Основание прямого параллелепипеда параллелограмм диагонали которого. Некоторые свойства параллелепипеда

Параллелепипед – это геометрическая фигура, все 6 граней которой представляют собой параллелограммы.

В зависимости от вида этих параллелограммов различают следующие виды параллелепипеда:

  • прямой;
  • наклонный;
  • прямоугольный.

Прямым параллелепипедом называют четырехугольную призму, ребра которой составляют с плоскостью основания угол 90 °.

Прямоугольным параллелепипедом называют четырехугольную призму, все грани которой являются прямоугольниками. Куб есть разновидность четырехугольной призмы, у которой все грани и ребра равны между собой.

Особенности фигуры предопределяют ее свойства. К ним относят 4 следующих утверждений:


Запомнить все приведенные свойства просто, они легки для понимания и выводятся логически исходя из вида и особенностей геометрического тела. Однако, незамысловатые утверждения могут быть невероятно полезны при решении типовых заданий ЕГЭ и позволят сэкономить время необходимое для прохождения теста.

Формулы параллелепипеда

Для поиска ответов на поставленную задачу недостаточно знать только свойства фигуры. Также могут понадобиться и некоторые формулы для нахождения площади и объема геометрического тела.

Площадь оснований находится также как и соответствующий показатель параллелограмма или прямоугольника. Выбирать основание параллелограмма можно самостоятельно. Как правило, при решении задач проще работать с призмой, в основании которой лежит прямоугольник.

Формула нахождения боковой поверхности параллелепипеда, также может понадобиться в тестовых заданиях.

Примеры решения типовых заданий ЕГЭ

Задание 1.

Дано : прямоугольный параллелепипед с измерениями 3, 4 и 12 см.
Необходимо найти длину одной из главных диагоналей фигуры.
Решение : Любое решение геометрической задачи должно начинаться с построения правильного и четкого чертежа, на котором будет обозначено «дано» и искомая величина. На рисунке ниже приведен пример правильного оформления условий задания.

Рассмотрев сделанный рисунок и вспомнив все свойства геометрического тела, приходим к единственно верному способу решения. Применив 4 свойство параллелепипеда, получим следующее выражение:

После несложных вычислений получим выражение b2=169, следовательно, b=13. Ответ задания найден, на его поиск и чертеж необходимо потратить не более 5 минут.

Прямоугольный параллелепипед

Прямоугольный параллелепипед – это такой прямой параллелепипед, у которого все грани являются прямоугольниками.

Достаточно посмотреть вокруг себя, и мы увидим, что окружающие нас предметы имеют форму похожую на параллелепипед. Они могут отличать по цвету, иметь массу дополнительных деталей, но если эти тонкости отбросить, то можно сказать, что например шкаф, коробка и т.д., имеют приблизительно одинаковую форму.

С понятием прямоугольного параллелепипеда мы сталкиваемся практически каждый день! Оглянитесь вокруг и скажите, где вы видите прямоугольные параллелепипеды? Посмотрите на книгу, ведь она как раз такой формы! Эту же форму имеют кирпич, спичечный коробок, деревянный брусок, и даже прямо сейчас вы находитесь внутри прямоугольного параллелепипеда, ведь классная комната – это ярчайшая интерпретация этой геометрической фигуры.

Задание: А какие примеры параллелепипеда вы можете назвать?

Давайте более тщательно рассмотрим прямоугольный параллелепипед. И что мы видим?

Во-первых, мы видим, что эта фигура образована из шести прямоугольников, которые являются гранями прямоугольного параллелепипеда;

Во-вторых, прямоугольный параллелепипед имеет восемь вершин и двенадцать ребер. Ребра прямоугольного параллелепипеда – это стороны его граней, а вершины параллелепипеда являются вершинами граней.

Задание:

1. Какое название носит каждая из граней прямоугольного параллелепипеда? 2. Благодаря каким параметрам можно измерить параллелограмм? 3. Дайте определение противоположных граней.

Виды параллелепипедов

Но параллелепипеды бывают не только прямоугольными, но также они могут¬¬ быть прямыми и наклонными, а прямые как раз таки и делятся на прямоугольные, непрямоугольные и кубы.

