Перемещение при криволинейном движении. Скорость и ускорение при криволинейном движении

В зависимости от формы траектории, движение делится на прямолинейное и криволинейное. В реальном мире мы чаще всего имеем дело с криволинейным движением, когда траектория представляет собой кривую линию. Примерами такого движения является траектория тела, брошенного под углом к горизонту, движение Земли вокруг Солнца движение планет, конца стрелки часов по циферблату и т.д.

Рисунок 1. Траектория и перемещение при криволинейном движении

Определение

Криволинейное движение -- это движение, траектория которого представляет собой кривую линию (например, окружность, эллипс, гиперболу, параболу). При движении по криволинейной траектории вектор перемещения $\overrightarrow{s}$ направлен по хорде (рис. 1), а l -- длина траектории. Мгновенная скорость движения тела (то есть скорость тела в данной точке траектории) направлена по касательной в той точке траектории, где в данный момент находится движущееся тело (рис. 2).

Рисунок 2. Мгновенная скорость при криволинейном движении

Однако более удобным является следующий подход. Можно представить это движение как совокупность нескольких движений по дугам окружностей (см. рис. 4.). Таких разбиений получится меньше, чем в предыдущем случае, кроме того, движение по окружности само является криволинейным.

Рисунок 4. Разбиение криволинейного движения на движения по дугам окружностей

Вывод

Для того, чтобы описывать криволинейное движение, нужно научиться описывать движение по окружности, а потом произвольное движение представлять в виде совокупностей движений по дугам окружностей.

Задачей исследования криволинейного движения материальной точки является составление кинематического уравнения, описывающего это движение и позволяющего по заданным начальным условиям определить все характеристики этого движения.

Нам известно, что всякое криволинейное движение происходит под действием силы, направленной под углом к скорости. В случае равномерного движения по окружности этот угол будет прямым. В самом деле, если, например, вращать шарик, привязанный к верёвке, то направление скорости шарика в любой момент времени перпендикулярно верёвке.

Сила же натяжения верёвки, удерживающая шарик на окружности, направлена вдоль верёвки к центру вращения.

По второму закону Ньютона эта сила будет вызывать ускорение тела в том же направлении. Ускорение, направленное по радиусу к центру вращения, называется центростремительным ускорением .

Выведем формулу для определения величины центростремительного ускорения.

Прежде всего, заметим, что движение по окружности – сложное движение. Под действием центростремительной силы тело движется к центру вращения и одновременно по инерции удаляется от этого центра по касательной к окружности.

Пусть за время t тело, двигаясь равномерно со скоростью v, переместилось из D в Е. Допустим, что в тот момент, когда тело находилось в точке D, на него перестала бы действовать центростремительная сила. Тогда за время t оно переместилось бы в точку К, лежащую на касательной DL. Если же в начальный момент тело оказалось бы под действием только одной центростремительной силы (не двигалось по инерции), то оно за время t, двигаясь равноускоренно, переместилось бы в точку F, лежащую на прямой DC. В результате сложения этих двух движений за время t получается результирующее движение по дуге DE.

Центростремительная сила

Сила, удерживающая вращающееся тело на окружности и направленная к центру вращения, называется центростремительной силой .

Чтобы получить формулу для расчёта величины центростремительной силы, надо воспользоваться вторым законом Ньютона, который применим и к любому криволинейному движению.

Подставляя в формулу F = ma значение центростремительного ускорения a = v 2 / R , получим формулу центростремительной силы:

F = mv 2 / R

Величина центростремительной силы равна произведению массы тела на квадрат линейной скорости , делённому на радиус .

Если дана угловая скорость тела, то центростремительную силу удобнее рассчитывать по формуле: F = m? 2 R, где? 2 R – центростремительное ускорение.

Из первой формулы видно, что при одной и той же скорости чем меньше радиус окружности, тем больше центростремительная сила. Так, на поворотах дороги на движущееся тело (поезд, автомобиль, велосипед) должна действовать по направлению к центру закругления тем большая сила, чем круче поворот, т. е. чем меньше радиус закругления.

Центростремительная сила зависит от линейной скорости: с увеличением скорости она увеличивается. Это хорошо известно всем конькобежцам, лыжникам и велосипедистам: чем с большей скоростью движешься, тем труднее сделать поворот. Шофёры очень хорошо знают, как опасно круто поворачивать автомобиль на большой скорости.

