Получение квантовых точек. Телевизоры на квантовых точках — в чем преимущества

  • 1.3.1. Интегральная и локальная плотности состояний
  • 1.3.2. Спонтанное испускание фотонов
  • 1.3.3. Тепловое излучение
  • 1.3.4. Комбинационное рассеяние
  • 1.3.5. Резонансное (релеевское) рассеяние
  • 1.4. Заключение
  • Список литературы
  • 2. Оптическое излучение в линейных и нелинейных периодических структурах
  • 2.1. Введение
  • 2.2.1. Квазиоптическое приближение
  • 2.2.2. Линзовые волноводы и лазерные резонаторы
  • 2.2.4. Мелкомасштабная самофокусировка в периодических системах
  • 2.2.5. Квазисинхронное параметрическое взаимодействие
  • 2.3. Одномодовый световод с брэгговской решеткой
  • 2.3.1. Двунаправленное распространение излучения
  • 2.3.2. Брэгговские солитоны
  • 2.3.3. Оптическая бистабильность и переключение
  • 2.3.4. Полупроводниковые микрорезонаторы
  • 2.4. Связанные световоды
  • 2.5. Двумерные фотонные кристаллы
  • 2.5.1. Неидеальные фотонные кристаллы
  • 2.5.2. Нелинейные двумерные фотонные кристаллы
  • 2.6. Заключение
  • Список литературы
  • 3. Оптика квантовых ям и сверхрешеток
  • 3.1. Классификация гетероструктур
  • 3.2. Размерное квантование электронных состояний
  • 3.3. Правила отбора при оптических переходах
  • 3.3.1. Междузонные и внутризонные оптические переходы между подзонами размерного квантования
  • 3.3.2. Поляризационные свойства оптических переходов из подзон тяжелых и легких дырок
  • 3.4. Резонансное отражение и поглощение света в структурах с квантовыми ямами
  • 3.5. Вторичное свечение гетероструктур
  • 3.6. Квантовые микрорезонаторы
  • 3.7. Заключение
  • Список литературы
  • 4. Оптика квантовых точек
  • 4.1. Введение
  • 4.1.1. Состояния размерного квантования электронных и фононных возбуждений квантовых точек
  • 4.1.2. Электрон-фононное взаимодействие в квантовых точках
  • 4.1.3. Динамика электронных возбуждений квантовой точки
  • 4.2. Оптические методы исследования квантовых точек
  • 4.2.1. Изучение энергетической структуры электронных возбуждений
  • 4.2.3. Исследование динамики элементарных возбуждений квантовых точек
  • 4.2.4. Оптическая спектроскопия одной квантовой точки
  • 4.3. Применение квантовых точек
  • 4.3.1. Лазеры на квантовых точках для волоконной связи
  • 4.3.2. Квантовые точки в биологии и медицине
  • Список литературы
  • 5. Оптические резонансные свойства металлических наночастиц
  • 5.1. Введение
  • 5.2. Резонансы Ми отдельных металлических наночастиц
  • 5.2.1. Эффект размера
  • 5.2.2. Эффекты формы
  • 5.3. Действие окружения на резонансы металлических наночастиц
  • 5.3.1. Электродинамические эффекты
  • 5.3.2. Контактные эффекты
  • 5.4. Нелинейные оптические свойства металлических наночастиц
  • 5.4.1. Генерация высших гармоник
  • 5.4.2. Оптические комбинационные процессы
  • 5.5. Неоднородные системы металлических наночастиц
  • 5.5.1. Структурные параметры неоднородных систем
  • 5.5.2. Измерение релаксационных параметров индивидуальных резонансов в неоднородных системах
  • 5.6. Применения металлических наночастиц, связанные с их оптическими свойствами
  • 5.7. Заключение
  • Список литературы
  • А.В. Федоров, А.В. Баранов

    Ln[ K(τ ) ]

    τ , пс

    Рис. 4.32. a – логарифм огибающей сигнала когерентного контроля как функция взаимной задержки между импульсами для различных относительных вкладов лоренцева однородного и гауссова неоднородного уширений (r = 2 = ! ). Сплошная линия – чисто лоренцево однородное уширение с~ 2 = 21:25 мкэВ; штриховая линия –r =1/1; пунктирная линия –r =1/2.5; штрихпунктирная –r =1/14. Абсолютные значения2 и! выбирались таким способом, чтобы HWHM фотолюминесцентной линии одиночной квантовой точки сохранялась постоянной (21:25 мкэВ) в соответствии с работой . б – контур Фойгта фотолюминесцентной линии одиночной квантовой точки, вычисленный для тех же параметров, что и в случае a.

    измерительного прибора и подгонку контуром Фойгта. Это приводит к дополнительным ошибкам. На рис. 4.32 б построены формы линий фотолюминесценции одиночной квантовой точки при тех же отношениях2 = ! , что и на рис.4.32 a. Видно, что наиболее информативная часть спектральных линий – их крылья, где трудно добиться хорошего отношения сигнал/шум. В то же время, соответствующие измененияK() наиболее отчетливы в области, где сигнал когерентного контроля может быть получен с достаточной точностью. Таким образом, метод когерентного контроля можно использовать для изучения эффектов флуктуации зарядового окружения в оптических и релаксационных процессах.

    4.3. Применение квантовых точек

    4.3.1. Лазеры на квантовых точках для волоконной связи

    Развитие оптоволоконных телекоммуникаций привело к необходимости создания эффективных полупроводниковых лазеров и оптических усилителей, работающих в спектральной области минимальных потерь волноводов (1.25– 1.65 мкм). Наибольшая длина волны, достигнутая лазерами на квантовых ямах InGaAs/GaAs, составляет 1230 нм – для устройств, генерирующих с торца , и 1260 нм для лазеров с вертикальным резонатором . Достаточно большие пороговые токи, низкая рабочая температура и невысокая

    4. Оптика квантовых точек

    температурная стабильность таких лазеров не всегда удовлетворяют требованиям, предъявляемым к высокоскоростным телекоммуникационным устройствам.