Задание: Посмотрите на картинку и скажите, какие параллелепипеды на ней изображены. Чем прямоугольный параллелепипед отличается от куба?


Свойства прямоугольного параллелепипеда

Прямоугольный параллелепипед обладаем рядом важнейших свойств:

Во-первых, квадрат диагонали этой геометрической фигуры равняется сумме квадратов трех его основных параметров: высоты, ширины и длины.

Во-вторых, все его четыре диагонали абсолютно идентичны.

В-третьих, если все три параметра параллелепипеда одинаковы, то есть длина, ширина и высота равны, то такой параллелепипед называют кубом, и все его грани будут равны одному и тому же квадрату.



Задание

1. Имеет ли прямоугольный параллелепипед равные грани? Если таковы имеются, то покажите их на рисунке. 2. Из каких геометрических форм состоят грани прямоугольного параллелепипеда? 3. Какое расположение имеют равные грани по отношению друг к другу? 4. Назовите количество пар равных граней данной фигуры. 5. Найдите в прямоугольном параллелепипеде ребра, которые обозначают его длину, ширину, высоту. Сколько вы их насчитали?

Задача

Чтобы красиво оформить подарок на день Рождения маме, Таня взяла коробку в форме прямоугольного параллелепипеда. Размер данной коробки 25см*35см*45см. Чтобы сделать эту упаковку красивой, Таня решила, оклеит ее красивой бумагой, стоимость которой 3 гривны за 1 дм2. Сколько нужно потратить денег на упаковочную бумагу?

А вы знаете, что известный иллюзионист Девид Блейн в рамках эксперимента провел 44 дня в стеклянном параллелепипеде, подвешенном над Темзой. Эти 44 дня он не ел, а только пил воду. В свое добровольное узилище Девид взял только письменные принадлежности, подушку и матрас и носовые платки.

В геометрии ключевыми понятиями являются плоскость, точка, прямая и угол. Используя эти термины, можно описать любую геометрическую фигуру. Многогранники обычно описывают через более простые фигуры, которые лежат в одной плоскости, такие как круг, треугольник, квадрат, прямоугольник и т.д. В данной статье мы рассмотрим, что такое параллелепипед, опишем типы параллелепипедов, его свойства, из каких элементов он состоит, а также дадим основные формулы для вычисления площади и объема для каждой разновидности параллелепипеда.

Определение

Параллелепипед в трехмерном пространстве - это призма, все стороны которой являются параллелограммами. Соответственно, она может иметь только три пары параллельных параллелограммов или шесть граней.

Чтобы визуализировать параллелепипед, представьте себе обычный стандартный кирпич. Кирпич - хороший пример прямоугольного параллелепипеда, который может представить себе даже ребенок. Другими примерами могут послужить многоэтажные панельные дома, шкафы, контейнеры для хранения пищевых продуктов соответствующей формы и т.д.

Разновидности фигуры

Существует всего две разновидности параллелепипедов:

  1. Прямоугольные, все боковые грани которых находятся под углом 90 о к основанию и являются прямоугольниками.
  2. Наклонные, боковые грани которых расположены под определенным углом к основанию.

На какие элементы можно разделить эту фигуру?

  • Как и в любой другой геометрической фигуре, в параллелепипеде любые 2 грани с общим ребром зовутся смежными, а те, что его не имеют, являются параллельными (исходя из свойства параллелограмма, имеющего попарно параллельные противоположные стороны).
  • Вершины параллелепипеда, не лежащие на одной грани, зовутся противоположными.
  • Отрезок, соединяющий такие вершины, является диагональю.
  • Длины трех ребер прямоугольного параллелепипеда, соединяющихся в одной вершине, являются его измерениями (а именно, его длиной, шириной и высотой).

Свойства фигуры

  1. Он всегда построен симметрично по отношению к середине диагонали.
  2. Точка пересечения всех диагоналей делит каждую диагональ на два равных отрезка.
  3. Противолежащие грани равные по длине и лежат на параллельных прямых.
  4. Если сложить квадраты всех измерений параллелепипеда, полученное значение будет равно квадрату длины диагонали.

