От чего зависит магнитное поле соленоида. Магнитное поле соленоида

Для описания системы двух случайных величин, кроме математических ожиданий и дисперсий составляющих пользуются и другими характеристиками, к числу которых относятся корреляционный момент икоэффициент корреляции (кратко было упомянуто в конце Т.8.п.8.6).

Корреляционным моментом (иликовариацией, или моментом связи ) двух случайных величинX иY называется м. о. произведения отклонений этих величин (см. равенство (5) п. 8.6):

Следствие 1. Длякорреляционного момента с.в. X иY также справедливы равенства:

,

где соответствующие централизованные с.в.X иY (см. п.8.6.).

При этом: если
- двумерная д.с.в., то ковариация вычисляется по формуле

(8)
;

если
- двумерная н.с.в., то ковариация вычисляется по формуле

(9)

Формулы (8) и (9) получены на основании формул (6) п.12.1. Имеет место вычислительная формула

(10)

которая выводится из определения (9) и на основании свойств м.о., действительно,

Следовательно, формул (36) и (37) можно переписать в виде

(11)
;

Корреляционный момент служит для характеристики связи между величинами X иY .

Как будет показано ниже, корреляционный момент равен нулю, если X иY являются независимыми;

Следовательно, если корреляционный момент не равен нулю, то X и Y – зависимые случайные величины.

Теорема12.1. Корреляционный момент двух независимых случайных величин X и Y равен нулю, т.е. для независимых с.в. X и Y ,

Доказательство. Так какX иY независимые случайные величины, то их отклонения

и

т акже независимы. Пользуясь свойствами математического ожидания (математическое ожидание произведения независимых с. в. равно произведению математических ожиданий сомножителей
,
, поэтому

Замечание. Из этой теоремы следует, что если
то с.в. X иY зависимы и в таких случаях с.в. X иY называюткоррелированными . Однако из того, что
не следует независимость с.в.X иY .

В этом случае (
с.в.X иY называютнекоррелированными, тем самым из независимости вытекаетнекоррелированность ; обратное утверждение, вообще говоря, неверно (см. далее пример 2.)

Рассмотрим основные свойства корреляционного момента.

C войства ковариации:

1. Ковариация симметрична, т.е.
.

Непосредственно следует из формулы (38).

2. Имеют место равенства:т.е. дисперсия с.в. является ковариацией её с самой собой.

Эти равенства прямо следуют из определения дисперсии и равенство (38) соответственно при

3. Справедливы равенства:

Эти равенства выводятся из определения дисперсии, ковариации с.в.
и, свойств 2.

По определению дисперсии (с учётом централизованности с.в.
) мы имеем

теперь, на основании (33) и свойств 2 и 3, получим первое (со знаком плюс) свойство 3.

Аналогично, вторая часть свойства3, выводится из равенство

4. Пусть
постоянные числа,
тогда справедливы равенства:

Обычно эти свойства называются свойствами однородностью первого порядка и периодичностью по аргументам.

Докажем первое равенство, при этом будем использовать свойства м.о.
.

Теорема 12.2. Абсолютное значение корреляционного момента двух произвольных случайных величин X и Y не превышает среднего геометрического их дисперсий: т.е.

Доказательство. Заметим, чтодля независимых с.в. неравенство выполняется (с.м. теорему 12.1.). Итак, пусть с.в.X и Y зависимые. Рассмотрим стандартные с.в.
и
и вычислим дисперсию с.в.
с учётом свойства 3, имеем: с одной стороны
С другой стороны

Следовательно, с учётом того, что
и- нормированные (стандартизированные) с.в., то для них м.о. равна нулю, а дисперсия равна 1, поэтому, пользуясь свойством м.о.
получим

а следовательно, на основании того, что
получим

Отсюда следует, что т.е.

=

Утверждение доказано.

Из определения и свойства ковариации следует, что она характеризует и степень зависимости с.в., и их рассеяния вокруг точки
Размерность ковариации равна произведению размерностей случайных величинX иY . Другими словами, величина корреляционного момента зависит от единиц измерения случайных величин. По этой причине для одних и тех же двух величинX иY , величина корреляционного момента будет иметь различные значения в зависимости от того, в каких единицах были измерены величины.