    Прогресс в изготовлении многослойных структур самоорганизованных квантовых точек соединений A3 B5 , достаточно однородных по размеру и форме при большой поверхностной плотности, привел к созданию полупроводниковых лазеров с квантовыми точками в качестве активной среды . В результате спектральная область 1.0–1.7 мкм стала доступной для генерации как для лазеров традиционной конструкции , так и для лазеров с вертикальным резонатором , использующих квантовые точки InGaAs и подложки GaAs. В частности, оба типа лазеров могут генерировать излучение с длиной волны 1.3 мкм с чрезвычайно низкими пороговыми токами и высокой выходной мощностью . Недавно был продемонстрирован широкополосный лазер на квантовых точках, излучающий на 1.5 мкм с плотностью тока всего в 70 А/см2 на один слой квантовых точек при комнатной температуре . Оптические усилители на основе квантово-точечных структур представляют интерес для высокоскоростной обработки сигналов со скоростью свыше 40 Гбит/с . Существенно, что развитые GaAs-технологии позволяют изготавливать достаточно дешевые монолитные лазеры на квантовых точках с вертикальным резонатором c распределенными брегговскими зеркалами на основе пар AlAs/GaAs и AlOx /GaAs .

    Следует отметить, что благодаря неоднородному уширению электронных переходов в квантовых точках возникает возможность расширения области непрерывной перестройки длины волны генерации. При некотором увеличении пороговых токов она может достигать 200 нм (1.033–1.234 мкм) .

    Лазеры, использующие InAs-квантовые точки и InP-подложки, также представляют интерес, поскольку они позволяют получать генерацию в более длинноволновом диапазоне (1.8–2.3 мкм), важном для применений в молекулярной спектроскопии и дистанционном контроле газовых атмосфер с помощью лидаров. В то же время, генерация излучения с длиной волны 1.9 и 2 мкм лазера с активной средой из такой гетероструктуры была получена пока только при низкой (77 К) температуре. Интересно, что генерация на длинах волн 1.6 и 1.78 мкм была также продемонстрирована для лазеров на InAs квантовых проволоках – одномерных квантовых структурах на (001)InP-подложке. И наконец, непрерывная генерация в области 2 мкм получена при комнатной температуре при использовании в качестве активной среды лазера квантовых точек на основе InAsSb, выращенных на (001)InP-подложке .

    Интенсивное развитие этого направления привело к тому, что в настоящее время некоторые типы полупроводниковых лазеров с активной средой на основе квантовых точек стали коммерчески доступны, .

    260 А.В. Федоров, А.В. Баранов

    4.3.2. Квантовые точки в биологии и медицине

    Одной из наиболее активно развивающихся областей применения полупроводниковых квантовых точек является использование коллоидных квантовых точек (полупроводниковых нанокристаллов в органических и водных растворах) в качестве люминесцентных меток для визуализации структуры биологических объектов разного типа и для сверхчувствительного детектирования биохимических реакций, которые крайне важны в молекулярной и клеточной биологии, медицинской диагностике и терапии. Люминесцентная метка представляет собой люминофор, связанный с молекулой-линковщиком, которая может селективно связываться с детектируемой биоструктурой (мишенью). Метки должны быть растворимыми в воде, иметь большой коэффициент поглощения, обладать высоким квантовым выходом люминесценции в узкой спектральной полосе. Последнее особенно важно для регистрации многоцветных изображений, когда различные мишени в клетке помечены разными метками. В качестве люминофоров меток обычно используются органические красители. Их недостатками являются низкая устойчивость к фотообесцвечиванию, не позволяющая проводить долговременные измерения, необходимость использования нескольких источников света для возбуждения различных красителей, а также большая ширина и асимметрия полос люминесценции, затрудняющие анализ многоцветных изображений.

    Последние достижения в области нанотехнологий позволяют говорить о создании нового класса люминесцентных меток, использующих в качестве люминофора полупроводниковые квантовые точки – коллоидные нанокристаллы .

    Синтез нанокристаллов на основе соединений A2 B6 (CdSe, CdS, CdTe, ZnS) и A3 B5 (InP и GaAs) известен достаточно давно . Еще в 1993 году был предложен высокотемпературный органометаллический синтез квантовых точек CdSe и получены нанокристаллы с хорошей кристаллической структурой и узким распределением по размерам, но с квантовым выходом, не превышающим 10%. Резкое увеличение квантового выхода квантовых точек до 85% при комнатной температуре было достигнуто, когда нанокристаллы стали покрывать тонкой (1–2 монослоя) оболочкой из другого материала с большей шириной запрещенной зоны (например, для CdSe это ZnS, CdS, CdO) . Такие структуры называются квантовые точки ядро/оболочка (core/shell QDs). Диаметр квантовых точек (от 1.5 нм и выше) можно контролировать, варьируя время реакции, проходящей при температуре около 300o С, от минут до нескольких часов или просто отбирая необходимое количество продукта через разное время после начала реакции . В результате оказалось возможным получить набор квантовых точек одного состава, но с разными размерами. Например, положение полосы люминесценции CdSe/ZnS КТ может меняться в диапазоне от 433 до 650 нм (2.862– 1.906 эВ) при ширине полосы около 30 мэВ . Использование других материалов позволяет существенно расширить спектральную область перестройки полосы люминесценции нанокристаллов (рис.4.33 ). Существенно,

    Оптика квантовых точек

    Интенсивность

    Длина волны,

    Рис. 4.33. Спектры люминесценции полупроводниковых нанокристаллов различного состава и разных размеров. Сплошные линии соответствуют нанокристаллам CdSe c диаметрами 1.8, 3.0 и 6.0 нм, пунктирные – нанокристаллам InP c диаметрами 3.0 и 4.6 нм, штриховые – нанокристаллам InAs с размерами 2.8, 3.6, 4.6 и 6.0 нм.

    что нанокристаллы демонстрируют более узкие и симметричные полосы люминесценции, чем обычные органические красители. Это является чрезвычайно важным преимуществом при анализе многоцветных изображений. На рис. 4.34 в качестве примера сопоставлены спектры люминесценции нанокристаллов CdSe/ZnS и молекул родамина 6Ж.

    Интенсивность, отн. ед.

    Родамин 6 Ж

    Квантовые точки

    Длина волны, нм

    Рис. 4.34. Сопоставление полос люминесценции квантовых точек и молекул родамина 6Ж.

    Дополнительным преимуществом является то, что нанокристаллы одного состава обычно имеют широкую полосу поглощения с высоким молярным коэффициентом экстинкции (до 10−6 см−1 М−1 ), соответствующую переходам в высокоэнергетические состояния. Ее положение слабо зависит от размера квантовой точки. Поэтому в отличие от красителей оказывается возможным

    262 А.В. Федоров, А.В. Баранов

    эффективное возбуждение люминесценции нанокристаллов разных размеров одним лазерным источником света. Однако основным преимуществом является то, что нанокристаллы имеют великолепную фотоустойчивость : они не выцветают в течение нескольких часов и даже дней, в то время как характерные времена фотообесцвечивания обычных люминофоров ограничены единицами минут (рис.4.35 AlexaFluor® 488Рис. 4.35. Фотоиндуцированная деградация люминесценции меток на основе CdSe/ZnS нанокристаллов CdSe/ZnS и традиционных молекулярных люминофоров под действием излучения ртутной лампы .