Расчетные формулы

Формулы для каждого частного случая параллелепипеда будут свои.

Для произвольного параллелепипеда верно утверждение, что его объем равен абсолютной величине тройного скалярного произведения векторов трех сторон, исходящих из одной вершины. Однако формулы для вычисления объема произвольного параллелепипеда не существует.

Для прямоугольного параллелепипеда действуют следующие формулы:

  • V=a*b*c;
  • Sб=2*c*(a+b);
  • Sп=2*(a*b+b*c+a*c).
  • V - объем фигуры;
  • Sб - площадь боковой поверхности;
  • Sп - площадь полной поверхности;
  • a - длина;
  • b - ширина;
  • c - высота.

Еще одним частным случаем параллелепипеда, в котором все стороны - квадраты, является куб. Если любую из сторон квадрата обозначить буквой a, то для площади поверхности и объема данной фигуры можно будет использовать следующие формулы:

  • S=6*a*2;
  • V=3*а.
  • S - площадь фигуры,
  • V - объем фигуры,
  • a - длина грани фигуры.

Последняя рассматриваемая нами разновидность параллелепипеда - прямой параллелепипед. В чем разница между прямым параллелепипедом и прямоугольным параллелепипедом, спросите вы. Дело в том, что основанием прямоугольного параллелепипеда может быть любой параллелограмм, а основанием прямого - только прямоугольник. Если обозначить периметр основания, равный сумме длин всех сторон, как Po, а высоту обозначить буквой h, мы имеем право воспользоваться следующими формулами для вычисления объема и площадей полной и боковой поверхностей.

1. У параллелепипеда противолежащие грани параллельны, и равны.

Доказательство . Рассмотрим какие-нибудь две противолежащие грани параллелепипеда, например А1А2А"2А"1 и A3A4A"4A"3. Так как все грани параллелепипеда - параллелограммы, то прямая A1A2 параллельна прямой А4А3, а прямая А1А"1 параллельна прямой А4А4". Отсюда следует, что плоскости рассматриваемых граней параллельны.

Из того, что грани параллелепипеда - параллелограммы, следует, что отрезки А1А4, А1"А4", A"2A"3 и A2A3 - параллельны и равны. Отсюда заключаем, что грань А1А2А"2А"1 совмещается параллельным переносом вдоль ребра А1А4 с гранью А3А4А"4А"3. Значит, эти грани равны.

Аналогично доказывается параллельность и равенство любых других противолежащих граней параллелепипеда. Теорема доказана.

2. Диагонали параллелепипеда пересекаются в одной точке и делятся ею пополам.

Доказательство.

Рассмотрим какие-нибудь две диагонали параллелепипеда, например А 1 А" 3 и A 4 A" 2 (рис. 14). Так как четырехугольники А 1 А 2 А 3 А 4 и A 2 A" 2 A" 3 A 3 - параллелограммы с общей стороной A 2 A 3 , то их стороны А 1 А 4 и A" 2 A" 3 параллельны друг другу, а значит, лежат в одной плоскости. Эта плоскость пересекает плоскости противолежащих граней параллелепипеда по параллельным прямым A 1 A" 2 и A 4 A" 3 . Следовательно, четырехугольник A 4 A 1 A" 2 A" 3 - параллелограмм. Диагонали параллелепипеда A 1 A" 3 и A 4 A" 2 являются диагоналями этого параллелограмма. Поэтому они пересекаются и точкой пересечения О делятся пополам.

Аналогично доказывается, что диагонали A1A"3 и A2A"4, а также диагонали A1A"3 и A3A"1 пересекаются и точкой пересечения делятся пополам. Отсюда заключаем, что все четыре диагонали параллелепипеда пересекаются в одной точке и точкой пересечения делятся пополам. Теорема доказана.