Пусть, например, X и Y были измерены в сантиметрах и
; если измерить X иY в миллиметрах, то
Эта особенность корреляционного момента и есть недостатком этой числовой характеристики, так как сравнение корреляционных моментов различных систем случайных величин становится затруднительным.

Для того чтобы устранить этот недостаток, вводят новую числовую характеристику- - «коэффициент корреляции ».

Коэффициентом корреляции
случайных величин
иназывают отношение корреляционного момента к произведению средних квадратических отклонений этих величин:

(13)
.

Так как размерность
равна произведению размерностей величин
и,
имеет размерность величины
σ y имеет размерность величины, то
есть просто число (т.е. «безразмерная величина» ). Таким образом, величина коэффициента корреляции не зависит от выбора единиц измерения с.в., в этом состоитпреимущество коэффициента корреляции перед корреляционным моментом.

В Т.8. п.8.3 нами было введено понятие нормированной с.в.
, формула (18), и доказана теорема о том, что
и
(см. там же теорема 8.2.). Здесь докажем следующее утверждение.

Теорема 12.3. Длялюбых двух случайных величин
и справедливо равенство
.Другими словами, коэффициент корреляции
любых двух с
.в .X и Y равно корреляционному моменту их соответствующих нормированных с.в.
и .

Доказательство. По определениюнормированных случайных величин
и

и
.

Учитывая свойство математического ожидания: и равенство (40) получим

Утверждение доказано.

Рассмотрим некоторые часто встречающие свойства коэффициента корреляции.

Свойства коэффициента корреляции:

1. Коэффициент корреляции по абсолютной величине непревосходит 1, т.е.

Это свойство прямо следует из формулы (41) - определения коффициента корреляции и теоремы 13.5. (см. равенство (40)).

2. Если случайные величины
инезависимы, токоэффициент корреляции равен нулю, т.е.
.

Это свойство является прямым следствием равенства (40) и теоремы 13.4.

Следующее свойство сформулируем в виде отдельной теоремы.

Теорема 12.4.

Если с.в.
имежду собой связаны линейной функциональной зависимостью, т.е.
то

при этом

и наоборот, если
,
то с.в.
и между собой связаны линейной функциональной зависимостью, т.е. существуют постоянные
и
такие, что имеет место равенство

Доказательство. Пусть
тогда на основании свойства 4 ковариации, имеем

и поскольку, , поэтому

Следовательно,
. Равенство в одну сторону получено. Пусть далее,
, тогда

следует рассматривать два случая:1)
и 2)
Итак, рассмотрим первый случай. Тогда по определению
и следовательно из равенства
, где
. В нашем случае
, поэтому из равенства (см. доказательство теоремы 13.5.)

=
,

получаем, что
, значит
постоянна. Так как
и поскольку, то
действительно,

.

Следовательно,


.

Аналогично, показывается, что для
имеет место (проверьте самостоятельно!)

,
.

Некоторые выводы:

1. Если
инезависимыес.в., то

2. Если с.в.
имежду собой связаны линейно, то
.

3. В остальных случаях
:

В этом случае говорят, что с.в.
исвязаны между собойположительной корреляцией, если
в случаях же
отрицательной корреляцией . Чем ближе
к единице, тем больше оснований считать, чтос.в.
исвязаны линейной зависимостью.

Отметим, что корреляционные моменты и дисперсии системы с.в. обычно задаются корреляционной матрицей :

.

Очевидно, что определитель корреляционной матрицы удовлетворяет:

Как уже было отмечено, если две случайные величины зависимы, то они могут быть как коррелированными , так инекоррелированными. Другими словами, корреляционный момент двух зависимых величин может бытьне равен нулю , но может иравняться нулю.

Пример 1. Закон распределения дискретной с.в.задан таблицей


Найти коэффициент корреляции

Решение. Находим законы распределения составляющих
и:


Теперь вычислим м.о. составляющих:

Этих величин можно было находить на основании таблицы распределения с.в.

Аналогично,
находите самостоятельно.

Вычислим дисперсии составляющих при это будем пользоваться вычислительной формулой:

Составим закон распределения
, а затем найдём
:

При составлении таблицы закона распределения следует выполнять действия:

1) оставить лишь различные значения всевозможных произведений
.

