способствовал открытию кислорода, были работы французского химика Пьера Байена, который опубликовал работы по окислению ртути и последующему разложению её оксида.

Наконец, окончательно разобрался в природе полученного газа А. Лавуазье, воспользовавшийся информацией от Пристли и Шееле. Его работа имела громадное значение, потому что благодаря ей была ниспровергнута господствовавшая в то время и тормозившая развитие химии флогистонная теория. Лавуазье провёл опыт по сжиганию различных веществ и опроверг теорию флогистона, опубликовав результаты по весу сожженных элементов. Вес золы превышал первоначальный вес элемента, что дало Лавуазье право утверждать, что при горении происходит химическая реакция (окисление) вещества, в связи с этим масса исходного вещества увеличивается, что опровергает теорию флогистона.

Таким образом, заслугу открытия кислорода фактически делят между собой Пристли, Шееле и Лавуазье.

    Происхождение названия

Слово кислород (именовался в начале XIX века ещё «кислотвором») своим появлением в русском языке до какой-то степени обязано М. В. Ломоносову, который ввёл в употребление, наряду с другими неологизмами, слово «кислота»; таким образом слово «кислород», в свою очередь, явилось калькой термина «оксиген» (фр. oxygène), предложенного А. Лавуазье (от др.-греч. ὀξύς - «кислый» и γεννάω - «рождаю»), который переводится как «порождающий кислоту», что связано с первоначальным значением его - «кислота», ранее подразумевавшим вещества, именуемые по современной международной номенклатуре оксидами.

    Нахождение в природе

Кислород - самый распространённый на Земле элемент, на его долю (в составе различных соединений, главным образом силикатов) приходится около 47,4 % массы твёрдой земной коры. Морские и пресные воды содержат огромное количество связанного кислорода - 88,8 % (по массе), в атмосфере содержание свободного кислорода составляет 20,95 % по объёму и 23,12 % по массе. Более 1500 соединений земной коры в своём составе содержат кислород.

Кислород входит в состав многих органических веществ и присутствует во всех живых клетках. По числу атомов в живых клетках он составляет около 25 %, по массовой доле - около 65 %.

    Получение

В настоящее время в промышленности кислород получают из воздуха. Основным промышленным способом получения кислорода, является криогенная ректификация. Также хорошо известны и успешно применяются в промышленности кислородные установки, работающие на основе мембранной технологии.

В лабораториях пользуются кислородом промышленного производства, поставляемым в стальных баллонах под давлением около 15 МПа.

Небольшие количества кислорода можно получать нагреванием перманганата калия KMnO 4:

Используют также реакцию каталитического разложения пероксида водорода Н 2 О 2 в присутствии оксида марганца(IV):

Кислород можно получить каталитическим разложением хлората калия (бертолетовой соли) KClO 3:

К лабораторным способам получения кислорода относится метод электролиза водных растворов щелочей, а также разложение оксида ртути(II) (при t = 100 °C):

На подводных лодках обычно получается реакцией пероксида натрия и углекислого газа, выдыхаемого человеком:

    Физические свойства

В мировом океане содержание растворённого O 2 больше в холодной воде, а меньше - в тёплой.

При нормальных условиях кислород - это газ без цвета, вкуса и запаха.

1 л его имеет массу 1,429 г. Немного тяжелее воздуха. Слабо растворяется в воде (4,9 мл/100 г при 0 °C, 2,09 мл/100 г при 50 °C) и спирте (2,78 мл/100 г при 25 °C). Хорошо растворяется в расплавленном серебре(22 объёма O 2 в 1 объёме Ag при 961 °C). Межатомное расстояние - 0,12074 нм. Является парамагнетиком.

При нагревании газообразного кислорода происходит его обратимая диссоциация на атомы: при 2000 °C - 0,03 %, при 2600 °C - 1 %, 4000 °C - 59 %, 6000 °C - 99,5 %.

Жидкий кислород (температура кипения −182,98 °C) - это бледно-голубая жидкость.

Фазовая диаграмма O 2

Твёрдый кислород (температура плавления −218,35°C) - синие кристаллы. Известны 6 кристаллических фаз, из которых три существуют при давлении в 1 атм.:

    α-О 2 - существует при температуре ниже 23,65 К; ярко-синие кристаллы относятся к моноклинной сингонии, параметры ячейки a=5,403 Å, b=3,429 Å, c=5,086 Å; β=132,53°.