    Поверхность таких квантовых точек, полученных в результате химической реакции, покрыта гидрофобными молекулами, используемыми при синтезе, поэтому они растворимы только в органических растворителях. Поскольку биологические объекты (протеины, ДНК, пептиды) существуют только в водных растворах, были разработаны методы модификации поверхности нанокристаллов, которые делают их водорастворимыми как с положительно, так и с отрицательно заряженной поверхностью. Предложены несколько типов молекул-линковщиков, позволяющих селективно связывать нанокристаллы с анализируемыми биомолекулами. В качестве примера, на рис.4.36 приведен пример нанокристалла CdSe, покрытого оболочкой из ZnS, который ковалентно связан с протеином молекулой меркаптоуксусной кислоты .

    В самое последнее время люминесцентные метки на основе полупроводниковых квантовых точек для мишеней различного типа стали коммерчески доступными .

    Для использования квантовых точек in vivo необходимо предпринять меры, уменьшающие их токсичность. В этих целях предложено помещать квантовые точки в инертные полимерные сферы с диаметрами 50–300 нм и уже их использовать в качестве люминофоров в случаях, когда относительно большие размеры наносфер не препятствуют их применению. Исполь-

    4 декабря 2016 в 22:35

    Квантовые точки и зачем их ставят

    • Квантовые технологии ,
    • Мониторы и ТВ

    Доброе время суток, Хабражители! Я думаю многие заметили, что все чаще и чаще стала появляться реклама о дисплеях основанных на технологии квантовых точек, так называемые QD – LED (QLED) дисплеи и несмотря на то, что на данный момент это всего лишь маркетинг. Аналогично LED TV и Retina это технология создания дисплеев LCD, использующая в качестве подсветки светодиоды на основе квантовых точек.

    Ваш покорный слуга решил все же разобраться что такое квантовые точки и с чем их едят.

    Вместо введения

    Квантовая точка - фрагмент проводника или полупроводника, носители заряда (электроны или дырки) которого ограничены в пространстве по всем трём измерениям. Размер квантовой точки должен быть настолько мал, чтобы квантовые эффекты были существенными. Это достигается, если кинетическая энергия электрона заметно больше всех других энергетических масштабов: в первую очередь больше температуры, выраженной в энергетических единицах. Квантовые точки были впервые синтезированы в начале 1980-х годов Алексеем Екимовым в стеклянной матрице и Луи Е. Брусом в коллоидных растворах. Термин «квантовая точка» был предложен Марком Ридом.

    Энергетический спектр квантовой точки дискретен, а расстояние между стационарными уровнями энергии носителя заряда зависит от размера самой квантовой точки как - ħ/(2md^2), где:

    1. ħ - приведённая постоянная Планка;
    2. d - характерный размер точки;
    3. m - эффективная масса электрона на точке
    Если же говорить простым языком то квантовая точка - это полупроводник, электрические характеристики которого зависят от его размера и формы.


    Например, при переходе электрона на энергетический уровень ниже, испускается фотон; так как можно регулировать размер квантовой точки, то можно и изменять энергию испускаемого фотона, а значит, изменять цвет испускаемого квантовой точкой света.

    Типы квантовых точек

    Различают два типа:
    • эпитаксиальные квантовые точки;
    • коллоидные квантовые точки.
    По сути они названы так по методам их получения. Подробно говорить о них не буду в силу большого количества химических терминов (гугл в помощь) . Добавлю только, что при помощи коллоидного синтеза можно получать нанокристаллы, покрытые слоем адсорбированных поверхностно-активных молекул. Таким образом, они растворимы в органических растворителях, после модификации - также в полярных растворителях.

    Конструкция квантовых точек

    Обычно квантовой точкой является кристалл полупроводника, в котором реализуются квантовые эффекты. Электрон в таком кристалле чувствует себя как в трех мерной потенциальной яме и имеет много стационарных уровней энергии. Соответственно при переходе с одного уровня на другой квантовой точкой может излучать фотон. При всем при этом переходами легко управлять меняя размеры кристалла. Возможно также перекинуть электрон на высокий энергетический уровень и получать излучение от перехода между более низколежащими уровнями и как следствия получаем люминесценцию. Собственно, именно наблюдение данного явления и послужило первым наблюдением квантовых точек.

    Теперь о дисплеях

    История полноценных дисплеев началась в феврале 2011 года, когда Samsung Electronics представили разработки полноцветного дисплея на основе квантовых точек QLED. Это был 4-х дюймовый дисплей управляемый активной матрицей, т.е. каждый цветной пиксель с квантовой точкой может включаться и выключаться тонкоплёночным транзистором.

    Для создания прототипа на кремневую плату наносят слой раствора квантовых точек и напыляется растворитель. После чего в слой квантовых точек запрессовывается резиновый штамп с гребенчатой поверхностью, отделяется и штампуется на стекло или гибкий пластик. Так осуществляется нанесение полосок квантовых точек на подложку. В цветных дисплеях каждый пиксель содержит красный, зелёный или синий субпиксель. Соответственно эти цвета используются с разной интенсивностью для получения как можно большего количества оттенков.

    Следующим шагом в развитии стала публикация статьи ученными из Индийского Института Науки в Бангалоре. Где было описаны квантовые точки которые люминесцируют не только оранжевым цветом, но и в диапазоне от темно-зеленого до красного.

    Чем ЖК хуже?

    Основное отличие QLED-дисплея от ЖК состоит в том, что вторые способны охватить только 20-30% цветового диапазона. Так же в телевизорах QLED отпадает необходимость в использовании слоя с светофильтрами, так как кристаллы при подаче на них напряжения излучают свет всегда с четко определенной длиной волны и как результат с одинаковым цветовым значением.


    Так же были новости о продаже компьютерного дисплея на квантовых точках в Китае. К сожалению, воочию проверить, в отличии от телевизора мне еще не довелось.

    P.S. Стоит отметь что область применения квантовых точек не ограничивается только LED - мониторами, помимо всего прочего они могут применяться, в полевых транзисторах, фотоэлементах, лазерных диодах, так же проходят исследование возможности применение их в медицине и квантовых вычислениях.

    P.P.S. Если же говорить о моем личном мнении, то я считаю, что ближайший десяток лет популярностью пользоваться они не будут, не из-за того, что мало известны, а потому, как цены на данные дисплеи заоблачные, но все же хочется надеяться, что квантовые точки найдут свое применение и в медицине, и буду использоваться не только для увеличения прибыли, но и в благих целях.