3. Сумма квадратов всех диагоналей прямоугольного параллелепипеда равна сумме квадратов всех его ребер,

d 1 2 + d 2 2 + d 3 2 + d 4 2 = 4b 2 + 4c 2

4. Все диагонали прямоугольного параллелепипеда равны. Квадрат диагонали прямоугольного параллелепипеда равен сумме квадратов трех его измерений.

d 2 = a 2 + b 2 + c 2

Доказательство:

Так как AA1 перпендикулярно к основанию ABCD, то угол AA1C прямой. Из прямоугольного треугольника AA1C по теореме Пифагора получаем:

A 1 C 2 = AC 2 + AA 1 2

но AC – это диагональ прямоугольника ABCD, поэтому AC 2 =AB 2 +AD 2 . Кроме того, AA1=CC1, следовательно, A 1 C 2 =AB 2 +AD 2 +CC 1 2 . Теорема доказана.

Диагонали прямого параллелепипеда вычисляются по формулам:

d 1 2 = a 2 + b 2 + c 2 + 2ab cos ά

d 2 2 = a 2 + b 2 + c 2 - 2ab cos ά

5. В параллелепипед можно вписать тетраэдр.

Объем такого тетраэдра равен 1/3 части объема параллелепипеда.

V = 1/6 d 1 d 2 p(d 1 ,d 2) sin (d 1 ,d 2)

Площадь боковой поверхности (или просто боковая поверхность) призмы (параллелепипеда) называется сумма площадей всех ее боковых граней.

Площадью полной поверхности (или просто полная поверхность) призмы (параллелепипеда) называется сумма ее боковой поверхности и площадей оснований.

Объем параллелепипеда равен произведению высоты на площадь грани, к которой она проведена:

Объем и площадь поверхности прямоугольного параллелепипеда находится по формулам:

V = a b c, S полн = 2 (ab + ac + bc)

Кубом называют прямоугольный параллелепипед, все двенадцать ребер которого равны.

Все шесть граней куба – равные квадраты.

Диагональ куба рассчитывается по формуле d = a√3.

Объем и площадь поверхности куба выражаются так: V = a 3 , S полн = 6a 2

5. Теорема Эйлера о многогранниках

Теорема Эйлера:

Если В – количество вершин многогранника, Г – количество граней, а Р – количество ребер, то В + Г = Р + 2.

Пусть Г k обозначает количество k-угольных граней многогранника, В k – количество вершин, из которых исходит k ребер. Тогда

3Г 3 + 4Г 4 + 5Г 5 + … = 3В 3 + 4В 4 + 5В 5 + … = 2Р

Для любого многогранника верны неравенства:

Другие факты.

1. Всякий многогранник имеет хотя бы одну вершину, из которой исходит не более 5 ребер, а также грань, в которой не более 5 ребер.

2. В любом многограннике есть хотя бы одна треугольная грань или хотя бы один трехгранный угол.

3. Не существует многогранника, у которого ровно 7 ребер. Число 6 и любое целое число n 8 могут быть количеством ребер выпуклого многогранника.

4. Для всякого выпуклого многогранника имеют место неравенства:

5. У любого многогранника есть по крайней мере две грани с одинаковым количеством сторон.

6. Во всяком выпуклом многограннике сумма плоских углов всех граней вдвое больше суммы углов выпуклого многоугольника, имеющего то же число вершин.

Если на каждой грани выпуклого многогранника выбрать по одной внутренней точке и соединить ребрами те из выбранных точек, которые лежат на смежных гранях, то получится новый многогранник, называемый сопряженным с данным. Количества вершин, ребер и граней данного и сопряженного многогранников связаны соотношениями В*=Г, Г*=В, Р*=Р.

Задача 1. Проверить теорему Эйлера для выпуклого многогранника с вершинами в серединах ребер куба.

Решение . Количество вершин нашего многогранника равно количеству ребер куба, то есть В=12.

Далее, многогранник имеет 8 треугольных граней (столько, сколько вершин у куба) и 6 четырехугольных граней (на каждой грани куба одна грань нашего многогранника). Следовательно, Г=8+6=14. Наконец, число ребер равно: Р=1/2 х (8х3+6х4)=24.

Имеем: 12+14=24+2.

Задача 2. Привести пример какого-нибудь многогранника, у которого 9 вершин и 7 граней.

Решение . Возьмем какой-нибудь многогранник с близкими значениями чисел В, Р, Г. Например, куб - у него В=8, Г=6.