2) для определения вероятности данного значения
, нужно

складывать все соответствующие вероятности, находящиеся на пересечении основной таблицы, благоприятствующие наступлению данного значения.

В нашем примере с.в.принимает всего три различных значения
. Здесь первое значение (
) соответствует произведению
из второй строки и
из первого столбца, поэтому на их пересечении находится вероятностное число
аналогично

которое получено из суммы вероятностей, находящихся на пересечениях соответственно первой строки и первого столбца (0,15 ; 0,40; 0,05) и одно значение
, которое находится на пересечении второй строки и второго столбца, и наконец,
, которое находится на пересечении второй строки и третьего столбца.

Из нашей таблицы находим:

Находим корреляционный момент, используя формулу (38):

Находим коэффициент корреляции по формуле (41)

Таким образом, отрицательная корреляция.

Упражнение. Закон распределения дискретной с.в. задан таблицей


Найти коэффициент корреляции

Рассмотрим пример, где окажется две зависимые случайные величины могут бытьнекоррелированными.

Пример 2. Двумерная случайная величина
)
задана функцией плотностью

Докажем, что
и зависимые , нонекоррелированные случайные величины.

Решение. Воспользуемся ранее вычисленными плотностями распределения составляющих
и :

Так как ,то
изависимые величины. Для того, чтобы доказать некоррелированность
и, достаточно убедиться в том, что

Найдем корреляционный момент по формуле:

Поскольку дифференциальная функция
симметрична относительно оси OY , то
аналогично
, в силу симметрии
относительно оси OX . Поэтому, вынося постоянный множитель

Внутренний интеграл равен нулю (подынтегральная функция нечетна, пределы интегрирования симметричны относительно начала координат), следовательно,
, т.е. зависимые случайные величины
и между собой некоррелируют.

Итак, из коррелированности двух случайных величин следует их зависимость, но из некоррелированности ещё нельзя заключить о независимости этих величин.

Однако, для нормально распределённых с.в. такой вывод является исключением, т.е. из некоррелированности нормально распределенных с.в. вытекает их независимость .

Этому вопросу посвящается следующий пункт.

Корреляционные моменты, коэффициент корреляции - это числовые характеристики, тесно связанные во введенным выше понятием случайной величины, а точнее с системой случайных величин. Поэтому для введения и определения их значения и роли необходимо пояснить понятие системы случайных величин и некоторые свойства присущие им.

Два или более случайные величины, описывающих некоторое явление называю

т системой или комплексом случайных величин.

Первые начальные моменты представляют собой математические ожидания величин Х и Y, входящих в систему

σ1,0=mx σ0,1=my.

Совокупность математических ожиданий mx , my представляет собой характеристику положения системы. Геометрически это координаты средней точки на плоскости, вокруг которой происходит рассеивание точки (Х, Y).

Важную роль на практике играют также вторые центральные моменты систем. Два из них представляют собой дисперсии величин Х и Y

характеризующие рассеивание случайной точки в направлении осей Ox и Oy.

Особую роль играет второй смещенный центральный момент:

называемый корреляционным моментом (иначе - "моментом связи")случайных величин Х и Y.

Корреляционный момент есть характеристика системы случайных величин, описывающая, помимо рассеивания величин Х и Y, еще и связь между ними. Для того, чтобы убедиться в этом отметим, что корреляционный момент независимых случайных величин равен нулю.

Заметим, что корреляционный момент характеризует не только зависимость величин, но и их рассеивание. Поэтому для характеристики связи между величинами (Х;Y) в чистом виде переходят от момента Kxy к характеристике

где σx, σy - средние квадратичные отклонения величин Х и Y. Эта характеристика называется коэффициентом корреляции величин Х и Y.

Согласно определениям момента корреляции и коэффициента корреляции

. (6.37)

Пусть имеется выборка . Выборочным коэффициентом корреляции называется оценка истинного коэффициента, полученная по формуле

. (6.38)

Здесь , , - выборочные средние значения и дисперсии. Выборочный коэффициент корреляции является случайной величиной. Отсюда после вычисления возникает необходимость проверки гипотезы о значимости полученной оценки. Проверяется гипотеза о равенстве нулю генерального коэффициента корреляции против альтернативы о неравенстве нулю коэффициента корреляции. Для проверки гипотезы против альтернативы используют статистику

Известно , что эта статистика имеет распределение Стьюдента с (n-2) степенями свободы. Введем уровень значимости для решения и тогда решающее правило принимает вид

. (6.40)

Здесь - квантиль распределения Стьюдента уровня (1-) с степенями свободы.