Линейная скорость

Центробежные механизмы

Движение тела, брошенного под углом к горизонту

Бросим какое-нибудь тело л од углом к горизонту. Следя за его движением, мы заметим, что тело сначала поднимается, двигаясь по кривой, потом также по кривой падает вниз.

Если направлять струю воды под разными углами к горизонту, то можно видеть, что сначала с увеличением угла струя бьёт всё дальше и дальше. При угле в 45° к горизонту (если не учитывать сопротивления воздуха) дальность наибольшая. При дальнейшем увеличении угла дальность уменьшается.

Для построения траектории движения тела, брошенного под углом к горизонту, проведём горизонтальную прямую OA и к ней под заданным углом – прямую ОС.

На линии ОС в выбранном масштабе откладываем отрезки, численно равные путям, пройденным в направлении бросания (0–1, 1–2, 2–3, 3–4). Из точек 1, 2, 3 и т. д. опускаем перпендикуляры на ОА и на них откладываем отрезки, численно равные путям, проходимым свободно падающим телом в течение 1 сек (1–I), 2 сек (2–II), 3 сек (3–III) и т. д. Точки 0, I, II, III, IV и т. д. соединяем плавной кривой.

Траектория тела симметрична относительно вертикальной прямой, проходящей через точку IV.

Сопротивление воздуха уменьшает как дальность полёта, так и наибольшую высоту полёта, и траектория становится несимметричной. Таковы, например, траектории снарядов и пуль. На рисунке сплошная кривая показывает схематически траекторию снаряда в воздухе, а пунктирная – в безвоздушном пространстве. Насколько сопротивление воздуха изменяет дальность полёта, видно из следующего примера. При отсутствии сопротивления воздуха снаряд 76-миллиметрового орудия, выпущенный под углом 20° к горизонту, пролетел бы 24 км. В воздухе же этот снаряд пролетает около 7 км.

Третий закон Ньютона

Движение тела, брошенного горизонтально

Независимость движений

Всякое криволинейное движение является сложным движением, состоящим из движения по инерции и движения под действием силы, направленной под углом к скорости тела. Это можно показать на следующем примере.

Допустим, что шарик движется по столу равномерно и прямолинейно. Когда шарик скатывается со стола, вес его больше уже не уравновешивается силой давления стола и он, по инерции сохраняя равномерное и прямолинейное движение, одновременно начинает падать. В результате сложения движений – равномерного прямолинейного по инерции и равноускоренного под действием силы тяжести – шарик перемещается по кривой линии.

Можно на опыте показать, что эти движения независимы одно от другого.

На рисунке изображена пружина, которая, выгибаясь под ударом молотка, может привести один из шариков в движение в горизонтальном направлении и одновременно освободить другой шарик, так что оба они начнут движение в один и тот же момент: первый – по кривой, второй – по вертикали вниз. Оба шарика ударятся о пол одновременно; следовательно, время падения обоих шариков одинаково. Отсюда можно заключить, что движение шарика под действием силы тяжести не зависит от того, покоился ли шарик в начальный момент или двигался в горизонтальном направлении.

Этот опыт иллюстрирует очень важное положение механики, называемое принципом независимости движений .

Равномерное движение по окружности

Одним из простейших и весьма распространённых видов криволинейного движения является равномерное движение тела по окружности. По окружности, например, движутся части маховиков, точки земной поверхности при суточном вращении Земли и т. д.

Введём величины, характеризующие это движение. Обратимся к рисунку. Пусть при вращении тела одна из его точек за время t перешла из A в В. Радиус, соединяющий точку А с центром окружности, повернулся при этом на угол? (греч. «фи»). Быстроту вращения точки можно характеризовать величиной отношения угла? ко времени t, т. е. ? / t .

Угловая скорость

Отношение угла поворота радиуса, соединяющего движущуюся точку с центром вращения, к промежутку времени, за который происходит этот поворот, называется угловой скоростью .

Обозначая угловую скорость греческой буквой? («омега»), можно написать:

? = ? / t

Угловая скорость численно равна углу поворота в единицу времени.