    β-О 2 - существует в интервале температур от 23,65 до 43,65 К; бледно-синие кристаллы (при повышении давления цвет переходит в розовый) имеют ромбоэдрическую решётку, параметры ячейки a=4,21 Å,α=46,25°.

    γ-О 2 - существует при температурах от 43,65 до 54,21 К; бледно-синие кристаллы имеют кубическую симметрию, период решётки a=6,83 Å.

Ещё три фазы образуются при высоких давлениях:

    δ-О 2 интервал температур 20-240 К и давление 6-8 ГПа, оранжевые кристаллы;

    ε-О 4 давление от 10 и до 96 ГПа, цвет кристаллов от тёмно-красного до чёрного, моноклинная сингония;

    ζ-О n давление более 96 ГПа, металлическое состояние с характерным металлическим блеском, при низких температурах переходит в сверхпроводящее состояние.

    Химические свойства

Сильный окислитель, взаимодействует практически со всеми элементами, образуя оксиды. Степень окисления −2. Как правило, реакция окисления протекает с выделением тепла и ускоряется при повышении температуры (см. Горение). Пример реакций, протекающих при комнатной температуре:

Окисляет соединения, которые содержат элементы с не максимальной степенью окисления:

Окисляет большинство органических соединений:

При определённых условиях можно провести мягкое окисление органического соединения:

Кислород реагирует непосредственно (при нормальных условиях, при нагревании и/или в присутствии катализаторов) со всеми простыми веществами, кроме Au и инертных газов (He, Ne, Ar, Kr, Xe, Rn); реакции с галогенами происходят под воздействием электрического разряда или ультрафиолета. Косвенным путём получены оксиды золота и тяжёлых инертных газов (Xe, Rn). Во всех двухэлементных соединениях кислорода с другими элементами кислород играет роль окислителя, кроме соединений со фтором

Кислород образует пероксиды со степенью окисления атома кислорода, формально равной −1.

Например, пероксиды получаются при сгорании щелочных металлов в кислороде:

Некоторые оксиды поглощают кислород:

По теории горения, разработанной А. Н. Бахом и К. О. Энглером, окисление происходит в две стадии с образованием промежуточного пероксидного соединения. Это промежуточное соединение можно выделить, например, при охлаждении пламени горящего водорода льдом, наряду с водой, образуется пероксид водорода:

В надпероксидах кислород формально имеет степень окисления −½, то есть один электрон на два атома кислорода (ион O − 2). Получают взаимодействием пероксидов с кислородом при повышенных давлении и температуре:

Калий K, рубидий Rb и цезий Cs реагируют с кислородом с образованием надпероксидов:

В ионе диоксигенила O 2 + кислород имеет формально степень окисления +½. Получают по реакции:

Фториды кислорода

Дифторид кислорода, OF 2 степень окисления кислорода +2, получают пропусканием фтора через раствор щелочи:

Монофторид кислорода (Диоксидифторид), O 2 F 2 , нестабилен, степень окисления кислорода +1. Получают из смеси фтора с кислородом в тлеющем разряде при температуре −196 °C:

Пропуская тлеющий разряд через смесь фтора с кислородом при определённых давлении и температуре, получают смеси высших фторидов кислорода O 3 F 2 , О 4 F 2 , О 5 F 2 и О 6 F 2 .

Квантовомеханические расчёты предсказывают устойчивое существование иона трифторгидроксония OF 3 + . Если этот ион действительно существует, то степень окисления кислорода в нём будет равна +4.

Кислород поддерживает процессы дыхания, горения, гниения.

В свободном виде элемент существует в двух аллотропных модификациях: O 2 и O 3 (озон). Как установили в 1899 году Пьер Кюри и Мария Склодовская-Кюри, под воздействием ионизирующего излучения O 2 переходит в O 3 .

    Применение

Широкое промышленное применение кислорода началось в середине XX века, после изобретения турбодетандеров - устройств для сжижения и разделения жидкого воздуха.

В металлургии

Конвертерный способ производства стали или переработки штейнов связан с применением кислорода. Во многих металлургических агрегатах для более эффективного сжигания топлива вместо воздуха в горелках используют кислородно-воздушную смесь.

Сварка и резка металлов

Кислород в баллонах голубого цвета широко используется для газопламенной резки и сварки металлов.

Ракетное топливо

В качестве окислителя для ракетного топлива применяется жидкий кислород, пероксид водорода, азотная кислота и другие богатые кислородом соединения. Смесь жидкого кислорода и жидкого озона - один из самых мощных окислителей ракетного топлива (удельный импульс смеси водород - озон превышает удельный импульс для пары водород-фтор и водород-фторид кислорода).