    Теги:

    • QLED
    • LED
    • Quantum display
    Добавить метки

    Доброе время суток, Хабражители! Я думаю многие заметили, что все чаще и чаще стала появляться реклама о дисплеях основанных на технологии квантовых точек, так называемые QD – LED (QLED) дисплеи и несмотря на то, что на данный момент это всего лишь маркетинг. Аналогично LED TV и Retina это технология создания дисплеев LCD, использующая в качестве подсветки светодиоды на основе квантовых точек.

    Ваш покорный слуга решил все же разобраться что такое квантовые точки и с чем их едят.

    Вместо введения

    Квантовая точка - фрагмент проводника или полупроводника, носители заряда (электроны или дырки) которого ограничены в пространстве по всем трём измерениям. Размер квантовой точки должен быть настолько мал, чтобы квантовые эффекты были существенными. Это достигается, если кинетическая энергия электрона заметно больше всех других энергетических масштабов: в первую очередь больше температуры, выраженной в энергетических единицах. Квантовые точки были впервые синтезированы в начале 1980-х годов Алексеем Екимовым в стеклянной матрице и Луи Е. Брусом в коллоидных растворах. Термин «квантовая точка» был предложен Марком Ридом.

    Энергетический спектр квантовой точки дискретен, а расстояние между стационарными уровнями энергии носителя заряда зависит от размера самой квантовой точки как - ħ/(2md^2), где:

    1. ħ - приведённая постоянная Планка;
    2. d - характерный размер точки;
    3. m - эффективная масса электрона на точке
    Если же говорить простым языком то квантовая точка - это полупроводник, электрические характеристики которого зависят от его размера и формы.


    Например, при переходе электрона на энергетический уровень ниже, испускается фотон; так как можно регулировать размер квантовой точки, то можно и изменять энергию испускаемого фотона, а значит, изменять цвет испускаемого квантовой точкой света.

    Типы квантовых точек

    Различают два типа:
    • эпитаксиальные квантовые точки;
    • коллоидные квантовые точки.
    По сути они названы так по методам их получения. Подробно говорить о них не буду в силу большого количества химических терминов (гугл в помощь) . Добавлю только, что при помощи коллоидного синтеза можно получать нанокристаллы, покрытые слоем адсорбированных поверхностно-активных молекул. Таким образом, они растворимы в органических растворителях, после модификации - также в полярных растворителях.

    Конструкция квантовых точек

    Обычно квантовой точкой является кристалл полупроводника, в котором реализуются квантовые эффекты. Электрон в таком кристалле чувствует себя как в трех мерной потенциальной яме и имеет много стационарных уровней энергии. Соответственно при переходе с одного уровня на другой квантовой точкой может излучать фотон. При всем при этом переходами легко управлять меняя размеры кристалла. Возможно также перекинуть электрон на высокий энергетический уровень и получать излучение от перехода между более низколежащими уровнями и как следствия получаем люминесценцию. Собственно, именно наблюдение данного явления и послужило первым наблюдением квантовых точек.

    Теперь о дисплеях

    История полноценных дисплеев началась в феврале 2011 года, когда Samsung Electronics представили разработки полноцветного дисплея на основе квантовых точек QLED. Это был 4-х дюймовый дисплей управляемый активной матрицей, т.е. каждый цветной пиксель с квантовой точкой может включаться и выключаться тонкоплёночным транзистором.

    Для создания прототипа на кремневую плату наносят слой раствора квантовых точек и напыляется растворитель. После чего в слой квантовых точек запрессовывается резиновый штамп с гребенчатой поверхностью, отделяется и штампуется на стекло или гибкий пластик. Так осуществляется нанесение полосок квантовых точек на подложку. В цветных дисплеях каждый пиксель содержит красный, зелёный или синий субпиксель. Соответственно эти цвета используются с разной интенсивностью для получения как можно большего количества оттенков.

    Следующим шагом в развитии стала публикация статьи ученными из Индийского Института Науки в Бангалоре. Где было описаны квантовые точки которые люминесцируют не только оранжевым цветом, но и в диапазоне от темно-зеленого до красного.

    Чем ЖК хуже?

    Основное отличие QLED-дисплея от ЖК состоит в том, что вторые способны охватить только 20-30% цветового диапазона. Так же в телевизорах QLED отпадает необходимость в использовании слоя с светофильтрами, так как кристаллы при подаче на них напряжения излучают свет всегда с четко определенной длиной волны и как результат с одинаковым цветовым значением.


    Так же были новости о продаже компьютерного дисплея на квантовых точках в Китае. К сожалению, воочию проверить, в отличии от телевизора мне еще не довелось.

    P.S. Стоит отметь что область применения квантовых точек не ограничивается только LED - мониторами, помимо всего прочего они могут применяться, в полевых транзисторах, фотоэлементах, лазерных диодах, так же проходят исследование возможности применение их в медицине и квантовых вычислениях.

    P.P.S. Если же говорить о моем личном мнении, то я считаю, что ближайший десяток лет популярностью пользоваться они не будут, не из-за того, что мало известны, а потому, как цены на данные дисплеи заоблачные, но все же хочется надеяться, что квантовые точки найдут свое применение и в медицине, и буду использоваться не только для увеличения прибыли, но и в благих целях.

    Теги: Добавить метки

    Многочисленные спектроскопические методы, появившиеся во второй половине XX века, - электронная и атомно-силовая микроскопии, спектроскопия ядерного магнитного резонанса, масс-спектрометрия - казалось бы, давно отправили традиционную оптическую микроскопию «на пенсию». Однако умелое использование явления флуоресценции не раз продляло «ветерану» жизнь. В этой статье речь пойдет про квантовые точки (флуоресцентные полупроводниковые нанокристаллы), вдохнувшие в оптическую микроскопию новые силы и позволившие заглянуть за пресловутый дифракционный предел. Уникальные физические свойства квантовых точек делают их идеальным средством для сверхчувствительной многоцветной регистрации биологических объектов, а также для медицинской диагностики.

    В работе даются представления о физических принципах, определяющих уникальные свойства квантовых точек, основных идеях и перспективах использования нанокристаллов и рассказывается об уже достигнутых успехах их применения в биологии и медицине. Статья основана на результатах исследований, проводимых в последние годы в Лаборатории молекулярной биофизики Института биоорганической химии им. М.М. Шемякина и Ю.А. Овчинникова совместно с Реймским Университетом и Белорусским Государственным Университетом, направленных на развитие технологии биомаркеров нового поколения для различных областей клинической диагностики, включая раковые и аутоиммунные заболевания, а также на создание новых типов наносенсоров для одновременной регистрации многих биомедицинских параметров. Первоначальная версия работы была опубликована в «Природе» ; до некоторой степени статья основана на втором семинаре Совета молодых ученых ИБХ РАН . - Ред.

