Основные разделы геологии. Инженерная геология как раздел общей геологии

Среди геологических наук существует много различных направлений. В статье пойдёт речь о геологии нефти и газа. Это прикладная наука. Её задача - изучение химических и физических свойств газа, нефти, их залежей, месторождений, пластов-коллекторов, покрышек, геохимии органического вещества.

Общие сведения

Подготовка специалистов в области геологии нефти и газа осуществляется в университетах, специализирующихся на изучении горного дела и нефтегазовой промышленности. Курс под названием "Прикладная геология" направлен также на исследование процессов аккумуляции и миграции углеводородов, изучение основных закономерностей расположения нефтегазовых месторождений.

Нефть - это слово, происходящее от арабского "нафата" (в переводе - извергать). С тех пор, как в штате Пенсильвания американский предприниматель пробурил нефтяную скважину и люди поняли важность добычи нефти, геологов интересует один вопрос: где необходимо эти самые скважины бурить?

С тех времён было предложено множество различных теорий по условиям формирования залежей нефти, прогнозированию условий обнаружения её запасов. Стала развиваться наука прикладная геология, которая не теряет своей актуальности и занимается не только областью нефтедобычи, но газовой промышленностью.

Какие дисциплины изучаются?

Изучая эту специальность, студенты окунаются в мир интереснейших теорий, одна из которых - это антиклинальная. Она привлекает к себе довольно длительное и серьезное внимание. Антиклинальная теория зародилась еще до того, как была пробурена первая нефтяная скважина. Но своей актуальности она не потеряла по сегодняшний день. В теории идёт речь о зависимости между залежами нефти и антиклинальной складчатостью. Кроме того, студенты изучают химию нефти и газа, их химический состав и методы анализа. В процессе обучения обязательно изучаются источники тепла и теплового потока Земли, магнетизм пород и минералов. Будущим специалистам необходимо владеть знаниями в области месторождений подземных вод и методы их изучения, а также вопросах утилизации стоков в недра Земли.

Эта наука изучает мощную отечественную сырьевую базу и развитие добычи нефти и газа. Учебно-методические пособия предоставляют возможность изучить теоретические вопросы геологических процессов, физико-химических свойств нефти и газа, а также вопросы, связанные с формированием залежей и их размещением. Кроме того, обязательным условием является наличие практической части: лабораторных и контрольных работ по геологии нефти и газа. Особое внимание в процессе обучения данной специальности уделяется фундаментальным дисциплинам, так как без фундамента, как известно, дом знаний будет непрочным. Как правило, прикладная геология может изучаться как по очной форме обучения, так и заочно.

Какими навыками будут владеть выпускники?

Какие возможности дает прикладная геология как специальность? Что это такое? Подготавливая специалистов по этой специализации, составители программ обучения предусматривают, что выпускники вузов в области нефтегазовой геологии будут владеть методами поисков и разведки (геологическими и геофизическими) нефтяных и газовых месторождений, разработкой и принципами построения динамических и статистических моделей, показывающих залежи углеводородного сырья. Горные инженеры - это выпускники геологических факультетов по специализации "Прикладная геология".

Кем работать после получения диплома?

Горные инженеры участвуют в экспедициях и геологоразведочных работах, научно-исследовательских и проектных работах в нефтегазовой добыче, в проведении мониторинга разработки месторождений. Такие специалисты умеют провести полевые геофизические и геологические исследования, выполнить геологическое обоснование разработки месторождений, оценить ресурсы и запасы полезных ископаемых. Они изучают породы-коллекторы нефти и газа и могут воссоздать древние условия, при которых образовывались нефтегазоносные бассейны. Именно горные инженеры определяют технологию буровых и горнопроходческих работ. Все эти знания и навыки будущие специалисты получают на геологической специальности "Прикладная геология".

Что это за специальность и чем она отличается от общей геологии?

Когда специализируешься на геологии нефти и газа, то изучаешь конкретную область науки и материального производства, связанную с промышленным освоением и эксплуатацией нефтяных и газовых месторождений. Это касается как для суши, так и для акваторий. Объектами профессиональной деятельности такого специалиста являются непосредственные залежи нефти и газа, а также газоконденсата.

Общая геология изучает комплексно строение Земли и даже других планет Солнечной системы, главные закономерности эволюции и формирования геологических тел, основополагающие принципы и базовые методы геологических исследований.

Поэтому если интересует именно добыча газа и нефти, то стоит выбирать университет, который носит название "горный". Прикладная геология также изучается в университетах с конкретным названием специализации: "нефти и газа".

Уровень преподавания

Как правило, в таких вузах работают высококвалифицированные педагоги, с высоким процентом профессорского состава, известные в геологических сообществах учёных.

Сегодня большинство геологических факультетов располагает современной материально-технической базой, дающей возможность решать сверхсложные задачи в области поиска, разведки, оценки нефтегазового потенциала и геоэкологических проблем. В процессе обучения по специальности "Прикладная геология" ("Геология нефти и газа") применяются новейшие компьютерные технологии, а сами студенты имеют возможность поработать на профессиональных рабочих станциях, освоить специализированные программные пакеты ведущих мировых операторов нефтегазовой отрасли.

Что изучает геодезия?

Эта наука происходит из глубокой древности. Название имеет греческое происхождение. В древние времена она занималась изучением Земли, деления её на систему координат. Современная наука геодезия связана с изучением искусственных спутников, применением электронных машин, приборов и компьютеров для определения положения объекта на поверхности Земли. Она изучает формы этого объекта, его размеры. Поэтому эта наука находится в тесной взаимосвязи с математикой, особенно геометрией, и физикой. Задача такого специалиста - создание системы координат и построение геодезических сетей, позволяющих определить положение точек на поверхности нашей планеты.

Трудоустройство

В общем-то, все специальности геологических факультетов престижны. Изучать геологию интересно. А такая специализация, как прикладная геология и геодезия, позволяет получить работу в ведущих крупнейших отечественных нефтегазовых компаниях и за рубежом. Профессиональная деятельность специалистов-выпускников часто осуществляется в академических и ведомственных научно-исследовательских организациях. Эти специалисты востребованы в геологоразведочных и добывающих компаниях, разного рода (высших, средних специальных и средних общих) учреждениях системы образования.

Квалифицированные специалисты всегда востребованы в управленческом аппарате, в регионах, где занимаются вопросами минерально-сырьевой базы, а также в управлении и департаментах по недропользованию. Кроме того, много выпускников работает в учреждениях, связанных с гидрогеологическими вопросами, инженерно-геологическими и экологическими задачами. Они работают в организациях, ведущих разведку и эксплуатацию подземных вод, их охрану от истощения и загрязнения. Немало специалистов трудится на предприятиях, занимающихся проектно-изыскательскими работами в строительстве.

Инструкция

Истоки геологии относятся еще к глубокой древности и связаны с самыми первыми сведениями о породах, рудах и минералах. Термин «геология» был введен норвежским ученым М.П. Эшольтом в 1657 году, а в самостоятельную отрасль естествознания она выделилась в конце ХVIII века. Рубеж ХIХ-ХХ столетий ознаменовался качественным скачком в развитии геологии – превращении ее в комплекс наук в связи с введением физико-химических и математических методов исследования.

Современная геология включает множество составляющих ее дисциплин, раскрывающих тайны Земли в разных областях. Вулканология, кристаллография, минералогия, тектоника, петрография – вот далеко не полный перечень самостоятельных отраслей геологической науки. А еще геология тесно связана с направлениями, имеющими прикладное значение: геофизика, тектонофизика, геохимия и т.д.

Геологию часто называют наукой о «мертвой» природе, в отличие от . Конечно, изменения, происходящие с оболочкой Земли, не столь явные и занимают по времени столетия и тысячелетия. Именно геология рассказывает о том, как формировалась наша планета и какие процессы происходили на ней в течение многих лет ее существования. О современном лике Земли, созданном геологическими «деятелями» - ветром, холодом, землетрясениями, извержениями вулканов - подробно рассказывает наука геология.

Практическое значение геологии для человеческого общества трудно переоценить. Она занимается исследованием земных недр, позволяя извлекать из них , без которых существование человека было бы невозможным. Человечество проделало огромный путь эволюции – из «каменного» периода в век высоких технологий. И каждый его шаг сопровождался новыми открытиями в области геологии, приносившими ощутимую пользу для развития общества.

Геологию также можно назвать исторической наукой, потому что с ее помощью можно проследить за изменениями состава , минералов. Изучая останки живых существ, населявших планету тысячи лет назад, геология дает ответы на вопросы о том, когда эти виды населяли Землю и почему вымерли. По окаменелостей можно судить о последовательности событий, происходивших на планете. Путь развития органической жизни в течение миллионов лет запечатлен в слоях Земли, которые изучает наука геология.

Видео по теме

Обратите внимание

Что такое геология. Геология (от гео и логия) - комплекс наук о земной коре и более глубоких сферах Земли; в узком смысле слова - наука о составе, строении, движениях и истории развития земной коры и размещении в ней полезных ископаемых.

Полезный совет

В этой статье пойдет речь о том, что такое геология. Раскрывается вопрос, о чем эта наука, что она изучает и каковы ее цели и задачи. Мы расскажем об основах и методах геологии. У абсолютно каждого из этих направлений имеются свои методы, а также принципы исследования. Историческая геология изучает последовательность геологических процессов, которые происходили в прошлом.

Связанная статья

Источники:

  • геология что такое

В сознании большинства людей геолог – это бородатый человек с молотком и рюкзаком, который занимается исключительно поиском полезных ископаемых в полном отсутствии связи с цивилизацией. На самом же деле геология – очень сложная и многогранная наука.

Чем занимаются геологи?