В медицине

Медицинский кислород хранится в металлических газовых баллонах высокого давления (для сжатых или сжиженных газов) голубого цвета различной ёмкости от 1,2 до 10,0 литров под давлением до 15 МПа (150 атм) и используется для обогащения дыхательных газовых смесей в наркозной аппаратуре, при нарушении дыхания, для купирования приступа бронхиальной астмы, устранения гипоксии любого генеза, при декомпрессионной болезни, для лечения патологии желудочно-кишечного тракта в виде кислородных коктейлей. Для индивидуального применения медицинским кислородом из баллонов заполняют специальные прорезиненные ёмкости - кислородные подушки. Для подачи кислорода или кислородо-воздушной смеси одновременно одному или двум пострадавшим в полевых условиях или в условиях стационара применяются кислородные ингаляторы различных моделей и модификаций. Достоинством кислородного ингалятора является наличие конденсатора-увлажнителя газовой смеси, использующего влагу выдыхаемого воздуха. Для расчёта оставшегося в баллоне количества кислорода в литрах обычно величину давления в баллоне в атмосферах (по манометру редуктора) умножают на величину ёмкости баллона в литрах. Например, в баллоне вместимостью 2 литра манометр показывает давление кислорода 100 атм. Объём кислорода в этом случае равен 100 × 2 = 200 литров.

В пищевой промышленности

В пищевой промышленности кислород зарегистрирован в качестве пищевой добавки E948, как пропеллент и упаковочный газ.

В химической промышленности

В химической промышленности кислород используют как реактив-окислитель в многочисленных синтезах, например, - окисления углеводородов в кислородсодержащие соединения (спирты, альдегиды, кислоты), аммиака в оксиды азота в производстве азотной кислоты. Вследствие высоких температур, развивающихся при окислении, последние часто проводят в режиме горения.

В сельском хозяйстве

В тепличном хозяйстве, для изготовления кислородных коктейлей, для прибавки в весе у животных, для обогащения кислородом водной среды в рыбоводстве.

    Биологическая роль кислорода

Аварийный запас кислорода в бомбоубежище

Большинство живых существ (аэробы) дышат кислородом воздуха. Широко используется кислород в медицине. При сердечно-сосудистых заболеваниях, для улучшения обменных процессов, в желудок вводят кислородную пену («кислородный коктейль»). Подкожное введение кислорода используют при трофических язвах, слоновости, гангрене и других серьёзных заболеваниях. Для обеззараживания и дезодорации воздуха и очистки питьевой воды применяют искусственное обогащение озоном. Радиоактивный изотоп кислорода 15 O применяется для исследований скорости кровотока, лёгочной вентиляции.

    Токсические производные кислорода

Некоторые производные кислорода (т. н. реактивные формы кислорода), такие как синглетный кислород, пероксид водорода, супероксид, озон и гидроксильный радикал, являются высокотоксичными продуктами. Они образуются в процессе активирования или частичного восстановления кислорода. Супероксид (супероксидный радикал), пероксид водорода и гидроксильный радикал могут образовываться в клетках и тканях организма человека и животных и вызывают оксидативный стресс.

    Изотопы

Кислород имеет три устойчивых изотопа: 16 О, 17 О и 18 О, среднее содержание которых составляет соответственно 99,759 %, 0,037 % и 0,204 % от общего числа атомов кислорода на Земле. Резкое преобладание в смеси изотопов наиболее лёгкого из них 16 О связано с тем, что ядро атома 16 О состоит из 8 протонов и 8 нейтронов (дважды магическое ядро с заполненными нейтронной и протонной оболочками). А такие ядра, как следует из теории строения атомного ядра, обладают особой устойчивостью.

Также известны радиоактивные изотопы кислорода с массовыми числами от 12 О до 24 О. Все радиоактивные изотопы кислорода имеют малый период полураспада, наиболее долгоживущий из них 15 O с периодом полураспада ~120 с. Наиболее краткоживущий изотоп 12 O имеет период полураспада 5,8·10 −22 с.

В медицине используются различные виды газов, наиболее распространенными из них является азот и кислород. Область применения кислорода обширна, она включает обогащение газовых смесей, наполнение кислородных подушек, изготовление кислородных коктейлей и не только.