    Часть I, теоретическая

    Рисунок 1. Дискретные уровни энергии в нанокристаллах. «Сплошной» полупроводник (слева ) имеет валентную зону и зону проводимости, разделенные запрещенной зоной E g . Нанокристалл из полупроводника (справа ) характеризуется дискретными уровнями энергии, подобными уровням энергии одиночного атома. В нанокристалле E g является функцией размера: увеличение размера нанокристалла ведет к уменьшению E g .

    Уменьшение размера частицы приводит к проявлению весьма необычных свойств материала, из которого она сделана. Причиной этого являются квантово-механические эффекты, возникающие при пространственном ограничении движения носителей заряда: энергия носителей в этом случае становится дискретной. А число уровней энергии, как учит квантовая механика, зависит от размера «потенциальной ямы», высоты потенциального барьера и массы носителя заряда. Увеличение размера «ямы» ведет к росту числа уровней энергии, которые при этом становятся все ближе друг к другу, пока не сольются, и энергетический спектр не станет «сплошным» (рис. 1). Ограничить движение носителей заряда можно по одной координате (формируя квантовые пленки), по двум координатам (квантовые проволоки или нити) или по всем трем направлениям - это будут квантовые точки (КТ).

    Полупроводниковые нанокристаллы являются промежуточными структурами между молекулярными кластерами и «сплошными» материалами. Границы между молекулярными, нанокристаллическими и сплошными материалами не определены с достаточной четкостью; однако диапазон 100 ÷ 10 000 атомов на частицу можно ориентировочно считать «верхним пределом» нанокристаллов. Верхний предел соответствует размерам, для которых интервал между уровнями энергии превышает энергию тепловых колебаний kT (k - постоянная Больцмана, T - температура), когда носители заряда становятся мобильными.

    Естественный масштаб длины для электронных возбужденных областей в «непрерывных» полупроводниках определяется радиусом экситона Бора a x , который зависит от силы Кулоновского взаимодействия между электроном (e ) и дыркой (h ). В нанокристаллах же величиной порядка a x сам размер начинает влиять на конфигурацию пары e–h и, следовательно, размер экситона. Получается, что в этом случае электронные энергии непосредственно определяются размером нанокристалла - это явление известно как «эффект квантового ограничения». Используя этот эффект, можно регулировать ширину запрещенной зоны нанокристалла (E g ), просто изменяя размер частицы (таблица 1).

    Уникальные свойства квантовых точек

    Как физический объект квантовые точки известны довольно давно, являясь одной из интенсивно развиваемых сегодня форм гетероструктур . Особенностью квантовых точек в форме коллоидных нанокристаллов является то, что каждая точка - это изолированный и мобильный объект, находящийся в растворителе. Такие нанокристаллы можно использовать для построения различных ассоциатов, гибридов, упорядоченных слоев и т.п., на основе которых конструируют элементы электронных и оптоэлектронных устройств, пробники и сенсоры для анализов в микрообъемах вещества, различные флуоресцентные, хемилюминесцентные и фотоэлектрохимические наноразмерные датчики.

    Причиной стремительного проникновения полупроводниковых нанокристаллов в разнообразные области науки и технологии являются их уникальные оптические характеристики , :

    • узкий симметричный пик флуоресценции (в отличие от органических красителей, для которых характерно наличие длинноволнового «хвоста»; рис. 2, слева ), положение которого регулируется выбором размера нанокристалла и его составом (рис. 3);
    • широкая полоса возбуждения, что позволяет возбуждать нанокристаллы разных цветов одним источником излучения (рис. 2, слева ). Это достоинство принципиально при создании систем многоцветного кодирования;
    • высокая яркость флуоресценции, определяемая высоким значением экстинкции и высоким квантовым выходом (для нанокристаллов CdSe/ZnS - до 70%);
    • уникально высокая фотостабильность (рис. 2, справа ), что позволяет использовать источники возбуждения высокой мощности.

    Рисунок 2. Спектральные свойства кадмий-селеновых (CdSe) квантовых точек. Слева: Нанокристаллы разных цветов можно возбудить одним источником (стрелкой показано возбуждение аргоновым лазером с длиной волны 488 нм). На врезке - флуоресценция CdSe/ZnS нанокристаллов разных размеров (и, соответственно, цветов), возбуждаемых одним источником света (УФ-лампа). Справа: Квантовые точки чрезвычайно фотостабильны по сравнению с другими распространенными красителями, быстро разрушающимися под лучом ртутной лампы во флуоресцентном микроскопе.

    Рисунок 3. Свойства квантовых точек из разных материалов. Сверху: Диапазоны флуоресценции нанокристаллов, изготовленных из разных материалов. Снизу: CdSe квантовые точки разных размеров покрывают весь видимый диапазон 460–660 нм. Снизу справа: Схема стабилизированной квантовой точки, где «ядро» покрыто оболочкой из полупроводника и защитным слоем полимера.

    Технология получения

    Синтез нанокристаллов осуществляется быстрой инъекцией соединений-предшественников в реакционную среду при высокой температуре (300–350 °С) и последующим медленным ростом нанокристаллов при относительно низкой температуре (250–300 °С). В «фокусирующем» режиме синтеза скорость роста маленьких частиц больше скорости роста больших, в результате чего разброс по размерам нанокристаллов уменьшается , .

    Технология контролируемого синтеза позволяет управлять формой наночастиц, используя анизотропию нанокристаллов. Характерная кристаллическая структура конкретного материала (например, для CdSe характерна гексагональная упаковка - вурцит, рис. 3) опосредует «выделенные» направления роста, определяющие форму нанокристаллов. Так получают наностержни или тетраподы - нанокристаллы, вытянутые в четырех направлениях (рис. 4) .

    Рисунок 4. Разная форма CdSe нанокристаллов. Слева: CdSe/ZnS нанокристаллы сферической формы (квантовые точки); в центре: стержневидной формы (квантовые стержни). Справа: в форме тетраподов. (Просвечивающая электронная микроскопия. Метка - 20 нм.)

    Преграды на пути практического применения

    На пути практического применения нанокристаллов из полупроводников групп II–VI стоит ряд ограничений. Во-первых, квантовый выход люминесценции у них существенно зависит от свойств окружающей среды. Во-вторых, стабильность «ядер» нанокристаллов в водных растворах также невелика. Проблема заключается в поверхностных «дефектах», играющих роль безызлучательных центров рекомбинации или «ловушек» для возбужденных e–h пар.