Геология состава земной коры, ее строения, а также истории ее формирования. Выделяется три основных направления геологии: динамическая, историческая и описательная. Динамическая исследует изменения земной коры в результате различных процессов, таких как эрозия, разрушение, землетрясения, вулканическая активность. Геологи-историки сосредоточены на том, чтобы представить себе те процессы и изменения, которые происходили с планетой в прошлом. Больше всего привычному образу геолога соответствуют специалисты описательной геологии, так как именно эта отрасль науки занимается изучением состава земной коры, содержания в ней тех или иных ископаемых, или пород.

Геология стала востребованной наукой в эпоху научно-технической революции, когда человечеству потребовалось множество новых ресурсов и энергии.

Исследования недр для описательной геологии включают в себя не только экспедиции со сбором образцов или разведывательное бурение, но и анализ данных, составление геологических карт, оценку перспективности разработки, построение компьютерных моделей. Работа «в поле», то есть непосредственные изыскания на местности, занимают лишь несколько месяцев сезона, а остальное время геолог проводит . Естественно, основным объектом поиска являются полезные ископаемые.

Именно геология занимается, в частности, выяснением точного возраста планеты Земля. Благодаря развитию научных методов, известно, что планете около 4,5 миллиарда лет.

Задачи прикладной геологии

Специалисты геологии полезных ископаемых традиционно делятся на две основные группы: те, кто ищет рудные месторождения, и те, кто нерудные полезные ископаемые. Такое деление обусловлено тем, что принципы и закономерности формирования для и нерудных ископаемых различны, поэтому геологи, как правило, специализируются на чем-то одном. К полезным рудным относится большинство металлов, например, железо, никель, золото, а также некоторые виды минералов. Нерудные ископаемые включают в себя горючие материалы (нефть, газ, каменный ), различные строительные материалы (глина, мрамор, щебень), химические ингредиенты и, наконец, драгоценные и полудрагоценные камни, такие как алмазы, рубины, изумруды, яшма, сердолик и многие другие.

Работа геолога заключается в том, чтобы на основании аналитических данных спрогнозировать залегание в том или ином районе полезных ископаемых, провести исследование в экспедиции с целью подтвердить или опровергнуть свои предположения, а затем, опираясь на полученные сведения, сделать заключение о перспективности промышленной разработки месторождения. При этом геолог исходит из предполагаемого количества ископаемых, их процентного содержания в земной коре, коммерческой оправданности добычи. Поэтому геолог должен быть не только физически выносливым, но и иметь способность к аналитическому мышлению, знать основы экономики, геодезии, постоянно совершенствовать свои знания и навыки.

Видео по теме

Геоэкология – научное направление, охватывающее области изучения экологии и географии. Предмет и задачи этой науки точно не определены, в ее рамках исследуют множество различных проблем, связанных с взаимодействием природы и общества, с влиянием человека на ландшафты и другие географические оболочки.

История геоэкологии

Геоэкология выделилась в отдельную науку около ста лет назад, когда немецкий географ Карл Тролль описал область изучения ландшафтной экологии. С его точки зрения, эта должна объединять и экологические принципы в исследовании экосистем.

Геоэкология развивалась медленно, в Советском Союзе этот термин впервые был озвучен в 70-х годах. К началу XXI века обе смежные области – и – стали достаточно точными для предсказания, как будет меняться природа и различные оболочки Земли в зависимости от человеческого влияния. Более того, ученые уже могут способы решения проблем, связанных с отрицательным воздействием техногенной деятельности на природу. Поэтому геоэкология в новом тысячелетии стала развиваться быстрыми темпами, сфера ее деятельности расширилась.

Геоэкология

Несмотря на то что эта становится все более востребованной, с научной точки зрения она описана недостаточно. Исследователи более или менее сходятся во мнении по поводу задач геоэкологии, но четкого предмета исследования этой науки они не дают. Одно из наиболее распространенных предположений о предмете звучит так: это процессы, происходящие в среде и в различных оболочках Земли – гидросфере, атмосфере и других, которые возникают в результате антропогенного вмешательства и влекут за собой определенные последствия.

В изучении геоэкологии есть очень важный фактор – необходимо учитывать как пространственные, так и временные отношения в исследованиях. Иными словами, для геоэкологов имеет значение как влияние человека на природу в различных географических условиях, так и изменения этих последствий во времени.

Геоэкологи исследуют источники, которые воздействуют на биосферу, изучают их интенсивность и выявляют пространственное и временное распределение их действия. Они создают специальные информационные системы, с помощью которых можно обеспечить постоянный контроль над природной средой. Наряду с экологами они рассматривают уровни загрязнения в различных областях: в Мировом океане, в литосфере, во внутренних водах. Они стараются обнаружить влияние человека на формирование экосистем и их функционирование.

Геоэкология занимается не только существующей сейчас ситуацией, но и прогнозирует, и моделирует возможные последствия происходящих процессов. Это позволяет предупредить нежелательные изменения, а не бороться с их последствиями.

Геология — это наука о составе, строении и закономерностях развития Земли, других планет Солнечной системы и их естественных спутников.

Существует три основных направления геологических исследований: описательная, динамическая и историческая геология. У каждого направления существуют свои основные принципы и методы исследования. Описательная геология занимается изучением размещения и состава геологических тел, в том числе их форма, размер, взаимоотношение, последовательность залегания, а также описанием различных минералов и горных пород. Динамическая геология рассматривает эволюцию геологических процессов, таких как разрушение горных пород, перенос их ветром, ледниками, наземными или подземными водами, накопление осадков (внешние по отношению к земной коре) или движение земной коры, землетрясения, извержения вулканов (внутренние). Историческая геология занимается изучением последовательности геологических процессов прошлого.

Происхождение названия

Первоначально слово «геология» являлось противоположностью к слову «теология». Науке о духовной жизни противопоставлялась наука о закономерностях и правилах земного бытия. В таком контексте это слово использовал епископ Р. де Бьюри в своей книге «Philobiblon» («Любовь к книгам»), которая вышла в свет в 1473 году в Кёльне. Слово происходит от греческого γῆ, означающее «Земля» и λόγος, означающее «учение».

Мнения о первом использовании слова «геология» в современном понимании расходятся. По одним источникам, включая БСЭ, этот термин впервые использовал норвежский учёный Миккель Педерсон Эсхолт (М. П. Эшольт, Mikkel Pedersøn Escholt, 1600-1699) в своей книге «Geologica Norvegica» (1657). По другим источникам, слово «геология» было впервые использовано Улиссе Альдрованди в 1603 году, затем Жан Андре Делюк в 1778 году, закрепил термин Орасом Бенедиктом де Соссюром в 1779 году.

Исторически использовался также термин «геогнозия» (или геогностика). Такое название для науки o минералах, рудах, и горных породах было предложено немецкими геологами Г. Фюкселем (в 1761) и A. Г. Bернером (в 1780). Авторы термина обозначили им практические области геологии, изучавщие объекты, которые можно было наблюдать на поверхности, в отличие от чисто теоретической тогда геологии, которая занималась происхождением и историей Земли, её корой и внутренним строением. Термин использовался в специальной литературе в XVIII и начале XIX векa, но начал выходить из употребления уже во второй половине XIX века. В России термин сохранялся до конца XIX века в названиях учёного звания и степени «доктор минералогии и геогнозии» и «профессор минералогии и геогнозии».

Разделы геологии

Геологические дисциплины работают во всех трёх направлениях геологии и точного деления на группы не существует. Новые дисциплины появляются на стыке геологии с другими областями знаний. В БСЭ приводится следующая классификация: науки о земной коре, науки о современных геологических процессах, науки о исторической последовательности геологических процессов, прикладные дисциплины, а также региональная геология.

Минералы образуются в результате природных физико-химических процессов и обладающее определённым химическим составом и физическими свойствами.

Науки о земной коре:

  • Минералогия - раздел геологии, изучающий минералы, вопросы их генезиса, квалификации. Изучением пород, образованных в процессах, связанных с атмосферой, биосферой и гидросферой Земли, занимается литология. Эти породы не совсем точно называются ещё осадочными горными породами. Многолетнемёрзлые горные породы приобретают ряд характерных свойств и особенностей, изучением которых занимается геокриология.
  • Петрография - раздел геологии, изучающий магматические и метоморфические породы преимущественно с описательной стороны - их генезис, состав, текстурно-структурные особенности, а также классификацию.
  • Структурная геология - раздел геологии, изучающий формы залегания геологических тел и нарушения земной коры.
  • Кристаллография - первоначально одно из напралений минералогии, в настоящее время скорее физическая дисциплина.

Науки о современных геологических процессах (динамическая геология):

  • Тектоника - раздел геологии, изучающий движение земной коры (геотектоника, неотектоника и экспериментальная тектоника).
  • Вулканология — раздел геологии, изучающий вулканизм.
  • Сейсмология — раздел геологии, изучающий геологические процессы при землетрясениях, сейсморайонирование.
  • Геокриология — раздел геологии, изучающий многолетнемёрзлые породы.
  • Петрология - раздел геологии, изучающий генезис и условия происхождения магматических и метаморфических горных пород.

Науки о исторической последовательности геологических процессов (историческая геология):

  • Историческая геология - отрасль геологии, изучающая данные о последовательности важнейших событий в истории Земли. Все геологические науки в той или иной степени имеют исторический характер, рассматривают существующие образования в историческом аспекте и занимаются в первую очередь выяснением истории формирования современных структур. История Земли делится на два крупнейших этапа - эона, по появлению организмов с твёрдыми частями, оставляющих следы в осадочных породах и позволяющих по данным палеонтологии провести определение относительного геологического возраста. С появлением ископаемых на Земле начался фанерозой - время открытой жизни, а до этого был криптозой или докембрий - время скрытой жизни. Геология докембрия выделяется в особую дисциплину, так как занимается изучением специфических, часто сильно и многократно метаморфизованных комплексов и имеет особые методы исследования.
  • Палеонтология изучает древние формы жизни и занимается описанием ископаемых остатков, а также следов жизнедеятельности организмов.
  • Стратиграфия - наука об определении относительного геологического возраста осадочных горных пород, расчленении толщ пород и корреляции различных геологических образований. Одним из основных источников данных для стратиграфии является палеонтологические определения.