Медицинский кислород характеризуется высокой концентрацией, отсутствием примесей. Главными его источниками в больницах являются кислородные концентраторы, баллоны с жидким кислородом в медицине или газообразным, системы кислородообогащения, устройства для химического получения газа. Сегодня чаще всего применяются кислородные концентраторы – они зарекомендовали себя благодаря надежности, безопасности эксплуатации, мобильности систем и экономичности.

Использование кислорода в медицине связано с неотложными ситуациями, когда необходимо обеспечить подачу наркоза, проведение обширных хирургических операций или реанимационных действий. В этих случаях осуществляется искусственная вентиляция легких. Также этот газ нужен при лечении ряда заболеваний – помимо хронической дыхательной недостаточности, кислород требуется при инфарктах и инсультах.

Кислородотерапия незаменима при лечении ряда заболеваний:

  • Бронхиальная астма.
  • Пневмония.
  • Туберкулез.
  • Обструктивный бронхит.
  • Аллергии.
  • Интоксикация.

Применение кислорода в медицине

Вещество, обозначаемое символом О, участвует в окислительно-восстановительных реакциях организма. В медицине использоваться кислород может для газоснабжения реанимационных отделений, в стационаре, поликлиниках, санаториях, спортклубах, детских учреждениях для профилактики болезней, укрепления иммунитета.

Источник жизни на планете – кислород – востребован при лечении анаэробных инфекций и улучшении трофики тканей, репаративных процессов. В большинстве случаев газ вводится ингаляторным методом при искусственной и естественной вентиляции легких. В медицинские учреждения кислород поставляется в сжатом виде. Жидкий кислород удобнее в транспортировке и хранении, перед его подачей в систему газоснабжений его переводят в газообразное состояние.

Кислород в медицине может использоваться в чистом виде или в составе газовых смесей. Для неингаляторного введения практикуют подкожное, внутрисосудистое, внутриполостное, энтеральное и другие способы введения.

Также популярно использование кислорода в медицине для профилактики гипоксии. Особенно популярен прием кислородных коктейлей или применение кислородных концентраторов, баллончиков в крупных городах. Для улучшения самочувствия зачастую прибегают к кислородным ваннам.

Первые исследователи кислорода заметили, что в его атмосфере легче дышится. Они предсказывали широкое применение этого живительного газа в медицине и даже в повседневной жизни как средства, усиливающего жизнедеятельность человеческого организма.

Но при более углублённом изучении оказалось, что длительное вдыхание чистого кислорода человеком может вызвать заболевание и даже смерть: организм человека не приспособлен к жизни в чистом кислороде.

В настоящее время чистый кислород применяется для вдыхания лишь в некоторых случаях: например, тяжело больным туберкулёзом лёгких предлагают вдыхать кислород небольшими порциями. Аэронавты и лётчики при высотных полётах пользуются кислородными приборами. Бойцы горноспасательных отрядов часто принуждены работать в атмосфере, лишённой кислорода. Для дыхания они используют прибор, в котором сохраняется нужный для дыхания состав воздуха добавлением кислорода из баллонов, находящихся в том же приборе.

Основная масса получаемого в промышленности кислорода применяется в настоящее время для сжигания в нём различных веществ с целью получения очень высокой температуры.

Например, горючий газ ацетилен (C 2 H 2) смешивают с кислородом и сжигают в особых горелках. Пламя этой горелки имеет такую высокую температуру, что в нём плавится железо. Поэтому кислородно-ацетиленовой горелкой пользуются для сварки стальных изделий. Такая сварка называется автогенной.

Жидкий кислород применяется для приготовления взрывчатых смесей. Особые патроны набивают измельчённой древесиной (древесной мукой) или другими измельчёнными горючими веществами и смачивают эту горючую массу жидким кислородом. При поджигании такой смеси горение происходит очень быстро, образуется большое количество газов, нагретых до очень высокой температуры. Давлением этих газов могут быть взорваны скалы, или выброшено большое количество грунта. Этой взрывчатой смесью пользуются при строительстве каналов, при проходке тоннелей и пр.

В последнее время кислород добавляют к воздуху для повышения температуры в печах при выплавке чугуна и стали. Благодаря этому ускоряется выплавка стали и повышается её качество.

Следует заметить, что кислород приносит не только пользу, но и вред современному человеку: он окисляет и тем портит металлические изделия. Особенно много гибнет железа от ржавления, в котором кислород принимает активное участие.