    Для преодоления этих проблем квантовые точки заключают в оболочку, состоящую из нескольких слоев широкозонного материала. Это позволяет изолировать e-h пару в ядре, увеличить время ее жизни, уменьшать безызлучательную рекомбинацию, а значит - увеличить квантовый выход флуоресценции и фотостабильность.

    В связи с этим, к настоящему времени наиболее широко используемые флуоресцентные нанокристаллы имеют структуру ядро/оболочка (рис. 3). Развитые процедуры синтеза CdSe/ZnS нанокристаллов позволяют достичь квантового выхода 90%, что близко к лучшим органическим флуоресцентным красителям.

    Часть II: применение квантовых точек в форме коллоидных нанокристаллов

    Флуорофоры в медицине и биологии

    Уникальные свойства КТ позволяют использовать их практически во всех системах мечения и визуализации биологических объектов (за исключением только флуоресцентных внутриклеточных меток, экспрессируемых генетически - широко известных флуоресцентных белков ).

    Для визуализации биологических объектов или процессов КТ можно вводить в объект непосредственно или с «пришитыми» распознающими молекулами (обычно это антитела или олигонуклеотиды). Нанокристаллы проникают и распределяются по объекту в соответствии со своими свойствами. Например, нанокристаллы разных размеров по-разному проникают сквозь биологические мембраны, а поскольку размер определяет цвет флуоресценции, разные области объекта оказываются окрашенными также по-разному (рис. 5) , . Наличие распознающих молекул на поверхности нанокристаллов позволяет реализовать адресное связывание: нужный объект (например, опухолевый) окрашивается заданным цветом !

    Рисунок 5. Окрашивание объектов. Слева: многоцветное конфокальное флуоресцентное изображение распределения квантовых точек на фоне микроструктуры клеточного цитоскелета и ядра в клетках линии THP-1 фагоцитов человека. Нанокристаллы остаются фотостабильными в клетках в течение как минимум 24 часов и не вызывают нарушений структуры и функции клеток. Справа: накопление нанокристаллов, «сшитых» с пептидом RGD в опухолевой области (стрелка). Правее - контроль, введены нанокристаллы без пептида (CdTe нанокристаллы, 705 нм).

    Спектральное кодирование и «жидкие микрочипы»

    Как уже указывалось, пик флуоресценции нанокристаллов узок и симметричен, что позволяет надежно выделять сигнал флуоресценции нанокристаллов разных цветов (до десяти цветов в видимом диапазоне). Наоборот, полоса поглощения нанокристаллов широкая, то есть нанокристаллы всех цветов можно возбуждать единым источником света. Эти свойства, а также их высокая фотостабильность, делают квантовые точки идеальными флуорофорами для многоцветного спектрального кодирования объектов - подобно штрих-коду, но с использованием многоцветности и «невидимых» кодов, флуоресцирующих в инфракрасной области.

    В настоящее время все шире используется термин «жидкие микрочипы», позволяющие, подобно классическим плоским чипам, где детектирующие элементы расположены на плоскости, проводить анализ по множеству параметров одновременно, используя микрообъемы пробы. Принцип спектрального кодирования с использованием жидких микрочипов иллюстрирует рисунок 6. Каждый элемент микрочипа содержит заданные количества КТ определенных цветов, и число кодируемых вариантов при этом может быть очень велико!

    Рисунок 6. Принцип спектрального кодирования. Слева: «обычный» плоский микрочип . Справа: «жидкий микрочип», каждый элемент которого содержит заданные количества КТ определенных цветов. При n уровнях интенсивности флуоресценции и m цветах теоретическое количество кодируемых вариантов равно n m −1. Так, для 5–6 цветов и 6 уровней интенсивности это будет 10000–40000 вариантов.

    Такие кодированные микроэлементы могут применяться для прямого мечения любых объектов (например, ценных бумаг). Будучи внедренными в полимерные матрицы, они чрезвычайно устойчивы и долговечны. Другой аспект применения - идентификация биологических объектов при развитии методов ранней диагностики. Метод индикации и идентификации заключается в том, что к каждому спектрально кодированному элементу микрочипа присоединяется определенная распознающая молекула , . В растворе присутствует вторая распознающая молекула, к которой «пришит» сигнальный флуорофор. Одновременное появление флуоресценции микрочипа и сигнального флуорофора свидетельствует о присутствии в анализируемой смеси изучаемого объекта.

    Для анализа кодированных микрочастиц «на потоке» может использоваться проточная цитометрия. Раствор, содержащий микрочастицы, проходит через облучаемый лазером канал, где каждая частица характеризуется спектрально. Программное обеспечение прибора позволяет выявить и охарактеризовать события, связанные с появление в пробе определенных соединений - например, маркеров раковых или аутоиммунных заболеваний , .

    В будущем на основе полупроводниковых флуоресцентных нанокристаллов могут быть созданы микроанализаторы для одновременной регистрации сразу огромного числа объектов.

    Молекулярные сенсоры

    Использование КТ в качестве зондов позволяет измерять параметры среды в локальных областях, размер которых сравним с размерами зонда (нанометровая шкала). В основу действия таких измерительных инструментов положено использование эффекта Ферстеровского безызлучательного резонансного переноса энергии (Förster resonanse energy transfer - FRET ). Суть эффекта FRET заключается в том, что при сближении двух объектов (донора и акцептора) и перекрытии спектра флуоресценции первого со спектром поглощения второго, энергия передается безызлучательно - и, если акцептор может флуоресцировать, он засветится с удвоенной силой.

    Об эффекте FRET мы уже писали в статье «Рулетка для спектроскописта » .

    Три параметра квантовых точек делают их весьма привлекательными донорами в системах с FRET-форматом.

    1. Возможность с высокой точностью подбирать длину волны эмиссии для получения максимального перекрытия спектров эмиссии донора и возбуждения акцептора.
    2. Возможность возбуждения разных КТ одной длиной волны одного источника света.
    3. Возможность возбуждения в спектральной области, далекой от длины волны эмиссии (разница >100 нм).

    Есть две стратегии использования эффекта FRET:

    • регистрация акта взаимодействия двух молекул за счет конформационных изменений в системе донор-акцептор и
    • регистрация изменений оптических свойств донора или акцептора (например, спектра поглощения).

    Такой подход позволил реализовать наноразмерные сенсоры для измерения рН и концентрации ионов металлов в локальной области образца. Чувствительным элементом в таком сенсоре является слой индикаторных молекул, изменяющих оптические свойства при связывании с регистрируемым ионом. В результате связывания перекрытие спектров флуоресценции КТ и поглощения индикатора изменяется, что меняет и эффективность передачи энергии.