Заметим, что если срезать куб так, как показано на рисунке, то получится многогранник с требуемым количеством вершин, ребер и граней.

Задача 3. Найти все значения, которые может принимать количество граней многогранника с 10 вершинами.

Решение . Пусть n1 – количество i-угольных граней многогранника. Тогда

n 3 +n 4 +n 5 +… =Г

3n 3 +4n 4 +5n 5 +… =2P 3B

Следовательно, n 3 +n 4 +…=10, 3n 3 + 4n 4 +…=2Р 30

Таким образом, Р 15. Так как В+Г=Р+2, то 10+Г 15+2, откуда Г 7.

С другой стороны, 2Р=3n 3 +4n 4 +5n 5 +… 3(n 3 +n 4 +…)=3Г, то есть Р 3/2Г.

Нарисуем многогранник, у которого В=10,Г=7 (это наименьшее количество граней). Для этого «срежем» у куба одну из его вершин, как показано на рис.2.91.

Далее поднимаем вершину С, сделав «надлом» грани ABCD по прямой BD, а затем «спускаем» вершину С1, «надламывая» грань A1B1C1D1 по прямой B1D1. Мы получаем многогранники с Г=8 и Г+9. Многогранник с В=10, Г=10 – это девятиугольная пирамида.

«Надламывая» диагонали ее основания, будем получать многогранники, у которых В=10, а Г=11, 12, 13, 14, 15, 16. Таким образом, мы получаем, что количество граней может быть равно 7,8,9, …, 16.

Подобие многогранников

Два многогранника называются подобными, если существует преобразование подобия, переводящее один многогранник в другой.

Подобные многогранники имеют соответственно равные многогранные углы и соответственно подобные грани. Соответственные элементы подобных многогранников называются сходственными.

У подобных многогранников двугранные углы равны и одинаково расположены, а сходственные ребра пропорциональны.

Кроме того, справедливы следующие теоремы:

Теорема 1. Если в пирамиде провести секущую плоскость параллельно основанию, то она отсечет от нее пирамиду, подобную данной.

Теорема 2. Площади поверхностей подобных многогранников относятся как квадраты, а их объемы – как кубы сходственных линейных элементов многогранников.

Правильные многогранники

Многогранник называется правильным, если все его грани – равные друг другу правильные многоугольники, к каждой вершине примыкает одинаковое количество граней и двугранные углы между смежными гранями одинаковы.

Теорема . Существуют ровно пять правильных выпуклых многогранников. (Их называют также телами Платона).

Доказательство .

По формуле Эйлера: В + Г = Р + 2. Найдем число Р. Во – первых, в каждой грани n ребер, поэтому общее число ребер Р равно nГ. Учитывая, что каждое ребро мы при этом считаем дважды, получаем 2Р=nГ. Следовательно, Г=2Р/n. Во – вторых, в каждой вершине сходится k ребер, поэтому аналогично предыдущему случаю: 2Р=kB. Следовательно, В=2Р/k. Подставляя в формулу Эйлера полученные выражения для Г и В, получим: 2Р/n + 2Р/k = Р + 2, откуда

Полученное равенство возможно лишь в случае, если

Учтем, что n 3, k 3. Простым перебором убеждаемся, что возможны только следующие случаи:

(1) n=3; k=3, k=4, k=5 (2) n=4;k=3 (3) n=5, k=3

Следовательно, возможные варианты для (n,k) исчерпываются следующими: (3;3), (3;4), (3;5), (4;3), (5;3).

Примечание : тетраэдром называют также произвольную треугольную пирамиду.

Среди выпуклых многогранников еще выделяют полуправильные многогранники (тела Архимеда), гранями которых являются правильные многоугольники, но уже не обязательно равные, например правильные призмы и пирамиды.

Основываясь на том, что многогранник – совокупность плоских многоугольников, и каждая сторона одного из многоугольников является стороной еще только одного многоугольника, называемого смежным с ним (по этой стороне), рассматривают также невыпуклые (звездчатые) правильные многогранники, получившие общее название тел Пуансо.