При равномерном движении по окружности угловая скорость есть величина постоянная.

При вычислении угловой скорости угол поворота принято измерять в радианах. Радиан есть центральный угол, длина дуги которого равна радиусу этой дуги.

Движение тел под действием силы, направленной под углом к скорости

При рассмотрении прямолинейного движения стало известно, что если на тело действует сила в направлении движения, то движение тела будет оставаться прямолинейным. Изменяться будет только величина скорости. При этом если направление силы совпадает с направлением скорости, движение будет прямолинейным и ускоренным. В случае же противоположного направления силы движение окажется прямолинейным и замедленным. Таковы, например, движение тела, брошенного вертикально вниз, и движение тела, брошенного вертикально вверх.

Рассмотрим теперь, как будет двигаться тело под действием силы, направленной под углом к направлению скорости.

Обратимся сначала к опыту. Создадим траекторию движения стального шарика около магнита. Сразу замечаем, что вдали от магнита шарик двигался прямолинейно, при приближении же к магниту траектория шарика искривлялась и шарик двигался по кривой. Направление скорости его при этом непрерывно менялось. Причиной этого было действие магнита на шарик.

Мы можем заставить двигаться по кривой прямолинейно перемещающееся тело, если будем толкать его, тянуть за привязанную к нему нить и так далее, лишь бы сила была направлена под углом к скорости перемещения тела.

Итак, криволинейное движение тела происходит под действием силы, направленной под углом к направлению скорости тела .

В зависимости от направления и величины силы, действующей на тело, криволинейные движения могут быть самыми разнообразными. Наиболее простыми видами криволинейных движений являются движения по окружности, параболе и эллипсу.

Примеры действия центростремительной силы

В некоторых случаях центростремительная сила является равнодействующей двух сил, действующих на движущееся по окружности тело.

Рассмотрим несколько таких примеров.

1. По вогнутому мосту движется автомобиль со скоростью v, масса автомобиля т, радиус кривизны моста R. Чему равна сила давления, производимого автомобилем на мост, в низшей его точке?

Установим прежде всего, какие силы действуют на автомобиль. Таких сил две: вес автомобиля и сила давления моста на автомобиль. (Силу трения в этом и во всех последующих призерах мы исключаем из рассмотрения).

Когда автомобиль неподвижен, то эти силы, будучи равными по величине и направленными в противоположные стороны» уравновешивают друг друга.

Когда же автомобиль движется по мосту, то на него, как и на всякое тело, движущееся по окружности, действует центростремительная сила. Что является источником этой силы? Источником этой силы может быть только действие моста на автомобиль. Сила Q, с которой мост давит на движущийся автомобиль, должна не только уравновешивать вес автомобиля Р, но и вынуждать его двигаться по окружности, создавая необходимую для этого центростремительную силу F. Сила F может быть только равнодействующей сил Р и Q, так как она является результатом взаимодействия движущегося автомобиля и моста.

Понятия скорости и ускорения естественным образом обобщаются на случай движения материальной точки по криволинейной траектории . Положение движущейся точки на траектории задается радиус-вектором r , проведенным в эту точку из какой-либо неподвижной точки О , например, начала координат (рис. 1.2). Пусть в момент времени t материальная точка находится в положении М с радиус-вектором r = r (t ). Спустя короткое время Dt , она переместится в положение М 1 с радиусом – вектором r 1 = r (t + Dt ). Радиус – вектор материальной точки получит приращение, определяемое геометрической разностью Dr = r 1 - r . Средней скоростью движения за время Dt называется величина

Направление средней скорости V ср совпадает с направлением вектора Dr .

Предел средней скорости при Dt ® 0, т. е. производная радиуса – вектора r по времени

(1.9)

называется истинной или мгновенной скоростью материальной точки. Вектор V направлен по касательной к траектории движущейся точки.

Ускорением а называется вектор, равный первой производной вектора скорости V или второй производной радиуса – вектора r по времени:

(1.10)

(1.11)

Отметим следующую формальную аналогию между скоростью и ускорением. Из произвольной неподвижной точки О 1 будем откладывать вектор скорости V движущейся точки во всевозможные моменты времени (рис. 1.3).