Прикладные дисциплины:

  • Геология полезных ископаемых изучает типы месторождений, методы их поисков и разведки. Делится на геологию нефти газа, геологию угля, металлогению.
  • Гидрогеология - раздел геологии, изучающий подземные воды.
  • Инженерная геология - раздел геологии, изучающий взаимодействия геологической среды и инженерных сооружений.

Внизу перечислены остальные разделы геологии, в основном стоящие на стыке с другими науками:

  • Геохимия - раздел геологии, изучающий химический состав Земли, процессы, концентрирующие и рассеивающие химические элементы в различных сферах Земли.
  • Геофизика - раздел геологии, изучающий физические свойства Земли, включающая также комплекс разведочных методов: гравиразведка, сейсморазведка, магниторазведка, электроразведка различных модификаций и пр.
  • Геобаротермометрия - наука, изучающая комплекс методов определения давления и температур образования минералов и горных пород.
  • Микроструктурная геология - раздел геологии, изучающий деформацию пород на микроуровне, в масштабе зёрен минералов и агрегатов.
  • Геодинамика - наука, изучающая процессы самого планетарного масштаба в результате эволюции Земли. Она изучает связь процессов в ядре, мантии и земной коре.
  • Геохронология - раздел геологии, определяющий возраст пород и минералов.
  • Литология (Петрография осадочных пород) - раздел геологии, изучающий Осадочные породы.

Изучением Солнечной системы занимаются следующие разделы геологии: космохимия, космология, космическая геология и планетология.

Основные принципы геологии

Геология - наука историческая, и важнейшей её задачей является определение последовательности геологических событий. Для выполнения этой задачи с давних времён разработан ряд простых и интуитивно очевидных признаков временных соотношений пород.

Интрузивные взаимоотношения представлены контактами интрузивных пород и вмещающих их толщ. Обнаружение признаков таких взаимоотношений (зоны закалки, даек и т. п.) однозначно указывает на то, что интрузия образовалась позже, чем вмещающие породы.

Секущие взаимоотношения также позволяют определить относительный возраст. Если разлом рвёт горные породы, значит он образовался позже, чем они.

Ксенолиты и обломки попадают в породы в результате разрушения своего источника, соответственно они образовались раньше вмещающих их пород, и могут быть использованы для определения относительного возраста.

Принцип актуализма постулирует, что геологические силы, действующие в наше время, аналогично работали и в прежние времена. Джеймс Хаттон сформулировал принцип актуализма фразой «Настоящее - ключ к прошлому».

Утверждение не совсем точное. Понятие «сила» - понятие не геологическое, а физическое, к геологии имеющее опосредованное отношение. Правильнее говорить о геологических процессах. Выявление сил, сопровождающих эти процессы, могло бы стать главной задачей геологии, чего, к сожалению, нет.

«Принцип актуализма» (или метод актуализма) являются синонимом метода «аналогии». Но метод аналогии не является методом доказательства, он является методом формулирования гипотез и, следовательно, все закономерности, полученные методом актуализма, должны были бы пройти процедуру доказательства их объективности.

В настоящее время принцип актуализма стал тормозом в развитии представлений о геологических процессах.

Принцип первичной горизонтальности утверждает, что морские осадки при образовании залегают горизонтально.

Принцип суперпозиции заключается в том, что породы находящиеся в не нарушенном складчатостью и разломами залегании, следуют в порядке их образования, породы залегающие выше моложе, а те которые находятся ниже по разрезу - древнее.

Принцип финальной сукцессии постулирует, что в одно и то же время в океане распространены одни и те же организмы. Из этого следует, что палеонтолог, определив набор ископаемых остатков в породе, может найти одновременно образовавшиеся породы.

История геологии

Первые геологические наблюдения относятся к динамической геологии - это информация о землетрясениях, извержениях вулканов, размывании гор, перемещении береговых линий. Подобные высказывания встречаются в работах таких учёных как Пифагор, Аристотель, Плиний Старший, Страбон. Изучение физических материалов (минералов) Земли восходит по крайней мере к древней Греции, когда Теофраст (372-287 до н. э.) написал работу «Peri Lithon» («О камнях»). В римский период Плиний Старший подробно описал многие минералы и металлы, и их практическое использование, а также правильно определил происхождение янтаря.

Описание минералов и попытки классификации геологических тел встречаются у Аль-Бируни и Ибн Сины (Авиценны) в X-XI веках. В работах Аль-Бируни содержится раннее описание геологии Индии, он предполагал, что индийский субконтинент был когда-то морем. Авиценна предложил подробное объяснение формирования гор, происхождение землетрясений и другие темы, которые являются центральными в современной геологии, и в котором содержится необходимый фундамент для дальнейшего развития науки. Некоторые современные ученые, такие как Филдинг Х. Гаррисон, считают, что современная геология началась в средневековом исламском мире.

В Китае энциклопедист Shen Kuo (1031-1095) сформулировал гипотезу о процессе формирования земли: на основе наблюдений над ископаемыми раковин животных в геологическом слое в горах в сотнях километров от океана он сделал вывод, что суша была сформирована в результате эрозии гор и осаждения ила.

В эпоху Возрождения геологические исследования проводили учёные Леонардо да Винчи и Джироламо Фракасторо. Они впервые предположили, что ископаемые раковины являются остатками вымерших организмов, а также, что история Земли длиннее библейских представлений. Нильс Стенсен дал анализ геологическому разрезу в Тоскане, он объяснил последовательность геологических событий. Ему приписывают три определяющих принципа стратиграфии: принцип суперпозиции (англ.), принцип первичной горизонтальности слоёв (англ.) и принцип последовательности образования геологических тел (англ.).

В конце XVII - начале XVIII века появилась общая теория Земли, которая получила название дилювианизма. По мнению учёных того времени осадочные породы и окаменелости в них образовались в результате всемирного потопа. Эти воззрения разделяли Роберт Гук (1688), Джон Рэй (1692), Джоэнн Вудворд (1695), И. Я. Шёйкцер (1708) и другие.

Во второй половине XVIII века резко возросли потребности в полезных ископаемых, что привело к изучению недр, в частности накоплению фактического материала, описанию свойств горных пород и услови их залегания, разработке приёмов наблюдения. В 1785 году Джеймс Хаттон представил для Королевского общества Эдинбурга документ, озаглавленный «Теория Земли». В этой статье он объяснил свою теорию о том, что Земля должна быть намного старше, чем ранее предполагалось, для того, чтобы обеспечить достаточное время для эрозии гор, и чтобы седименты (отложения) образовали новые породы на дне моря, которые, в свою очередь, были подняты чтобы стать сушей. В 1795 Хаттон опубликовал двухтомный труд, описывающий эти идеи (Vol. 1, Vol. 2). Джеймс Хаттон часто рассматривается как первый современный геолог. Последователи Хаттона были известны как плутонисты, из-за того что они считали, что некоторые породы (базальты и граниты) были сформированы в результате вулканической деятельности и являются результатом осаждения лавы из вулкана. Другой точки зрения придерживались нептунисты, во главе с Абраамом Вернером, который считал, что все породы осели из большого океана, уровень которого с течением времени постепенно снизился, а вулканическую деятельность объяснял подземным горением каменного угля. В то же время в России увидели свет геологические труды Ломоносова «Слово о рождении металлов от трясения Земли» (1757) и «О слоях земных» (1763), в которых он признавал влияние и внешних, и внутрених сил на развитие Земли.

Уильям Смит (1769-1839) нарисовал одни из первых геологических карт и начал процесс упорядочивания горных пластов, изучая содержащиеся в них окаменелости. Смит составил «шкалу осадочных образований Англии». Работы по разделению пластов продолжились учёными Жоржем Кювье и А. Броньяру. В 1822 была выделена каменноугольная и меловая системы, что положило начало стратиграфической систематике. Основные подразделения современной стратиграфической шкалы были приняты официально в 1881 году в Болонье на 2-м Международном геологическом конгрессе. Первыми геологическими картами в России были работы Д. Лебедева и М. Иванова (карта Восточного Забайкалья, 1789-1794), Н. И. Кокшарова (Европейская Россия, 1840), Г. П. Гельмерсена («Генеральная карта горных формаций Европейской России», 1841). На картах Кокшарова уже были отмечены силурийская, девонская, нижне карбонская, лиасовая и третичная формации.

Вместе с тем, методологические основы такого деления ещё уточнялись в рамках нескольких теорий. Ж. Кювье разработал теорию катастроф, утверждающую, что особенности Земли формируются в одном, катастрофическом событии и остаются неизменными в дальнейшем. Л.Бух объяснял движения земной коры вулканизмом (теория «кратеров поднятия»), Л. Эли де Бомон связывал дислокацию слоёв со сжатием земной коры при остывании центрального ядра. В 1830 году Чарлз Лайель впервые опубликовал свою знаменитую книгу «Основы геологии». Книга, которая повлияла на идеи Чарльза Дарвина, успешно способствовала распространению актуализма. Эта теория утверждает, что медленные геологические процессы имели место на протяжении истории Земли и все еще происходят сегодня. Хотя Хаттона верил в актуализм, идея не была широко принята в то время.