    Подход, использующий конформационные изменения в системе донор-акцептор, реализован в наноразмерном сенсоре температуры. Действие сенсора основано на температурном изменении формы молекулы полимера, связывающей квантовую точку и акцептор - тушитель флуоресценции. При изменении температуры меняется и расстояние между тушителем и флуорофом, и интенсивность флуоресценции, по которой уже делают вывод о температуре.

    Молекулярная диагностика

    Разрыв или формирование связи между донором и акцептором можно зарегистрировать точно так же. Рисунок 7 демонстрирует «сэндвичевый» принцип регистрации, при котором регистрируемый объект выступает в качестве связующего звена («адаптера») между донором и акцептором.

    Рисунок 7. Принцип регистрации с использованием FRET-формата. Формирование конъюгата («жидкий микрочип»)-(регистрируемый объект)-(сигнальный флуорофор) приводит к сближению донора (нанокристалл) с акцептором (краситель AlexaFluor). Само по себе лазерное излучение не возбуждает флуоресценцию красителя; флуоресцентный сигнал появляется только за счет резонансного переноса энергии от CdSe/ZnS нанокристалла. Слева: структура конъюгата с переносом энергии. Справа: спектральная схема возбуждения красителя.

    Примером реализации этого метода является создание диагностикума на аутоиммунное заболевание системная склеродермия (склеродерма) . Здесь донором послужили квантовые точки с длиной волны флуоресценции 590 нм, а акцептором - органический краситель - AlexaFluor 633. На поверхность микрочастицы, содержащей квантовые точки, «пришили» антиген к аутоантителу - маркеру склеродермы. В раствор вводили вторичные антитела, помеченные красителем. В отсутствии мишени краситель не сближается с поверхностью микрочастицы, перенос энергии отсутствует и краситель не флуоресцирует. Но если в пробе появляются аутоантитела, это приводит к образованию комплекса микрочастица-аутоантитело-краситель. В результате переноса энергии краситель возбуждается, и в спектре появляется сигнал его флуоресценции с длиной волны 633 нм.

    Важность этой работы еще и в том, что аутоантитела могут использоваться как диагностические маркеры на самой ранней стадии развития аутоиммунных заболеваний. «Жидкие микрочипы» позволяют создавать тест-системы, в которых антигены находятся в гораздо более естественных условиях, нежели на плоскости (как в «обычных» микрочипах). Уже полученные результаты открывают путь к созданию нового типа клинических диагностических тестов, основанных на использовании квантовых точек. А реализация подходов, основанных на использовании спектрально кодированных жидких микрочипов, позволит одновременно определять содержание сразу множества маркеров, что является основой существенного повышения достоверности результатов диагностики и развития методов ранней диагностики.

    Гибридные молекулярные устройства

    Возможность гибкого управления спектральными характеристиками квантовых точек открывает путь к наноразмерным спектральным устройствам. В частности, КТ на основе кадмий-теллура (CdTe) позволили расширить спектральную чувствительность бактериородопсина (бР), известного своей способностью использовать световую энергию для «перекачки» протонов через мембрану. (Получающийся электрохимический градиент используется бактериями для синтеза АТФ.)

    Фактически, был получен новый гибридный материал: присоединение квантовых точек к пурпурной мембране - липидной мембране, содержащей плотно упакованные молекулы бактериородопсина, - расширяет диапазон фоточувствительности до УФ- и синей областей спектра, где «обычный» бР не поглощает свет (рис. 8) . Механизм передачи энергии бактериородопсину от квантовой точки, поглощающей свет в УФ- и синей областях, все тот же: это FRET; акцептором излучения в этом случае выступает ретиналь - тот же самый пигмент, который работает в фоторецепторе родопсине .

    Рисунок 8. «Апгрейд» бактериородопсина с помощью квантовых точек. Слева: протеолипосома, содержащая бактериородопсин (в форме тримеров) с «пришитыми» к нему квантовыми точками на основе CdTe (показаны оранжевыми сферами). Справа : схема расширения спектральной чувствительности бР за счет КТ: на спектре область поглощения КТ находится в УФ- и синей частях спектра; спектр испускания можно «настроить», подобрав размер нанокристалла. Однако в этой системе испускания энергии квантовыми точками не происходит: энергия безызлучательно мигрирует на бактериородопсин, который совершает работу (закачивает ионы H + внутрь липосомы).

    Созданные на основе такого материала протеолипосомы (липидные «пузырьки», содержащие гибрид бР-КТ) при освещении закачивают внутрь себя протоны, эффективно понижая pH (рис. 8). Это незначительное на первый взгляд изобретение может лечь в будущем в основу оптоэлектронных и фотонных устройств и найти применение в сфере электроэнергетики и других видах фотоэлектрических преобразований.

    Резюмируя, следует подчеркнуть, что квантовые точки в форме коллоидных нанокристаллов являются перспективнейшими объектами нано-, бионано- и биомеднанотехнологий. После первой демонстрации возможностей квантовых точек в качестве флуорофоров в 1998 году в течение нескольких лет наблюдалось затишье, связанное с формированием новых оригинальных подходов к использованию нанокристаллов и реализации тех потенциальных возможностей, которыми обладают эти уникальные объекты. Но в последние годы наметился резкий подъем: накопление идей и их реализаций определили прорыв в области создания новых устройств и инструментов, основанных на применении полупроводниковых нанокристаллических квантовых точек в биологии, медицине, электронной технике, технологии использования солнечной энергии и многих других. Конечно на этом пути еще много нерешенных проблем, но растущий интерес, растущее число коллективов, которые работают над этими проблемами, растущее число публикаций, посвященных этому направлению, позволяют надеяться, что квантовые точки станут основой техники и технологий следующего поколения.

    Видеозапись выступления В.А. Олейникова на втором семинаре Совета молодых ученых ИБХ РАН, прошедшем 17 мая 2012 года.