Конец вектора V называется скоростной точкой . Геометрическое место скоростных точек есть кривая, называемая годографом скорости. Когда материальная точка описывает траекторию, соответствующая ей скоростная точка движется по годографу.

Рис. 1.2 отличается от рис. 1.3 только обозначениями. Радиус – вектор r заменен на вектор скорости V , материальная точка – на скоростную точку, траектория – на годограф. Математические операции над вектором r при нахождении скорости и над вектором V при нахождении ускорения совершенно тождественны.

Скорость V направлена по касательной траектории. Поэтому ускорение a будет направлено по касательной к годографу скорости. Можно сказать, что ускорение есть скорость движения скоростной точки по годографу . Следовательно,

Рассматривая криволинейное движение тела, мы увидим, что его скорость в разные моменты различна. Даже в том случае, когда модуль скорости не меняется, все же имеет место изменение направления скорости. В общем случае меняются и модуль и направление скорости.

Таким образом, при криволинейном движении скорость непрерывно изменяется, так что это движение происходит с ускорением. Для определения этого ускорения (по модулю и направлению) требуется найти изменение скорости как вектора, т. е. найти приращение модуля скорости и изменение ее направления.

Рис. 49. Изменение скорости при криволинейном движении

Пусть, например, точка, двигаясь криволинейно (рис. 49), имела в некоторый момент скорость а через малый промежуток времени - скорость . Приращение скорости есть разность между векторами и . Так как эти векторы имеют различное направление, то нужно взять их векторную разность. Приращение скорости выразится вектором , изображаемым стороной параллелограмма с диагональю и другой стороной . Ускорением называется отношение приращения скорости к промежутку времени , за который это приращение произошло. Значит, ускорение

По направлению совпадает с вектором .

Выбирая достаточно малым, придем к понятию мгновенного ускорения (ср. § 16); при произвольном вектор будет представлять среднее ускорение за промежуток времени .

Направление ускорения при криволинейном движении не совпадает с направлением скорости, в то время как для прямолинейного движения эти направления совпадают (или противоположны). Чтобы найти направление ускорения при криволинейном движении, достаточно сопоставить направления скоростей в двух близких точках траектории. Так как скорости направлены по касательным к траектории, то по виду самой траектории можно сделать заключение, в какую сторону от траектории направлено ускорение. Действительно, так как разность скоростей в двух близких точках траектории всегда направлена в ту сторону, куда искривляется траектория, то, значит, и ускорение всегда направлено в сторону вогнутости траектории. Например, когда шарик катится по изогнутому желобу (рис. 50), его ускорение на участках и направлено так, как показывают стрелки, причем это не зависит от того, катится шарик от к или в обратном направлении.

Рис. 50. Ускорения при криволинейном движении всегда направлены в сторону вогнутости траектории

Рис. 51. К выводу формулы для центростремительного ускорения

Рассмотрим равномерное движение точки по криволинейной траектории. Мы уже знаем, что это - ускоренное движение. Найдем ускорение. Для этого достаточно рассмотреть ускорение для частного случая равномерного движения по окружности. Возьмем два близких положения и движущейся точки, разделенных малым промежутком времени (рис. 51, а). Скорости движущейся точки в и равны по модулю, но различны по направлению. Найдем разность этих скоростей, пользуясь правилом треугольника (рис. 51, б). Треугольники и подобны, как равнобедренные треугольники с равными углами при вершине. Длину стороны , изображающей приращение скорости за промежуток времени , можно положить равной , где - модуль искомого ускорения. Сходственная ей сторона есть хорда дуги ; вследствие малости дуги длина ее хорды может быть приближенно принята равной длине дуги, т.е. . Далее, ; , где - радиус траектории. Из подобия треугольников следует, что отношения сходственных сторон в них равны:

откуда находим модуль искомого ускорения:

Направление ускорения перпендикулярно к хорде . Для достаточно малых промежутков времени можно считать, что касательная к дуге практически совпадает с ее хордой. Значит, ускорение можно считать направленным перпендикулярно (нормально) к касательной к траектории, т. е. по радиусу к центру окружности. Поэтому такое ускорение называют нормальным или центростремительным ускорением.