Современная наука решает вопросы не только о том, как получить и лучше использовать кислород, но также и о том, как защитить некоторые вещества я предметы от химического действия кислорода.

Получить кислород можно из сложных веществ или из воздуха. В небольших количествах для учебных целей получают кислород разложением некоторых сложных веществ, например марганцевокислого калия KMnO 4 .

Так как кислород немного тяжелее воздуха, то он собирается сначала на дне стеклянной банки и вытесняет из неё воздух. Чтобы следить за наполнением банки кислородом, нужно опускать в неё тлеющую лучинку: лучинка загорается,в той части банки, которая заполнилась кислородом.

Для промышленных целей кислород получают в больших количествах из воздуха или из воды.

Применение кислорода в практической деятельности че-ловека чрезвычайно широко. Чистый кислород и его смесь с углекислым газом используют при ослаблении дыхания в послеоперационном периоде, при отравлениях, интоксика-циях организма и т. п.

Также кислород применяют под повышенным давлением для так называемой гипербарической оксигенации . Уста-новлена высокая эффективность этого метода при лечении различных заболеваний, в частности с использованием спе-циальных барокамер (рис. 20.4).

Для улучшения обменных процессов при кислородной недос-таточности организма используют кислородные коктейли. Кок-тейль обычно готовят пропусканием под небольшим давлением кислорода в виде мелких пузырьков через белок куриного яйца. В полученную пену часто добавляют настои шиповника и дру-гих лекарственных растений, глюкозу, витамины.

Следует отметить, что длительное вдыхание воздуха, обо-гащенного кислородом, опасно для здоровья человека. Вы-сокие концентрации кислорода влекут за собой вредные из-менения в живых тканях.

Рис. 20.4. Барокамеры
Рис. 20.5. Гипобарическая камера

Результа-ты курильщиков в пяти тестах на умственные спо-собности были намного хуже, чем у людей, кото-рые раньше никогда не курили или бросили курить. Воз-можно, причина этого кроется в том, что курение создает нехватку кислорода для жизненно важных органов челове-ка, в числе которых и мозг.

Кислород широко применяют не только для повышения насыщения им тканей организма и борьбы с гипоксией. В последнее время в медицинских целях используют газовые смеси со сниженным содержанием кислорода для создания его искусственной нехватки.

Установлено, что специальными тренировками при кис-лородной недостаточности может быть выработана повышен-ная устойчивость организма к разным неблагоприятным факторам внешней и внутренней среды. Ведь жители гор-ных районов не страдают от кислородной недостаточности. Их организм приспособился к экстремальным условиям: интенсивнее происходят процессы кровообращения, организм производит больше гемоглобина.

Баллоны, которые используют для обеспечения дыхания космонавтов, летчиков, водолазов, аквалангистов, пожарни-ков и т. п., содержат кислород.

Медленное окисление ве-ществ еды в нашем организме — «энергетическая база» жизни. А тепловую энергию, которая выделяется при окислении мусо-ра и перегноя, используют для обогрева парников и коттеджей.

Применяют кислород и в полеводстве . Один из эффективных способов предпосевной под-готовки семян — намачивание в насыщенной кислородом воде. Это мероприятие убыстряет про-растание семян и повышает их полевую всхожесть. Материал с сайта

Важную роль играет кислород в промышленности . Обогащение воздуха кислородом убыстряет технологические процессы, связанные с окислением веществ. Они — основа тепловой энер-гетики и металлургии. Ведь превращение чугуна в сталь, обжиг руд цветных металлов невозможно осуществить без применения кислорода.

Кислород используют и для получения высоких темпера-тур. Для этого разные горючие газы (водород, ацетилен, ме-тан) сжигают в специальных горелках.

Смеси жидкого кислорода с угольным порошком, древес-ной мукой или другими горючими веществами называют оксиликвитами. Их очень сильные взрывные свойства приме-няют на подрывных работах.

Жидкий кислород — эффективный окислитель ракетного топлива.

Однако, стремясь покорить космос, не следует забывать о сохранении атмосферы родной планеты. Нужно заботиться о зеленых насаждениях. Ведь растения вырабатывают кис-лород, способствуют снижению перепадов температур, уров-ней шума и электромагнитных излучений.

На этой странице материал по темам:

  • Доклад на тему применение кислорода

  • Применение кислорода человеком в химии

  • Кислород краткое сообщение

  • Школьный мир

  • Применение кислорода кратко

Вопросы по этому материалу:



Понравилась статья? Поделитесь с друзьями!