Сводная таблица параметров правильных

Многогранников

Введенные обозначения: a – ребро многогранника, Г – количество граней, В – количество вершин, Р – общее количество ребер, φ 1 – угол, под которым ребро многогранника видно из центра описанной сферы,φ - угол, между смежными боковыми гранями, R – радиус описанного шара, r – радиус вписанного шара, S – площадь поверхности, V – объем.

Заключение

Если мы хотим построить загородный дом, отражающий нашу индивидуальность, конечно, это возможно, но лучше посоветоваться с архитектором, обладающим знанием основ строительства и прекрасным пространственным воображением. Тогда наш особняк будет не только поражать своеобразием геометрических форм, но, что самое главное, будет прочно стоять на земле. То же самое относится к профессиям дизайнеров (например, для гоночного автомобиля не подойдет форма трактора, и наоборот), модельеров (знание свойств ткани позволяет скрыть недостатки фигуры или подчеркнуть красоту линий силуэта), ювелиров (для разных драгоценных камней требуются различные способы огранки, чтобы подчеркнуть их природную красоту). Принципы стереометрии можно проследить на некоторых физических и химических моделях. Например, кристаллы имеют форму геометрических тел, поверхности которых составлены из многоугольников. И такие поверхности называются многогранниками, простейшим из которых является куб.

Призма называется параллелепипедом , если её основания - параллелограммы. См.Рис.1 .

Свойства параллелепипеда:

    Противоположные грани параллелепипеда параллельны (т.е. лежат в параллельных плоскостях) и равны.

    Диагонали параллелепипеда пересекаются в одной точке и делятся этой точкой пополам.

Смежные грани параллелепипеда – две грани, имеющие общее ребро.

Противоположные грани параллелепипеда – грани, не имеющих общих рёбер.

Противоположные вершины параллелепипеда – две вершины, не принадлежащие одной грани.

Диагональ параллелепипеда – отрезок, который соединяет противоположные вершины.

Если боковые ребра перпендикулярны плоскостям оснований, то параллелепипед называется прямым .

Прямой параллелепипед, основания которого – прямоугольники, называется прямоугольным . Призма, все грани которой - квадраты, называется кубом .

Параллелепипед – призма, у которой основаниями служат параллелограммы.

Прямой параллелепипед – параллелепипед, у которого боковые ребра перпендикулярны плоскости основания.

Прямоугольный параллелепипед – это прямой параллелепипед, основаниями которого являются прямоугольники.

Куб – прямоугольный параллелепипед с равными ребрами.

Параллелепипедом называется призма, основание которой – параллелограмм; таким образом, параллелепипед имеет шесть граней и все они - параллелограммы.

Противоположные грани попарно равны и параллельны. Параллелепипед имеет четыре диагонали; все они пересекаются в одной точке и делятся в ней пополам. За основание может быть принята любая грань; объем равен произведению площади основания на высоту: V = Sh.

Параллелепипед, четыре боковые грани которого - прямоугольники, называется прямым.

Прямой параллелепипед, у которого все шесть граней - прямоугольники, называется прямоугольным. См.Рис.2 .

Объем (V) прямого параллелепипеда равен произведению площади основания (S) на высоту (h): V = Sh .

Для прямоугольного параллелепипеда, кроме того, имеет место формула V=abc , где a,b,c - ребра.

Диагональ (d) прямоугольного параллелепипеда связана с его ребрами соотношением d 2 = а 2 + b 2 + c 2 .

Прямоугольный параллелепипед – параллелепипед, у которого боковые рёбра перпендикулярны основаниям, а основания прямоугольниками.

Свойства прямоугольного параллелепипеда:

    В прямоугольном параллелепипеде все шесть граней – прямоугольники.

    Все двугранные углы прямоугольного параллелепипеда прямые.

    Квадрат диагонали прямоугольного параллелепипеда равен сумме квадратов трёх его измерений (длин трёх рёбер, имеющих общую вершину).

    Диагонали прямоугольного параллелепипеда равны.

Прямоугольный параллелепипед, все грани которого - квадраты, называется кубом. Все ребра куба равны; объем (V) куба выражается формулой V=a 3 , где a - ребро куба.



Понравилась статья? Поделитесь с друзьями!