Для графической оценки корреляционной связи двух случайных переменных строят так называемые диаграммы рассеяния

Коэффициент корреляции определяет тесноту линейной корреляционной связи между двумя случайными переменными x и y. Однако корреляционная связь между переменными не обязательно является линейной. Поставим задачу описания корреляционной связи в самом общем виде. Выясним меняется ли одна случайная величина (y) при изменении другой случайной величины (x). Рассмотрим плоскость (xy), на которой заданы эти величины. На оси x укажем k точек в интересующем нас диапазоне значений и для каждой j-й точки этого диапазона измерим q раз значение переменной y. В результате получаем k диапазонов (групп) для величины y, в каждом из которых имеется q отсчетов. Значения y внутри отдельной группы будем рассматривать как самостоятельную совокупность и для нее найдем внутригрупповую среднюю и внутригрупповую дисперсию соответственно:

. (6.41)

(Отметим, что в пределах данного пункта используется формула для вычисления смещенной оценки дисперсии.)

Найдем среднюю арифметическую внутригрупповых дисперсий

, (6.42)

а также среднее значение по всей совокупности точек

. (6.43)

Запишем выражение для расчета межгрупповой дисперсии, описывающей рассеяние групповых средних относительно средней по всей совокупности точек

, (6.44)

и выражение для расчета общей дисперсии, описывающей рассеяние отдельных точек относительно среднего по всей совокупности

(6.45)

Если переменная y связана с x функциональной зависимостью, то определенному значению x соответствует определенное значение y и в каждой группе содержатся q одинаковых чисел. Это означает, что внутригрупповая дисперсия равна нулю и на основание (6.51)

Если же переменные x и y связаны корреляционной зависимостью, то

На основание данного важного свойства соотношения межгрупповой и общей дисперсий вводится мера оценки тесноты корреляционной связи

В главе 5 мы ввели в рассмотрение числовые характеристики одной случайной величины - начальные и центральные моменты различных порядков. Из этих характеристик важнейшими являются две: математическое ожидание и дисперсия .

Аналогичные числовые характеристики - начальные и центральные моменты различных порядков - можно ввести и для системы двух случайных величин.

Начальным моментом порядка , системы называется математическое ожидание произведения на :

. (8.6.1)

Центральным моментом порядка системы называется математическое ожидание произведения -й и -й степени соответствующих центрированных величин:

, (8.6.2)

Выпишем формулы, служащие для непосредственного подсчета моментов. Для прерывных случайных величин

, (8.6.3)

, (8.6.4)

где - вероятность того, что система примет значения , а суммирование распространяется по всем возможным значениям случайных величин , .

Для непрерывных случайных величин:

, (8.6.5)

, (8.6.6)

где - плотность распределения системы.

Помимо и , характеризующих порядок момента по отношению к отдельным величинам, рассматривается еще суммарный порядок момента , равный сумме показателей степеней при и . Соответственно суммарному порядку моменты классифицируются на первые, вторые и т. д. На практике обычно применяются только первые и вторые моменты.

Первые начальные моменты представляют собой уже известные нам математические ожидания величин и , входящих в систему:

Совокупность математических ожиданий представляет собой характеристику положения системы. Геометрически это координаты средней точки на плоскости, вокруг которой происходит рассеивание точки .

Кроме первых начальных моментов, на практике широко применяются еще вторые центральные моменты системы. Два из них представляют собой уже известные нам дисперсии величин и :

характеризующие рассеивание случайной точки в направлении осей и .

Особую роль как характеристика системы играет второй смешанный центральный момент:

,

т.е. математическое ожидание произведения центрированных величин.

Ввиду того, что этот момент играет важную роль в теории, введем для него особое обозначение:

. (8.6.7)

Характеристика называется корреляционным моментом (иначе - «моментом связи») случайных величин , .