Если траектория - не окружность, а произвольная кривая линия, то в формуле (27.1) следует взять радиус окружности, ближе всего подходящей к кривой в данной точке. Направление нормального ускорения и в этом случае будет перпендикулярно к касательной к траектории в данной точке. Если при криволинейном движении ускорение постоянно по модулю и направлению, его можно найти как отношение приращения скорости к промежутку времени, за который это приращение произошло, каков бы ни был этот промежуток времени. Значит, в этом случае ускорение можно найти по формуле

аналогичной формуле (17.1) для прямолинейного движения с постоянным ускорением. Здесь - скорость тела в начальный момент, a - скорость в момент времени .

Равноускоренное криволинейное движение

Криволинейные движения - движения, траектории которых представляют собой не прямые, а кривые линии. По криволинейным траекториям движутся планеты, воды рек.

Криволинейное движение - это всегда движение с ускорением, даже если по модулю скорость постоянна. Криволинейное движение с постоянным ускорением всегда происходит в той плоскости, в которой находятся векторы ускорения и начальные скорости точки. В случае криволинейного движения с постоянным ускорением в плоскости xOy проекции vxи vy ее скорости на оси Ox и Oy и координаты x и y точки в любой момент времени t определяется по формулам

Неравномерное движение. Скорость при неравномерном движении

Ни одно тело не движется все время с постоянной скоростью. Начиная движение, автомобиль движется быстрее и быстрее. Некоторое время он может двигаться равномерно, но потом он тормозит и останавливается. При этом автомобиль проходит разные расстояния за один и то же время.

Движение, при котором тело за равные промежутки времени проходит неодинаковые отрезки пути, называется неравномерным. При таком движении величина скорости не остается неизменной. В таком случае можно говорить лишь о средней скорости.

Средняя скорость показывает, чему равно перемещение, которое тело проходит за единицу времени. Она равна отношению перемещения тела до времени движения. Средняя скорость, как и скорость тела при равномерном движении, измеряется в метрах, разделенных на секунду. Для того, чтобы характеризовать движение точнее, в физике применяют мгновенную скорость.

Скорость тела в данный момент времени или в данной точке траектории называется мгновенной скоростью. Мгновенная скорость является векторной величиной и направлена так же, как вектор перемещения. Измерить мгновенную скорость можно с помощью спидометра. В Системе Интернациональной мгновенная скорость измеряется в метрах, разделенных на секунду.

точка движение скорость неравномерный

Движение тела по окружности

В природе и технике очень часто встречается криволинейное движение. Оно сложнее прямолинейного, так как существует множество криволинейных траекторий; это движение всегда ускоренное, даже когда модуль скорости не меняется.

Но движение по любой криволинейной траектории можно приблизительно представить как движение по дугам круга.

При движении тела по окружности направление вектора скорости меняется от точки к точке. Поэтому когда говорят о скорости такого движения, подразумевают мгновенную скорость. Вектор скорости направлен по касательной к окружности, а вектор перемещения - по хордам.

Равномерное движение по окружности - это движение, во время которого модуль скорости движения не изменяется, изменяется только ее направление. Ускорение такого движения всегда направлено к центру окружности и называется центростремительным. Для того чтобы найти ускорение тела, которое движется по кругу, необходимо квадрат скорости разделить на радиус окружности.

Помимо ускорения, движение тела по кругу характеризуют следующие величины:

Период вращения тела - это время, за которое тело совершает один полный оборот. Период вращения обозначается буквой Т и измеряется в секундах.

Частота вращения тела - это число оборотов в единицу времени. Частота вращения обозначается буквой? и измеряется в герцах. Для того чтобы найти частоту, надо единицу разделить на период.

Линейная скорость - отношение перемещения тела до времени. Для того чтобы найти линейную скорость тела по окружности, необходимо длину окружности разделить на период (длина окружности равна 2? умножить на радиус).

Угловая скорость - физическая величина, равная отношению угла поворота радиуса окружности, по которой движется тело, до времени движения. Угловая скорость обозначается буквой? и измеряется в радианах, разделенных на секунду. Найти угловую скорость можно, разделив 2? на период. Угловая скорость и линейная между собой. Для того чтобы найти линейную скорость, необходимо угловую скорость умножить на радиус окружности.


Рисунок 6. Движение по окружности, формулы.



Понравилась статья? Поделитесь с друзьями!