Большую часть XIX века геология вращалась вокруг вопроса о точном возрасте Земли. Оценки варьировались от 100 000 до нескольких миллиардов лет. В начале XX века радиометрическое датирование позволило определить возраст Земли, оценка составила два миллиарда лет. Осознание этого огромного промежутка времени открыло двери для новых теорий о процессах, которые сформировали планету. Самым значительным достижением геологии в XX веке было развитие теории тектоники плит в 1960 году и уточнение возраста планеты. Теория тектоники плит возникла из двух отдельных геологических наблюдений: спрединга морского дна и континентального дрейфа. Теория революционизировала науки о Земле. В настоящее время известно, что возраст Земли составляет около 4,5 миллиардов лет.

В конце XIX века экономические потребности стран в отношении недр привели к изменению статуса науки. Появилось множество геологических служб, в частности геологическая служба США (1879) и геологический комитет России (1882). Была введена подготовка специалистов-геологов.

С целью пробудить интерес к геологии Организацией Объединённых Наций 2008 год провозглашён «Международным годом планеты Земля».

(Visited 150 times, 1 visits today)

Геология изучает образование и строение каменной оболочки Земли. В отличие от наук о живой природе - зоологии и ботаники - геологию часто называют наукой о «мертвой природе». Но в сущности эта природа вовсе не мертва. Под воздействием воздуха, воды, солнечных лучей, мороза и других сил природы оболочка Земли непрерывно изменяется. Внимательный наблюдатель может уловить и проследить очень интересную жизнь «мертвой природы». Не меньше чем биологические науки, геология учит человека сознательно относиться к явлениям природы н понимать их. Не зная основ геологии, человек видит только внешнее. Он созерцает различные формы рельефа: овраги, обрывы, откосы, долины, холмы, скалы, горные цепи, снеговые вершины,- часто восхищается красотой их, но не имеет никакого понятия о том, как же они образовались.

Человек видит спокойную равнинную речку, с пологими зелеными берегами, или горный поток, скатывающийся шумными водопадами между скалистыми склонами гор; сидя на берегу моря, он любуется всплесками волн, набегающих на берег, слушает неумолчный шум прибоя, но не знает, что вся эта неустанная работа воды приводит к грандиозным изменениям поверхности Земли.

Кто не знает основ геологии, тот, заметив на склоне горной долины, как изогнуты слои пород - будто их сжимала или сдвигала рука великана,- не сможет объяснить, что это значит, какая сила и почему так исковеркала твердые каменные породы. Он не сумеет отличить кварц от мрамора, гранит от песчаника и, наверное, пройдет мимо ценной породы, если только она не бросится ему в глаза необыкновенным цветом или формой.

Земля, на которой мы живем, существует миллиарды лет. История Земли очень длинная и запутанная. Она богата разными событиями. Эта история записана в пластах земной коры, являющихся памятниками далекого прошлого. Каждый пласт - как бы страница книги истории природы. Но в этой книге многие листы от времени сильно стерлись и печать на них сделалась неразборчивой, а местами и совсем исчезла. Геология учит читать эту книгу природы, разбирать «стертые фразы», восстанавливать «текст» недостающих страниц. Неполнота «текста» истории Земли, обилие в нем загадочных мест, нерасшифрованных иероглифов (знаков) особенно привлекает к этой науке пытливый человеческий ум.

Геология рассказывает нам, как сформировалась планета, на которой мы живем, из каких горных пород она состоит и каким изменениям подвергалась в течение многих лет своего существования. Геология учит нас заглядывать вглубь времени и помогает лучше понять процессы, которые происходят на наших глазах. Тепло, которое дает нам Солнце, движение воздуха в виде ветра, капли дождя, мороз, кристаллы снега, реки и моря, даже растения и животные - все это изменяющие Землю геологические деятели, работу которых изучает геология. Лик Земли, т. е. формы поверхности, создан этими деятелями, а также и другими, скрытыми в глубине Земли. Время от времени последние обнаруживают себя в виде таких грозных явлений, как извержения вулканов или землетрясения.

Уже первобытный человек обращал внимание на окружающую его природу и на работу геологических деятелей. Но он не понимал явлений природы и потому мысленно населил небо и землю, воду и земные недра таинственными силами в виде добрых и злых духов, которые действуют на пользу или во вред человеку. В более поздние времена много ученых погибло на кострах за попытки разъяснить явления природы; немало научных трудов было сожжено за мысли, противоречившие «священному писанию».

Геология приносит огромную пользу человеческому обществу. Она исследует недра Земли и помогает извлекать из них минеральные сокровища, без которых не могут существовать люди. Что делал бы человек, если бы он не знал полезных ископаемых, не умел бы их добывать и обрабатывать, превращать в необходимые изделия! Человек очень давно научился изготовлять орудия труда из кости и камня. Много тысячелетий длился «каменный» период истории человечества. Огромный шаг вперед сделал человек, научившись выплавлять металл из руды и делать из него орудия труда. Только после этого культура двинулась вперед быстрыми шагами. За несколько тысячелетий она достигла такой высоты, когда на службу человечеству стало электричество, а скоро будет широко использована для хозяйственных целей и атомная энергия. В нашей стране, где вся земля принадлежит государству, работа геолога идет на пользу народу. Для исследователя недр Земли созданы самые благоприятные условия. Но для того, чтобы стать настоящим геологом, необходимо обладать всесторонними знаниями. Геолог должен хорошо знать минералогию - историю природных химических соединений, т. е. минералов, и геохимию - науку о развитии химических процессов в Земле и об истории атомов. Он должен иметь представление о геофизике - науке, изучающей физические свойства нашей планеты в целом и процессы, происходящие в оболочках Земли - твердой, жидкой и газообразной. Геофизические приемы, исследования очень помогают геологам в изучении недр Земли.

Даже знание ботаники облегчает труд разведчика подземных кладов. Оказывается, некоторые растения живут на почвах, содержащих определенные металлы. Так, например, на почвах, богатых металлом никелем, растут анемоны; на почвах с повышенным содержанием урана и селена растет астрагал; кустарник качим в Казахстане обычно связан с почвой, богатой медью, и т. д. В Америке были найдены крупные месторождения серебра исключительно по данным ботаники. Таких примеров можно привести много.

Легендарный исследователь и разведчик недр Федор Григорьевич Лепешкин

Профессия геолога очень интересна и разнообразна. Тот из вас, кто любит лес и горы, свежий воздух, ночлег в палатке, может выбрать себе специальность съемщика геологической карты. Такой геолог проводит все лето, а порой и часть весны и осени на полевой работе (т. е. в природе) и только на зиму возвращается в город для обработки собранных материалов. Как увлекательна и заманчива обработка материала впервые обследованного района, знает каждый геолог.

Прежде чем нанести на карту области распространения горных пород различного состава и возраста, геолог мысленно снимает слой почвы, всю растительность и все сооружения человека - здания, дороги и т. д.; ниже лежат коренные породы - так называют горные породы, слагающие земную кору,- их-то и показывает геологическая карта.

Для составления карты геолог выполняет геологическую съемку: маршрутную или подробную, в зависимости от масштаба карты и задания. При маршрутной съемке достаточно бывает пересечь всю исследуемую площадь по двум-трем направлениям, по которым и следует провести наблюдения над составом горных пород, их залеганием и границами распространения. На такой карте вне маршрутов съемки многое будет нанесено только предположительно, с большей или меньшей точностью. Для подробной же съемки местность должна быть изучена шаг за шагом по всем направлениям, и только тогда все границы и условия залегания пород будут показаны точно.

На карте геолог вычерчивает площадь, занимаемую каждой породой известного возраста и состава, и показывает, как она залегает (горизонтально, наклонена ли в какую-либо сторону или образует складки). Затем он отмечает на карте различные нарушения в породах - трещины разломов, рудные и иные жилы, изменения одних пород от соприкосновения с другими, разные полезные ископаемые.

Геологическая карта знакомит с внутренним строением данной местности. Собирая материал для карты, геолог изучает местность более или менее подробно и в отчете может уже описать состав горных пород, строение, историю развития, т. е. формирования, этого участка Земли. В осадочных горных породах геолог встретит остатки существовавших в прежние времена животных (раковины, панцири, кости, зубы) и растений (листья, кору, пыльцу, древесину). Эти остатки, называемые окаменелостями, изучают палеонтологи (палеонтология - наука о древней жизни). По окаменелостям геологи судят о последовательности событий, происходивших на Земле: наступлении морей на сушу, образовании гор и т. п. Органическая жизнь в течение многих миллионов лет, которые насчитывает история Земли, прошла очень длинный путь развития. Этот путь развития запечатлелся в слоях Земли с останками животных и растений.

Геолог-съемщик нанесет на карту также встреченные им месторождения полезных ископаемых. При съемке можно только бегло осмотреть месторождения, сделать небольшие расчистки, раскопки, удалить растительность и почву, закрывающие коренную породу, чтобы лучше рассмотреть форму залежи - пласт, жилу, вкрапления. Иногда геологу-съемщику удается даже проследить залежь на некоторое расстояние. Изучать месторождение будет уже другой специалист - геолог-разведчик. Если месторождение заслуживает подробного изучения, то будет произведена разведка канавами, шурфами (колодцами), буровыми скважинами. Если эта предварительная разведка даст благоприятный результат, на очередь станет детальная разведка в глубь и по простиранию (по длине) месторождения, чтобы можно было вычислить его запасы и выяснить его ценность и условия разработки ископаемого. Геолог-разведчик в найденном месторождении различными способами должен определить запасы полезного ископаемого.

Полезна и интересна деятельность рудничного геолога, ежедневно посещающего подземные выработки для осмотра действующих забоев . Этот геолог-опекун должен хорошо знать все особенности рудной жилы или пласта. Он не растеряется в случае, если жила исчезнет в связи с опусканием или сдвигом пород, и даст правильное указание, в какой стороне - вверху или внизу, справа или слева - нужно искать ее продолжение. А вернувшись из шахты или штольни , геолог запишет в дневнике свои наблюдения и заполнит карточки новых забоев. Разложив все карточки на столе и приставляя их друг к другу по вертикали и по горизонтали, он может восстановить полную картину выработанной части месторождения.