Для прерывных случайных величин корреляционный момент выражается формулой

, (8.6.8)

а для непрерывных - формулой

. (8.6.9)

Выясним смысл и назначение этой характеристики.

Корреляционный момент есть характеристика системы случайных величин, описывающая, помимо, рассеивания величин и , еще и связь между ними. Для того чтобы убедиться в этом, докажем, что для независимых случайных величин корреляционный момент равен нулю.

Доказательство проведем для непрерывных случайных величин. Пусть , - независимые непрерывные величины с плотностью распределения . В 8.5 мы доказали, что для независимых величин

. (8.6.10)

где , - плотности распределения соответственно величин и .

Подставляя выражение (8.6.10) в формулу (8.6.9), видим, что интеграл (8.6.9) превращается в произведение двух интегралов:

.

Интеграл

представляет собой не что иное, как первый центральный момент величины , и, следовательно, равен нулю; по той же причине равен нулю и второй сомножитель; следовательно, для независимых случайных величин .

Таким образам, если корреляционный момент двух случайных величин отличен от нуля, это есть признак наличия зависимости между ними.

Из формулы (8.6.7) видно, что корреляционный момент характеризует не только зависимость величин, но и их рассеивание. Действительно, если, например, одна из величин весьма мало отклоняется от своего математического ожидания (почти не случайна), то корреляционный момент будет мал, какой бы тесной зависимостью ни были связаны величины . Поэтому для характеристики связи между величинами в чистом виде переходят от момента к безразмерной характеристике

где , - средние квадратические отклонения величин , . Эта характеристика называется коэффициентом корреляции величин и . Очевидно, коэффициент корреляции обращается в ноль одновременно с корреляционным моментом; следовательно, для независимых случайных величин коэффициент корреляции равен нулю.

Случайные величины, для которых корреляционный момент (а значит, и коэффициент корреляции) равен нулю, называются некоррелированными (иногда – «несвязанными»).

Выясним, эквивалентно ли понятие некоррелированности случайных величин понятию независимости. Выше мы доказали, что две независимые случайные величины всегда являются некоррелированными. Остается выяснить: справедливо ли обратное положение, вытекает ли из некоррелированности величин их независимость? Оказывается - нет. Можно построить примеры таких случайных величин, которые являются некоррелированными, но зависимыми. Равенство нулю коэффициента корреляции - необходимое, но не достаточное условие независимости случайных величин. Из независимости случайных величин вытекает их некоррелированность; напротив, из некоррелированности величин еще не следует их независимость. Условие независимости случайных величин – более жесткое, чем условие некоррелированности.

Убедимся в этом на примере. Рассмотрим систему случайных величин , распределенную с равномерной плотностью внутри круга радиуса с центром в начале координат (рис.8.6.1).

Плотность распределения величин выражается формулой

Из условия находим .

Нетрудно убедиться, что в данном примере величины являются зависимыми. Действительно, непосредственно ясно, что если величина приняла, например, значение 0, то величина может с равной вероятностью принимать все значения от до ; если же величина приняла значение , то величина может принять только одно-единственное значение, в точности равное нулю; вообще, диапазон возможных значений зависит от того, какое значение приняла .

Посмотрим, являются ли эти величины коррелированными. Вычислим корреляционный момент. Имея в виду, что по соображениям симметрии , получим:

. (8.6.12)

Для вычисления интеграла разобьем область интегрирования (круг ) на четыре сектора , соответствующие четырем координатным углам. В секторах и подынтегральная функция положительна, в секторах и - отрицательна; по абсолютной же величине интегралы по этим секторам равны; следовательно, интеграл (8.6.12) равен нулю, и величины не коррелированы.

Таким образом, мы видим, что из некоррелированности случайных величин не всегда следует их независимость.

Коэффициент корреляции характеризует не всякую зависимость, а только так называемую линейную зависимость. Линейная вероятностная зависимость случайных величин заключается в том, что при возрастании одной случайной величины другая имеет тенденцию возрастать (или же убывать) по линейному закону. Эта тенденция к линейной зависимости может быть более или менее ярко выраженной, более или менее приближаться к функциональной, т. е. самой тесной линейной зависимости. Коэффициент корреляции характеризует степень тесноты линейной зависимости между случайными величинами. Если случайные величины и связаны точной линейной функциональной зависимостью:

то , причем знак «плюс» или «минус» берется в зависимости от того, положителен или отрицателен коэффициент . В общем случае, когда величины и связаны произвольной вероятностной зависимостью, коэффициент корреляции может иметь значение в пределах: меняется только диапазон изменения , а его среднее значение не меняется; естественно, величины оказываются некоррелированными.

Рис. 8.6.2 Рис.8.6.3

Приведем несколько примеров случайных величин с положительной и отрицательной корреляцией.

1. Вес и рост человека связаны положительной корреляцией.

2. Время, потраченное на регулировку прибора при подготовке его к работе, и время его безотказной работы связаны положительной корреляцией (если, разумеется, время потрачено разумно). Наоборот, время, потраченное на подготовку, и количество неисправностей, обнаруженное при работе прибора, связаны отрицательной корреляцией.

3. При стрельбе залпом координаты точек попадания отдельных снарядов связаны положительной корреляцией (так как имеются общие для всех выстрелов ошибки прицеливания, одинаково отклоняющие от цели каждый из них).

4. Производится два выстрела по цели; точка попадания первого выстрела регистрируется, и в прицел вводится поправка, пропорциональная ошибке первого выстрела с обратным знаком. Координаты точек попадания первого и второго выстрелов будут связаны отрицательной корреляцией.

Если в нашем распоряжении имеются результаты ряда опытов над системой случайных величин , то о наличии или отсутствии существенной корреляции между ними легко судить в первом приближении по графику, на котором изображены в виде точек все полученные из опыта пары значений случайных величин. Например, если наблюденные пары значений величин расположились так, как показано на рис. 8.6.2, то это указывает на наличие явно выраженной положительной корреляции между величинами. Еще более ярко выраженную положительную корреляцию, близкую к линейной функциональной зависимости, наблюдаем на рис. 8.6.3. На рис. 8.6.4 показан случай сравнительно слабой отрицательной корреляции. Наконец, на рис. 8.6.5 иллюстрируется случай практически некоррелированных случайных величин. На практике, перед тем, как исследовать корреляцию случайных величин, всегда полезно предварительно построить наблюденные пары значений на графике для первого качественного суждения о типе корреляции.

Соленоидом называется совокупность N одинаковых витков изолированного проводящего провода, равномерно намотанных на общий каркас или сердечник. По виткам проходит одинаковый ток. Магнитные поля, созданные каждым витком в отдельности, складываются по принципу суперпозиции. Индукция магнитного поля внутри соленоида велика, а вне его - мала. Для бесконечно длинного соленоида индукция магнитного поля вне соленоида стремится к нулю. Если длина соленоида во много раз больше диаметра его витков, то соленоид можно практически считать бесконечно длинным . Магнитное поле такого соленоида целиком сосредоточено внутри него и является однородным (рис.6).

Величину индукции магнитного поля внутри бесконечно длинного соленоида можно определить, используя теорему о циркуляции вектора :циркуляция вектора по произвольному замкнутому контуру равна алгебраической сумме токов, охватываемых контуром, умноженной на магнитную постоянную μ о :

, (20)

где μ 0 = 4π 10 -7 Гн/м.

Рис.6. Магнитное поле соленоида

Для определения величины магнитной индукции В внутри соленоида выберем замкнутый контур ABCD прямоугольной формы, где - элемент длины контура, задающий направление обхода (рис.6). При этом длиныAB и CD будем считать бесконечно малыми.

Тогда циркуляция вектора по замкнутому контуруABCD, охватывающему N витков, равна:

На участках AB и CD произведение
, так как вектораивзаимно перпендикулярны. Поэтому

. (22)

На участке DA вне соленоида интеграл
, так как магнитное поле вне контура равно нулю.

Тогда формула (21) примет вид:

, (23)

где l – длина участка BC. Сумма токов, охватываемых контуром, равна

, (24)

где I c – сила тока соленоида; N – число витков, охватываемых контуром ABCD.