Обработка научных материалов, собранных в экспедициях, требует большого труда. Необходимо, например, изучить коллекции ископаемых растений, беспозвоночных или позвоночных животных, исследовать горные породы и минералы.

Все геологи должны уметь работать с микроскопом, чтобы определять шлифы (срезы) горных пород и минералов, шлифы с микрофауной и т. п.

В народном хозяйстве нашей страны геологи нужны всюду. Без геологических данных нельзя проектировать и строить прочно, с уверенностью, что не будет аварий и катастроф, с наименьшей затратой средств, труда и времени.

Строительство всякого рода крупных жилых, общественных и заводских зданий, шоссейных, автомобильных и железных дорог, аэродромов, больших мостов через реки, прорытие каналов и туннелей, сооружение больших плотин на реках - все эти работы требуют участия инженера-гидрогеолога.

Он должен еще до начала строительства исследовать грунт, на котором возводится сооружение, выяснить, на какой глубине надо заложить фундамент, узнать водонепроницаемость или водоносность пород под зданием, дорогой или в стенах туннеля.

Гидрогеологи изучают подземные воды, их состав и пути передвижения, выясняют условия вывода вод на земную поверхность для снабжения населенных пунктов или отвода воды, если она вредна для здоровья людей или может лишить устойчивости фундаменты зданий.

В районах, подверженных землетрясениям, геолог поможет строителям выбрать тип зданий, выдерживающий сотрясения земли.

Разработки крупных месторождений полезных ископаемых, особенно рудных, всегда производятся под наблюдением геолога. Он следит, как изменяется месторождение вглубь и по простиранию, дает указания, где вести разведочные работы и какие буровые скважины или подземные выработки нужны.

Теперь, юные друзья, вы имеете общее представление о геологии, и вам должно быть ясно, почему знание основ геологии необходимо всем для общего образования. Среди вас, несомненно, найдутся желающие посвятить жизнь этой интереснейшей науке и сделаться геологами. Геологические знания ценны для нас еще и потому, что вооружают нас силой и могуществом, властью над природой и над богатствами недр земли.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter .

1. РАЗДЕЛЫ ОБЩЕЙ ГЕОЛОГИИ. Геология полезных ископаемых изучает типы месторождений, методы их поисков и разведки. Гидрогеология - раздел геологии, изучающий подземные воды. Инженерная геология - раздел геологии, изучающий взаимодействия геологической среды и инженерных сооружений. Геохимия - раздел геологии, изучающий химический состав Земли, процессы, концентрирующие и рассеивающие химические элементы в различных сферах Земли. Геофизика - раздел геологии, изучающий физические свойства Земли, включающая также комплекс разведочных методов: гравиразведка, сейсморазведка, магниторазведка, электроразведка различных модификаций и пр. Изучением Солнечной системы занимаются следующие разделы геологии: космохимия, космология, космическая геология и планетология. Минералогия - раздел геологии, изучающий минералы, вопросы их генезиса, квалификации. Изучением пород, образованных в процессах, связанных с атмосферой, биосферой и гидросферой Земли, занимается литология. Эти породы не совсем точно называются ещё осадочными горными породами. Многолетнемёрзлые горные породы приобретают ряд характерных свойств и особенностей, изучением которых занимается геокриология. Литология - раздел геологии, изучающий образование осадочных пород. Петрология - раздел геологии, изучающий происхождение горных пород. Петрография - раздел геологии, изучающий происхождение горных пород, образованных при высоких температурах и давлениях. Геобаротермометрия - наука, изучающая комплекс методов определения давления и температур образования минералов и горных пород. Земля - «живая», активно меняющаяся планета. В ней происходят движения, различающиеся по масштабу на многие порядки. Структурная геология - раздел геологии, изучающий нарушения земной коры. Микроструктурная геология - раздел геологии, изучающий деформацию пород на микроуровне, в масштабе зёрен минералов и агрегатов. Геодинамика - наука, изучающая процессы самого планетарного масштаба в результате эволюции Земли. Она изучает связь процессов в ядре, мантии и земной коре. Тектоника - раздел геологии, изучающий движение Земной коры. Историческая геология - отрасль геологии, изучающая данные о последовательности важнейших событий в истории Земли. Все геологические науки в той или иной степени имеют исторический характер, рассматривают существующие образования в историческом аспекте и занимаются в первую очередь выяснением истории формирования современных структур. История Земли делится на два крупнейших этапа - эона, по появлению организмов с твёрдыми частями, оставляющих следы в осадочных породах и позволяющих по данным палеонтологии провести определение относительного геологического возраста. С появлением ископаемых на Земле начался фанерозой - время открытой жизни, а до этого был криптозой или докембрий - время скрытой жизни. Геология докембрия выделяется в особую дисциплину, так как занимается изучением специфических, часто сильно и многократно метаморфизованных комплексов и имеет особые методы исследования. Палеонтология изучает древние формы жизни и занимается описанием ископаемых остатков, а также следов жизнедеятельности организмов. Стратиграфия - наука об определении относительного геологического возраста осадочных горных пород, расчленении толщ пород и корреляции различных геологических образований. Одним из основных источников данных для стратиграфии является палеонтологические определения. Геохронология - раздел геологии, определяющий возраст пород и минералов. 2. МЕСТО ИНЖЕНЕРНОЙ ГЕОЛОГИИ И СВЯЗИ С ДРУГИМИ ПРЕДМЕТАМИ. В своем развитии геология опиралась и опирается на различные естественные науки, а по мере накопления фактических материалов сама явилась родоначальницей некоторых естественных наук, которые сейчас уже не причисляются к наукам геологическим. Так, в вопросах строения и изменения вещества, изучения его свойств и законов движения геология тесно связана с физикой и химией и широко использует основные методы этих наук. Ярким выражением этой связи является возникновение геофизики и геохимии. Геофизика объединяет комплекс наук, рассматривающих физические свойства Земли и происходящие на ней физические процессы. Геохимия изучает химический состав Земли и законы распространения, распределения, сочетания и миграции химических элементов в земной коре. Без применения методики и выводов этих наук современная геология не может обойтись, но и их развитие оказалось возможным лишь на прочной геологической основе. Не менее тесная связь объединяет геологию с такими науками, как геодезия, которая изучает размеры и форму Земли, или физическая география, охватывающая обширный комплекс природных условий, определяющих географическую среду (рельеф, климат, почвы и др.). В вопросах происхождения и развития жизни на Земле геология тесно связана с биологическими науками, а для выяснения проблемы происхождения Земли, ее соотношения с другими небесными телами и положения во Вселенной она не может обойтись без выводов астрономии и достижений космонавтики. Следовательно, вся огромная область естествознания тесно связана с геологией. Это особенно остро ощущается в наше время, когда единство окружающей нас природы, взаимосвязь всех природных процессов и явлений становятся все более очевидными. Вместе с тем специализация отдельных областей естествознания растет с каждым годом, и человек не в состоянии охватить в деталях все достижения и методы различных областей науки, которые непрерывно накапливаются в процессе научного творчества и выдвигаются практикой. Это полностью приложимо и к геологии. Геология, с одной стороны, единая наука о Земле, с другой - это ряд наук, взаимно переплетающихся и тесно связанных между собой, изучающих разные стороны и результаты процесса развития и становления Земли, но преследующих разные цели и пользующихся разными методами. В настоящее время среди отраслей геологии обычно выделяют научные дисциплины, преимущественно изучающие: 1) вещественный состав земной коры; 2) геологические процессы; 3) проявления органической жизни и историю ее развития на Земле по остаткам вымерших организмов и следам их жизнедеятельности; 4) историческую последовательность геологических процессов. Исторически выделились в особую группу геологические науки, занимающиеся изучением практических вопросов, хотя по содержанию они тесно связаны с «теоретической геологией», а последняя в свою очередь занимается решением важнейших практических задач. Особую группу геологических дисциплин составляют методические и геолого-экономические науки, изучающие приемы исследования, применяемые в различных отраслях геологии, а также способы наиболее эффективного и экономического решения при помощи геологии различных запросов народного хозяйства, связанных с поисками, добычей и использованием горнорудного сырья и со строительством различных сооружений. Наконец, в самое последнее время выделилась как самостоятельная отрасль «морская геология» -наука, изучающая состав, строение, полезные ископаемые и историю формирования дна морей и океанов, пользующаяся специфическими методами исследований в условиях, резко отличающихся от субаэральных. К числу геологических дисциплин, изучающих преимущественно вещественный состав земной коры, относятся: минералогия, кристаллография, петрография, петрология и литология. Минералогия - наука о минералах (природных химических соединениях), изучающая во взаимной связи их состав и форму, физические свойства, условия образования и изменения. Изучением кристаллической структуры минералов, физических свойств кристаллического вещества, взаимодействия между кристаллами и вмещающей их средой, а также процессов, протекающих в кристаллической среде, занимается кристаллография - наука, граничащая с геологией и физикой. Петрография, петрология и литология - науки о горных породах, рассматривающие с различных точек зрения их строение и состав, закономерности образования, формы залегания и распространение. Комплекс наук, изучающих геологические процессы, объединяет динамическая геология, рассматривающая процессы, вызывающие изменение земной коры, формирующие рельеф земной поверхности и обусловливающие развитие Земли в целом. Большое разнообразие объектов исследования привело к выделению из динамической геологии таких самостоятельных наук, как вулканология, сейсмология, геотектоника. Вулканология изучает процессы вулканических извержений, строение, развитие и причины образования вулканов и состав продуктов, ими выбрасываемых. Сейсмология - наука о геологических условиях возникновения и проявления землетрясений. Геотектоника (тектоника) - наука, изучающая движения и деформации земной коры и особенности ее строения, возникающие в результате этих движений и деформаций. Раздел геотектоники, рассматривающий характер и закономерности размещения и сочетания различных горных пород в земной коре, определяющие ее структуру, называют структурной геологией. Она часто рассматривается как самостоятельная геологическая дисциплина. Науки, изучающие внешние (экзогенные) геологические процессы, происходящие в поверхностных частях земной коры в результате взаимодействия с атмосферой, гидросферой и биосферой, имеют прямое отношение к решению вопросов, воздействующих на общественную жизнь и, следовательно, определяющих географическую среду. Поэтому их относят к физической географии, хотя они и связаны неразрывно с динамической геологией. К числу таких наук принадлежат: 1) геоморфология - наука об образовании и развитии форм рельефа; 2) гидрология суши, исследующая водные пространства (реки, озера, болота, грунтовые воды, снежный покров, ледники и др.) на Земле, т. е. огромный круг вопросов, затрагиваемых также гляциологией - наукой о ледниках и лимнологией - наукой об озерах; 3) климатология и др. К наукам, изучающим развитие живой природы на протяжении геологического времени, относится палеонтология - наука столь же биологическая, как и геологическая. Появление и развитие этой науки тесно связано с геологией, и ее значение для развития геологии огромно. Палеонтология на основе изучения остатков вымерших животных и растений устанавливает относительный возраст горных пород и делает возможным сопоставление разнородных толщ осадочных образований, возникших одновременно. Геологическое летоисчисление и периодизация геологической истории основаны на данных этой науки. Она имеет также большое значение для выяснения физико-географических условий прошлых геологических эпох. Историческая последовательность геологических процессов изучается исторической геологией. Это - геологическая летопись, воспроизводящая всю сложную и многообразную историю развития земной поверхности, проявлений горообразования, вулканизма, наступлений и отступаний моря, изменения физико-географических условий и т. д. Один из основных разделов исторической геологии - стратиграфия - рассматривает последовательность напластования слоистых толщ осадочных горных пород и устанавливает их возраст по данным палеонтологии, а в последнее время - и геофизики. Другие ее разделы - учение о фациях и палеогеография - направлены к выявлению физико-географических условий далекого прошлого и воссозданию характера земной поверхности в разные геологические периоды. К важнейшим из геологических наук, занимающихся изучением практических вопросов, относятся: учение о полезных ископаемых, гидрогеология, инженерная геология. Учение о полезных ископаемых - древнейшая отрасль геологических знаний, которую справедливо считают родоначальницей современной геологии. Она изучает все природные минеральные образования, которые могут или быть непосредственно использованы людьми, или служить объектом для извлечения металлов, минералов и химических элементов, необходимых в народном хозяйстве. Разнообразие полезных ископаемых и огромное, но далеко не равноценное значение их привели к обособлению многих разделов рассматриваемой науки в самостоятельные дисциплины, как, например, учение о рудных и учение о нерудных месторождениях. Впоследствии выделились геология угля, геология нефти, геология радиоактивных элементов и т. д. Наконец, новым важным разделом науки о полезных ископаемых является металлогения, 3. ОБЩИЕ СВЕДЕНИЯ О ЗЕМЛЕ. ГЕОСФЕРЫ И ПРОЦЕССЫ ИХ ВЗАИМОДЕЙСТВИЯ. Внутреннее строение Земли всегда интересовало человечество служило предметом исследований многих ученых от древнейших времен до наших дней. Несмотря на это, достоверных данных о внутреннем строении Земли имеется еще весьма мало. Изучение и точное знание строения Земли имеет важное научное и практическое значение. Тело Земли имеет концентрическое строение и состоит из ядра и ряда оболочек, плотность которых скачкообразно увеличивается от поверхности Земли к ее центру. Концентрические оболочки, слагающие Землю, получили название геосфер. Наружной геосферой Земли является атмосфера, представляющая собой воздушную оболочку, мощность которой примерно равна 20 000 км. Атмосферу, учитывая меняющийся ее состав, разделяют на три оболочки: тропосферу, стратосферу и ионосферу. Тропосфера - приземный слой атмосферы, мощность которого в средних широтах 