Подставив (23) и (24) в (20), получим:

. (25)

Из (25) получим выражение для индукции магнитного поля бесконечно длинного соленоида:

. (26)

Так как число витков на единицу длину соленоида n равно:

(27)

то окончательно получим:

. (28)

Если внутрь соленоида помещен сердечник, то формула (28) для В примет вид:

. (29),

где  - магнитная проницаемость материала сердечника.

Таким образом, индукция В магнитного поля соленоида определяется током соленоида I c , числом витком n на единицу длины соленоида и магнитной проницаемостью материала сердечника.

Цилиндрический магнетрон

Магнетроном называется двухэлектродная электронная лампа (диод), содержащая накаливаемый катод и холодный анод и помещенная во внешнее магнитное поле.

Анод диода имеет форму цилиндра радиусом . Катод представляет собой полый цилиндр радиусом, вдоль оси которого расположена нить накала, как правило, изготавливаемая из вольфрама (рис.7).

Раскалённый катод в результате явления термоэлектронной эмиссии испускает термоэлектроны, которые образуют вокруг катода электронное облако. При подаче анодного напряжения
(рис.8), электроны начинают перемещаться от катода к аноду вдоль радиусов, что приводит к возникновению анодного тока. Анодный ток регистрируется миллиамперметром.

Рис.7. Схема диода

Рис.8. Электрическая схема цепи

Величина анодного напряжения регулируется потенциометром R A . Чем больше анодное напряжение, тем большее количество электронов за единицу времени достигает анода, следовательно, тем больше анодный ток.

Напряжённость электрического поля Е между катодом и анодом такая же, как и в цилиндрическом конденсаторе:

, (30)

где r – расстояние от оси катода до данной точки пространства между катодом и анодом.

Из формулы (30) следует, что напряжённость поля Е обратно пропорциональна расстоянию r до оси катода. Следовательно, напряженность поля максимальна у катода.

r к <

то значение логарифма ln стремится к большой величине. Тогда с увеличением расстояния r напряженность электрического поля между катодом и анодом снижается до нуля. Поэтому, можно считать, что электроны приобретают скорость под действием поля только вблизи катода, и дальнейшее их движение к аноду происходит с постоянной по величине скоростью.

Внешнее магнитное поле, в которое помещён диод, создаётся соленоидом (рис.8). Длина соленоида l много больше диаметра его витков, поэтому поле внутри соленоида можно считать однородным. Ток в цепи соленоида изменяется с помощью потенциометра R C (рис.8) и регистрируется амперметром.

Характер движения электронов в зависимости от величины поля соленоида показан на рис.9. Если ток в цепи соленоида отсутствует, то индукция магнитного поля В = 0. Тогда электроны движутся от катода к аноду практически по радиусам.

Увеличение тока в цепи соленоида приводит к возрастанию величины В. При этом, траектории движения электронов начинают искривляться, однако все электроны достигают анода. В анодной цепи будет течь ток такой же, как и в отсутствии магнитного поля.

Рис.9. Зависимость анодного тока I A от величины тока соленоида I c в идеальном (1) и реальном (2) случаях, а также характер движения электронов в зависимости от величины поля соленоида.

При некотором значении тока в соленоиде радиус окружности, по которой движется электрон, становится равным половине расстояния между катодом и анодом:

.. (32)

Электроны в этом случае касаются анода и уходят к катоду (рис.9). Такой режим работы диода называется критическим . При этом по соленоиду течёт критический ток I кр, которому соответствует критическое значение индукции магнитного поля В = В кр.

При В = В кр анодный ток в идеальном случае должен скачком уменьшиться до нуля. При В > В кр электроны не попадают на анод (рис.9), и анодный ток также будет равен нулю (рис.9, кривая 1).

Однако на практике, вследствие некоторого разброса скоростей электронов и нарушения соосности катода и соленоида, анодный ток уменьшается не скачком, а плавно (рис.9, кривая 2). При этом значение силы тока соленоида, соответствующее точке перегиба на кривой 2, считается критическим I кр. Критическому значению тока соленоида соответствует анодный ток, равный:

, (33)

где
– максимальное значение анодного тока при В = 0.

Зависимость анодного тока I A от величины индукции магнитного поля В (или от тока в соленоиде) при постоянном анодном напряжении и постоянном накале называется сбросовой характеристикой магнетрона.



Понравилась статья? Поделитесь с друзьями!