10-12 км. В тропосфере содержится почти 9/10 всей массы газов, составляющих атмосферу, и почти весь водяной пар. С увеличением высоты (удалением от поверхности Земли) происходит резкое понижение температуры. На высоте 10-12 км в среднем температура равна минус 55° С. В этом слое происходит образование облаков и сосредотачиваются тепловые движения воздуха, включая также все геологические процессы, протекающие над земной поверхностью (например, перенос веществ при извержениях вулканов, эоловые и другие процессы). Стратосфера - следующий за тропосферой слой, достигающий 80-90 км высоты. Благодаря присутствию озона в стратосфере обнаруживается повышение температуры до плюс 50 °С в слоях на высоте 30-55 км. На высоте 80-90 км температура снова понижается до минус 60-90° С. Ионосфера - самая верхняя и наиболее удаленная от поверхности Земли часть атмосферы. На высоте 20 тыс. км она постепенно переходит в межпланетное пространство. Приборами, установленными на искусственных спутниках Земли, выявлено, что плотность верхних слоев атмосферы в 5 - 10 раз выше, чем это предполагалось ранее. Спутниками было зафиксировано повышение температуры в слое ионосферы па высоте 225 км. Гидросфера - представляет собой водную оболочку Земли. Она включает все природные воды морей и океанов, рек, озер, а также материковые льды Арктики и Антарктиды. С водами гидросферы тесно связаны и подземные воды. В отличие от других геосфер гидросфера не образует сплошной оболочки Земли. Она покрывает 70,8% земной поверхности и образует Мировой океан. Средняя глубина гидросферы 3,75 км, наибольшая глубина достигает 11,5 км (Марианская впадина). Наружная твердая геосфера Земли называется литосферой, часто объединяемой с термином земная кора. Твердая оболочка Земли различными методами исследована на глубину 15-20 км. Непосредственному же изучению при помощи буровых скважин подверглась толща лишь до глубины 8 км. Третья часть поверхности земной коры приходится на выступы литосферы, образующие материки. Наиболее высокой точкой материков является гора Эверест в Гималаях, высота которой достигает 8,88 км. Средняя же высота материковых выступов - всего около 0,7 км над уровнем моря. Часто высокие горы располагаются вблизи глубоких океанических впадин. Литосфера состоит из разнообразных пород и минералов, т. е. определенных химических соединений или, реже, самородных химических элементов, отличающихся однородностью состава и физических свойств. Химический состав литосферы до глубины 16 км характеризуется преобладанием следующих элементов (по А. П. Виноградову, в % по массе): кислород 46,8 натрий 2,6 кремний 27,3 калий 2,6 алюминий 8,7 титан 0,6 железо 5,1 водород 0,15 кальций 3,6 фосфор 0,08 магний 2,1 углерод 0,1 Остальные многочисленные химические элементы в сумме составляют около 0,5% состава земной коры. Таким образом, в составе литосферы преобладают кислород, кремний, алюминий, железо и кальций, образующие разнообразные горные породы. Наблюдения в глубоких скважинах, шахтах и тоннелях показали, что по мере углубления в толщу Земли температура повышается в среднем через каждые 33 м на 1° С. Расстояние в глубь Земли, при котором температура повышается от пояса постоянных температур на 1° С, принято называть геотермической ступенью. Геотермическая ступень в различных местах земного шара отклоняется от среднего значения и в отдельных районах достигает 100 м и более. Между атмосферой, гидросферой и литосферой существует постоянное взаимодействие, в результате которого происходят существенные изменения в составе и строении наружной оболочки земной коры. В литосфере под верхним слоем ее, сложенном толщей осадочных пород/в нисходящем порядке выделяют гранитную и базальтовую оболочки. Гранитная оболочка наибольшей мощности (до 50 км) достигает под современными горными хребтами (например, Памира, Альп и др.). Под океаническими впадинами (дно Атлантического и Индийского океанов) эта оболочка местами совершенно отсутствует или имеет малую толщину. Гранитная оболочка имеет плотность 2,6-2,7 г/см3 и сложена породами гранитного состава. Базальтовая оболочка располагается непосредственно под гранитной. Мощность ее достигает 30 км под материковыми равнинами (платформами). Плотность базальтовой оболочки 2,8-2,9 г/см 3, поскольку она сложена основными породами (базальты и др.), бедными кремнекислотой. Вследствие преобладания в гранитной и базальтовой оболочках кремния и алюминия их объединяют в геосферу, называемую сиалической, или с и а л ь (от слова silicium, что означает кремний). Общая мощность литосферы, включая и сиалическую оболочку, в среднем составляет 50-70 км. Под литосферой залегает перидотитовая оболочка, состоящая из пород еще более основных (т. е. с меньшим содержанием кремнекислоты), чем в базальтовой оболочке. Плотность пород этой геосферы, именуемой также симатической оболочкой, в верхней части равна 3,2-3,4 г/см3, в нижних слоях 4,0- 4,5 г/см3. Перидотитовая оболочка распространена до глубины 1200 км и охватывает земной шар сплошь, без перерывов. Ниже располагается промежуточная оболочка до глубины 2900 км. Плотность ее 5,3-6,5 г/см3. Академик А. Е. Ферсман называл эту зону рудной геосферой, считая, что в ней в большом количестве содержатся чистые металлы, такие, как железо и никель. Внутренняя часть земли, или центральное ядро, начинается с глубины 2900 км и доходит до центра Земли, т. е. до глубины 6370 км. Таким образом, радиус центрального ядра составляет 3470 км, а его плотность 9,0-10,0 и 11,0 г/см3 в самом центре. Предполагают, что ядро Земли имеет силикатный состав, и в его составе содержится железа не больше, чем в других внутренних геосферах (оболочках). Большая плотность ядра объясняется тем, что вещество здесь, находясь под весьма высоким давлением, приобрело плотность металлов. По современным представлениям, температура в верхней части центрального ядра Земли не превышает 2,0-2,5 тыс. градусов. Большое давление в сочетании с высокой температурой в ядре Земли обусловливает особое упруго-вязкое состояние слагающего его вещества, которое по физическим свойствам приближается к жидкости. 4. ПОНЯТИЯ О МИНЕРАЛАХ. Горные породы, которые находятся на поверхности или вблизи нее, дают геологам основные сведения, необходимые для изучения геологического прошлого. Горные породы состоят из минералов или обломков более древних пород, в свою очередь также слагающихся минералами. Общим для минералов является их кристаллическая сущность. I. Основной закон кристаллографии. Рождение кристаллографии как науки связывают с именем Николая Стенона, который в 1669 году сформулировал закон постоянства углов: ╚Кристаллы различной формы одного и того же вещества (минерала) имеют неизменные углы между соответствующими гранями╩. Поскольку независимо друг от друга еще двое ученых М. В. Ломоносов (1740) и французский минералог Жан - Б. Роме де Лиль открыли этот закон, то следует называть его законом Стенона - Ломоносова - Роме де Лиля. 2. Свойства природных кристаллических веществ. Одно из основных свойств кристалла - однородность. Однородным должно считаться тело, в котором на конечных расстояниях от любой его точки найдутся другие, эквивалентные ей не только в физическом отношении, но и геометрическом; т. е. находятся в таком же окружении, как и исходные, поскольку размещением материальных частиц в кристаллическом пространстве ╚управляет╩ пространственная решетка, можно считать, что грань кристалла - это материализованная плоская узловая решетка, а ребро - материализованный узловой ряд. Как правило, хорошо развитые грани кристалла определяются узловыми сетками с наибольшей густотой расположения узлов. Точка, в которой сходятся три и более граней, называется вершиной кристалла. Анизотропность - это способность кристалла проявлять различные свойства в разных направлениях. Поскольку различные направления в кристаллической структуре вещества, построенного по закону трехмерной периодичности, могут и иметь неодинаковые расстояния между атомами (узлами), а следовательно, и разные по силе химические связи, то и свойства по таким направлениям могут отличаться, а сами кристаллы будут анизотропны относительно этих свойств. Если свойство не изменяется в зависимости от направления, то вещество изотропно. Способность самоограняться, т. е. при определенных условиях принимать естественную многогранную форму. В этом также проявляется его правильное внутреннее строение. Именно это свойство отличает кристаллическое вещество от аморфного. Иллюстрацией этому служит пример. Два выточенных из кварца и стекла шарика опускают в раствор кремнезема. В результате шарик кварца покроется гранями, а стеклянный останется круглым. Симметрия - наиболее общая закономерность, связанная со строением и свойствами кристаллического вещества. Она является одним из обобщающих фундаментальных понятий физики и естествознания в целом. Е. С. Федоров (1901 г.) дал определение симметрии. ╚Симметрия есть свойство геометрических фигур повторять свои части, или, выражаясь точнее, свойство их в различных положениях приходить в совмещение с первоначальным положением╩. Таким образом, симметричным является такой объект, который может быть совмещен сам с собой определенными преобразованиями: поворотами или (и) отражениями (см рисунок). Такие преобразования называются симметрическими операциями. (Подробнее об этом на лабораторных занятиях). 3. Кристаллогенезис. В природе кристаллы образуются при различных геологических процессах из растворов, расплавов, паров, газов или твердой фазы. Из водных растворов значительная часть минеральных видов обязана своим происхождением кристаллизации: выпадение кристаллов солей в замкнутых водоемах при нормальной температуре и атмосферном давлении; рост кристаллов на стенках трещин и полостей при гидротермальных процессах на больших глубинах в условиях давлений и температур; образование отдельных кристаллов вторичных минералов в зонах окисления рудных месторождений. Кристаллы многих минералов образуются из многокомпонентной огненно - жидкой магмы. При этом, если магматический очаг располагается на большой глубине и остывание магмы идет медленно, то она успевает хорошо раскристаллизоваться и кристаллы вырастают достаточно крупными и хорошо ограненными. Если остывание происходит быстро (например, при вулканических извержениях, излияниях лавы на поверхность Земли), наблюдается практически мгновенная кристаллизация с образованием мельчайших кристалликов минералов и даже стеклоподобного вещества. Кристаллы одних и тех же минералов могут образовываться в природе как из водных растворов, так и из магматического расплава. Например: оливин, кварц, слюды и другие. Из газов и паров образуется незначительное количество минералов. Они имеют, главным образом, минералы вулканического происхождения. Например: сера самородная, нашатырь и др. Всем известны снежинки - результат кристаллизации из водных паров. Кристаллы могут образовываться при перекристаллизации твердых веществ. Путем длительного нагревания (отжига) из мелкокристаллических агрегатов можно получить крупнокристаллические и даже монокристаллы. Например: перекристаллизация известняков - образуется крупнокристаллический агрегат мрамор (под действием высоких температур и давления). 4. Причины и условия образования минералов. Материальные частицы (атомы, молекулы, ионы), слагающие газообразные и жидкие (расплавленные) вещества находятся в непрерывном движении. Время от времени они сталкиваются, образуя зародыши - микроскопические фрагменты будущей структуры. Большей частью эти зародыши распадаются. Однако, если они достигают критической величины, т. е. содержат такое количество частиц, при котором присоединение следующей частицы сделало бы разрастание зародыша энергетически более выгодным, чем его распад, то происходит посткристаллизация. Такая возможность для большинства веществ появляется либо с понижением температуры, в результате чего уменьшаются тепловые колебания, либо с повышением концентрации вещества в растворе или газе, что приводит к увеличению вероятности встречи частиц друг с другом, т. е. к возникновению зародышей. При этом кристаллизация происходит не во всем объеме, а лишь там, где возникнут зародыши. Появлению зародышей способствует присутствие посторонних обломков кристаллов или пылинок, на поверхности которых собираются частицы, облегчая этим начало кристаллизации. Причина кристаллизации газообразного и жидкого вещества заключается в том, что энергетически более выгодно такое состояние, при котором силы, действующие на частицы, окажутся уравновешенными, а это достигается лишь в случае упорядоченного расположения материальных частиц. И, казалось бы, растущий кристалл, стремясь к равновесному состоянию, должен был бы приобретать определенную, единственную для каждого вещества. Физически возможную идеальную равновесную форму, обусловленную лишь составом и структурой. На самом же деле кристаллы одного и того же минерала или соединения встречаются в самых разнообразных формах. Это объясняется тем, что на форму кристалла накладывают отпечаток различные изменяющиеся условия кристаллизации: температура, давление, химизм и динамика кристаллообразующей среды и т. д. 5. Происхождение минералов Происхождение минералов очень интересно. Их образование в ходе кристаллизации обусловлено определенными закономерностями, определяющими три цикла геологических процессов: 1. магматический цикл (от греч. «магма» - месиво), то есть образование минералов из жидких масс глубинного происхождения; 2. седиментационный цикл (осадочный, от лат. «седиментум» - осадок) - образование минералов путем выветривания, переноса, отложения; 3. метаморфический цикл (от греч. «метаморфизис» - превращение, видоизменение) - появление новых минералов в результате преобразования старых, возникших в пер-вых двух циклах. Любые изменения в структуре минералов протекают незаметно, развитие минералов происходит очень медленно. В зависимости от происхождения различают минералы первич­ные и вторичные. К первичным относятся минералы, образовавшиеся впервые в земной коре или на ее поверхности в процессе кристаллизации магмы. К первичным наиболее распространенным минералам относятся кварц, полевой шпат, слюда, из которых состоят гра­нит или сера в кратерах вулканов. Вторичные минералы образовались при обычных условиях из продуктов разрушения первичных минералов вследствие вывет­ривания, при осаждении и кристаллизации солей из водных рас­творов или в результате жизнедеятельности живых организмов. Это - кухонная соль, гипс, сильвин, бурый железняк и другие. Процессов, в результате которых образуются минералы, в при­роде наблюдается много. Различают следующие процессы: магма­тические, гипергенные, или климатические, и метаморфические. Основным процессом является магматический. Он связан с охлаждением, дифференциацией и кристаллизацией расплавлен­ной магмы при различных давлении и температуре. Магма состо­ит преимущественно из таких химических компонентов: Si02, А120з, FeO, CaO, MgO, К2О, содержит она и другие химические соединения, но в меньшем количестве. Минералы при этом образуются преимущественно при темпе­ратуре 1000-1500°С и давлении в несколько тысяч атмосфер. Из минералов магматического происхождения образуются все пер­вичные кристаллические породы. Минералы, происхождение ко­торых связано с магмой и внутренним теплом Земли, называют первичными. К ним относятся полевые шпаты - ортоклаз, альбит, анортит, из ортосиликатов - оливин и другие. Минералы образуются также из газов (газовая фаза магмы). Наиболее распространены из них пегматиты, или жильные мине­ралы, ортоклаз с кварцем, микроклин, апатит, мусковит, биотит и многие другие. Такие минералы называются пнеуматогенными. Из горячей жидкости магмы (жидкая фаза) образуются гидро­термальные минералы - пирит, золото, серебро и много других. Гипергенные процессы происходят на поверхности Земли при обычных условиях под влиянием воды, температуры и других факторов. В результате этого растворяются и перемещаются раз­ные химические соединения, появляются новые (вторичные) ми­нералы, например сильвин, кварц, кальцит, бурый железняк и каолинит. Минералы гипергенного цикла образуются при давлении до 1 атм и температуре ниже 100°С. Качественный состав этих минералов на поверхности Земли в определенной мере зависит от географи­ческих широт. Следует отметить, что преобразование одного и того же минерала при разных условиях может проходить неоди­наково. Например, гидрослюды образуются не только из слюд, но и искусственным путем. Основным материалом для образования минералов гиперген­ного происхождения являются выветрившиеся первичные породы или те, которые уже прошли процесс преобразования. В этом про­цессе принимают участие также живые организмы. Минералы ги­пергенного цикла, образующиеся при действии внешних процес­сов, входят в состав осадочных и почвообразующих пород. Экзогенные процессы минералообразования происходят как на поверхности Земли, так и в коре выветривания. Для образования минералов экзогенного происхождения важное значение имеют процессы физического, химического и биологического выветри­вания. При метаморфическом процессе минералы образуются на боль­ших глубинах от поверхности Земли при изменении физико-хими­ческих условий (температура, давление, концентрация химически активных компонентов). В этих условиях происходит преобразо­вание ранее образованных многих первичных и вторичных мине­ралов. Среди них наиболее распространенными являются гематит, графит, кварц, роговая обманка, тальк и многие другие. 6. ФИЗИЧЕСКИЕ СВОЙСТВА МИНЕРАЛОВ 1. Оптические свойства Прозрачность - свойство вещества пропускать свет. В зависимости от степени прозрачности все минералы делят на следующие группы: прозрачные - горный хрусталь, исландский шпат, топаз и др.; полупрозрачные - сфалерит, киноварь и др.; непрозрачные - пирит, магнетит, графит и др. Многие минералы, кажущиеся непрозрачными в крупных кристаллах, просвечивают в тонких осколках или краях зерен. Цвет минералов - важнейший диагностический признак. Во многих случаях обусловлен внутренними свойствами минерала (идиохроматические окраски) и связан с вхождением в его состав элементов-хромофоров (Ре, Сг, Мп, N1, Со и др.). Например, присутствие хрома обусловливает зеленую окраску уваровита и изумруда, присутствие марганца - розовую или сиреневую окраску лепидолита, турмалина или воробьевита. Природа окрашивания других минералов (дымчатый кварц, аметист, морион и др.) кроется в нарушении однородности строения их кристаллических решеток, в возникновении в них различных дефектов. В некоторых случаях окраска минерала может быть вызвана присутствием тончайших рассеянных механических примесей (аллохроматические окраски) - яшмы, агаты, авантюрин и др. Для обозначения окраски в минералогии распространен метод сравнения с окраской хорошо известных предметов или веществ, что отражается в названиях цветов: яблочно-зеленый, лазурно-синий, шоколадно-коричневый и т. п. Эталонами можно считать названия цветов следующих минералов: фиолетовый - аметист, синий - азурит, зеленый - малахит, желтый - аурипигмент, красный - киноварь, бурый - лимонит» оло-вянно-белый - арсенопирит, свинцово-серый - молибденит, железо-черный - магнетит, латунно-желтый - халькопирит, металлически-золотистый - золото. Цвет черты - цвет тонкого порошка минерала. Черту минерала можно получить при проведении испытуемым минералом по матовой неглазурованной поверхности фарфоровой пластинки (бисквита) или осколку такой же поверхности фарфоровой химической посуды. Это - признак более постоянный по сравнению с окраской. В ряде случаев цвет черты совпадает с цветом самого минерала, но иногда наблюдается резкое различие: так, стально-серый гематит оставляет вишнево-красную черту, латунно-желтый пирит - черную и т. д. Блеск зависит от показателя преломления минерала, т. е. величины, характеризующей разницу в скорости света при переходе его из воздушной в кристаллическую среду. Практически установлено, что минералы с показателем преломления 1,3-1,9 имеют стеклянный блеск (кварц, флюорит, кальцит, корунд, гранат и др.), с показателем 1,9-2,6 - алмазный блеск (циркон, касситерит, сфалерит, алмаз, рутил и др). Полиметаллический блеск отвечает минералам с показателем преломления 2,6-3,0 (куприт, киноварь, гематит) и металлический - выше 3 (молибденит, антимонит, пирит, галенит, арсенопирит и др.). Блеск минерала зависит и от характера поверхности. Так, у минералов с параллельно-волокнистым строением наблюдается типичный шелковистый блеск (асбест), полупрозрачные «слоистые» и пластинчатые минералы часто имеют перламутровый отлив (кальцит, альбит), непрозрачные или просвечивающие минералы, аморфные или характеризующиеся нарушенной структурой кристаллической решетки (метамиктные минералы) отличаются смолистым блеском (пирохлор, настуран и др.). 2. Механические свойства Спайность - свойство кристаллов раскалываться в определенных кристаллографических направлениях, обусловленное строением их кристаллических решеток. Так, кристаллы кальцита независимо от их внешней формы раскалываются всегда по спайности на ромбоэдры, а кубические кристаллы флюорита - на октаэдры. Степень совершенства спайности различается в соответствии со следующей принятой шкалой: Спайность весьма совершенная - кристалл легко расщепляется на тонкие листочки (слюда, хлорит, молибденит и др.). Спайность совершенная - при ударе молотком получаются выколки по спайности; получить излом по другим направлениям трудно (кальцит, галенит, флюорит). Спайность средняя - излом можно получить по всем направлениям, но на обломках минерала наряду с неровным изломом отчетливо наблюдаются и гладкие блестящие плоскости спайности (пироксены, скаполит). Спайность несовершенная или отсутствует. Зерна подобных минералов ограничены неправильными поверхностями, за исключением граней их кристаллов. Нередко разно ориентированные плоскости спайности в одном и том же минерале различаются по степени совершенства. Так, у гипса имеется три направления спайности: по одному - спайность весьма совершенная, по другому - средняя и по третьему - несовершенная. Трещины отдельности, в отличие от спайности, являются более грубыми и не вполне плоскими; чаще всего ориентированы поперек удлинения минералов. Излом. У минералов с несовершенной спайностью существенную роль в диагностике играет излом - раковистый (кварц, пирохлор), занозистый (у самородных металлов), мелкорако-. вистый (пирит, халькопирит, борнит), неровный и др. Твердость, или степень сопротивления минерала внешнему механическому воздействию. Наиболее простой способ ее определения - царапание одного минерала другим. Для оценки относительной твердости принята шкала Мооса, представленная 10 минералами, из которых каждый последующий царапает все предыдущие. За эталоны твердости приняты.следующие минералы: тальк -1, гипс - 2, кальцит - 3, флюорит - 4, апатит - 5, ортоклаз - 6, кварц - 7, топаз - 8, корунд - 9, алмаз - 10. При диагностике весьма удобно также употреблять для царапания такие предметы, как медная (тв. 3-3,5) и стальная (5,5-6) игла, нож (5,5-6), стекло (~5); мягкие минералы можно пробовать царапать ногтем (тв. 2,5). Хрупкость, ковкость, упругость. Под хрупкостью в минералогической практике подразумевается свойство минерала крошиться при проведении черты ножом или иглой. Противоположное свойство - гладкий блестящий след от иглы (ножа) - свидетельствует о свойстве минерала деформироваться пластически. Ковкие минералы расплющиваются под ударом молотка в тонкую пластинку, упругие способны восстанавливать форму после снятия нагрузки (слюды, асбест). 3. Прочие свойства Удельный вес может быть точно замерен в лабораторных условиях различными методами; приблизительное суждение об удельном весе минерала можно получить путем сопоставления его с распространенными минералами, удельный вес которых принимается за эталон. Все минералы можно разделить по удельному весу на три группы: легкие - с уд. весом меньше 3 (галит, гипс, кварц и др.); средние - с уд. весом порядка 3-5 (апатит, корунд, сфалерит, пирит и др.); тяжелые - с уд. весом больше 5 (киноварь, галенит, золото, касситерит, серебро и др.). Магнитность. Некоторые минералы характеризуются ярко выраженными ферромагнитными свойствами , т. е. притягивают к себе мелкие железные предметы - опилки, булавки (магнетит, никелистое железо). Менее магнитные минералы {парамагнитные) притягиваются магнитом (пирротин) или электромагнитом; наконец, имеются минералы, которые отталкиваются магнитом,- диамагнитные (самородный висмут). Испытание на магнитность производится с помощью свободно вращающейся магнитной стрелки, к концам которой подносится испытуемый образец. Так как число минералов, обладающих отчетливыми магнитными свойствами, невелико, то этот признак имеет важное диагностическое значение для некоторых минералов (например, магнетита). Радиоактивность. Способностью к самопроизвольному альфа, бета- и гамма излучению характеризуются все минералы, содержащие в своем составе радиоактивные элементы - уран или торий. В породе радиоактивные минералы часто бывают окружены красными или бурыми каемками, и от зерен таких минералов, включенных в кварц, полевой шпат и др., расходятся радиальные трещинки. Радиоактивное излучение действует на фотобумагу. Другие свойства. Для диагностики в полевых условиях имеют значение растворимость минералов в воде (хлориды) или кислотах и щелочах, частные химические реакции на отдельные элементы (Реакция с HCl важна для диагностики карбонатов, с молибденово-кислым аммонием - для фосфатов, с KOH - для талька и пирофиллита и т. д. (см. рубрику «Диагностика» в описаниях конкретных минералов), окрашивание пламени (например, минералы, содержащие стронций, окрашивают пламя в красный цвет, натрий - в желтый). Некоторые минералы при ударе или разломе издают запах (так, арсенопирит и самородный мышьяк испускают характерный чесночный запах) и т. д. Отдельные минералы определяются на ощупь (например, тальк на ощупь жирный). Поваренная соль и другие солевые минералы легко узнаются на вкус.

Понравилась статья? Поделитесь с друзьями!