    Литература

    1. Олейников В.А. (2010). Квантовые точки в биологии и медицине . Природа . 3 , 22;
    2. Олейников В.А., Суханова А.В., Набиев И.Р. (2007). Флуоресцентные полупроводниковые нанокристаллы в биологии и медицине . Российские нанотехнологии . 2 , 160–173;
    3. Alyona Sukhanova, Lydie Venteo, Jérôme Devy, Mikhail Artemyev, Vladimir Oleinikov, et. al.. (2002). Highly Stable Fluorescent Nanocrystals as a Novel Class of Labels for Immunohistochemical Analysis of Paraffin-Embedded Tissue Sections . Lab Invest . 82 , 1259-1261;
    4. C. B. Murray, D. J. Norris, M. G. Bawendi. (1993). Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites . J. Am. Chem. Soc. . 115 , 8706-8715;
    5. Margaret A. Hines, Philippe Guyot-Sionnest. (1998). Bright UV-Blue Luminescent Colloidal ZnSe Nanocrystals . J. Phys. Chem. B . 102 , 3655-3657;
    6. Manna L., Scher E.C., Alivisatos P.A. (2002). Shape control of colloidal semiconductor nanocrystals . J. Clust. Sci. 13 , 521–532;
    7. Флуоресцирующая Нобелевская премия по химии ;
    8. Igor Nabiev, Siobhan Mitchell, Anthony Davies, Yvonne Williams, Dermot Kelleher, et. al.. (2007). Nonfunctionalized Nanocrystals Can Exploit a Cell"s Active Transport Machinery Delivering Them to Specific Nuclear and Cytoplasmic Compartments . Nano Lett. . 7 , 3452-3461;
    9. Yvonne Williams, Alyona Sukhanova, Małgorzata Nowostawska, Anthony M. Davies, Siobhan Mitchell, et. al.. (2009). Probing Cell-Type-Specific Intracellular Nanoscale Barriers Using Size-Tuned Quantum Dots Нано-pH-метр ;
    10. Alyona Sukhanova, Andrei S. Susha, Alpan Bek, Sergiy Mayilo, Andrey L. Rogach, et. al.. (2007). Nanocrystal-Encoded Fluorescent Microbeads for Proteomics: Antibody Profiling and Diagnostics of Autoimmune Diseases . Nano Lett. . 7 , 2322-2327;
    11. Aliaksandra Rakovich, Alyona Sukhanova, Nicolas Bouchonville, Evgeniy Lukashev, Vladimir Oleinikov, et. al.. (2010). Resonance Energy Transfer Improves the Biological Function of Bacteriorhodopsin within a Hybrid Material Built from Purple Membranes and Semiconductor Quantum Dots . Nano Lett. . 10 , 2640-2648;

    На международных выставках демонстрируется много новых дисплейных технологий, однако далеко не все они жизнеспособны и обладают соответствующими возможностями для успешного коммерческого внедрения. Одно из приятных исключений — технология квантовых точек, которая уже применяется в подсветке ЖК-дисплеев. Стоит рассказать об этой технической инновации более подробно.

    Квантовые точки

    Квантовые точки – это наночастицы полупроводниковых материалов. Их параметры определяются размерами: с уменьшением размеров кристалла растет расстояние между энергетическими уровнями. Когда электрон переходит на более низкий уровень, происходит испускание фотона. Изменяя размеры точки, можно регулировать энергию фотона и, как следствие, цвет света.

    Это не новое открытие, на самом деле квантовые точки были созданы еще более тридцати лет назад. Но до последнего времени они применялись только в специальных научных приборах в лабораториях. Строго говоря, квантовые точки – это микроскопические элементы, способные излучать свет в узком диапазоне волн. Причем в зависимости от их размеров свет может быть зеленый, красный или синий.

    Изменяя их размер, можно тонко регулировать длину волны испускаемого света. Эта технология, применяемая в современных моделях телевизоров, берет свое начало в 2004 году, когда была организована компания QD Vision. Изначально сотрудники этой исследовательской лаборатории старались применить квантовые точки для замены органических красителей при маркировке различных биологических систем, однако затем технологию решили опробовать в телевизорах.

    К этой идее вскоре подключились известные компании. В частности, в 2010 году исследователи работали совместно с компанией LG над проектом QLED. Впрочем, самая концепция технологии применительно к ЖК-телевизорам постоянно подвергалась изменениям, ее рабочее название также несколько раз менялось. Спустя год уже в сотрудничестве с Samsung был создан прототип цветного экрана на квантовых точках. Однако он не пошел в серию. Последняя реализация этой концепции стала частью технологии Color IQ от Sony, которая представила экран с подсветкой Triluminos.

    Как известно, все ЖК-телевизоры создают картинку путем смешения базовых цветов – красного, зеленого и синего (модель RGB). Иногда добавляется желтый, что, впрочем, существенно не влияет на саму систему создания картинки на ЖК-экране. Смешение цветов RGB в ЖК-телевизорах осуществляется посредством цветных фильтров, а в плазменных панелях – благодаря люминофору.

    В классических ЖК-моделях в роли подсветки применяются «белые» светодиоды. Цвет в белом спектре, проходя через цветные фильтры, дает определенный оттенок. В более продвинутых моделях применяются люминофорные светодиоды, которые испускают свет в синей области. Затем этот свет, смешиваясь с желтым, превращается в визуально белый. Для создания же на экране из подобного белого цвета, соответственно, красного, синего и зеленого применяются светофильтры. Это достаточно эффективно, но все же впустую расходуется много энергии. Кроме того, тут инженерам приходится искать определенный баланс между качеством цветопередачи и яркостью подсветки.

    Преимущества телевизоров на квантовых точках

    Два года назад компания Sony впервые представила серийно выпускаемые модели телевизионных устройств с подсветкой Triluminos, в которой как раз и реализованы квантовые точки. Это, в частности, KD-65X9000A. В подсветке применяются синие диоды, но здесь нет желтого люминофора. В результате, синий свет, не смешиваясь, напрямую проходит через специальный элемент IQ, который содержит красную и зеленую квантовые точки. Основными достоинствами технологии производитель называет более глубокую цветопередачу и минимизация потерь в яркости.

    Предполагается, что в сравнении с LED-подсветкой квантовые точки обеспечат увеличение цветовой гаммы практически на 50 процентов. Цветовой охват в новых TV Sony с подсветкой Triluminos близок к 100% NTSC, модели же с обычной подсветкой имеют около 70% NTSC. Таким образом, можно констатировать, что телевизоры с подсветкой на квантовых точках действительно могут улучшить качество изображения, сделав цветопередачу более реалистичной.

    Но вот насколько более реалистичной? Ведь известно, что в тех же телевизорах Sony картинка создается при помощи привычных фильтров, осуществляющих смешение цветов? Ответить на этот вопрос довольно сложно, тут многое зависит от субъективного восприятия качества изображения. Во всяком случае, счастливые обладатели первых телевизоров Sony с новой подсветкой отмечают, что изображение на экране выглядит как картина, написанная более чистыми цветными красками.


    То, что и другие ведущие компании мгновенно подключились к внедрению этого технологического новшества, подтверждает тот факт, что квантовые точки не являются исключительно маркетинговым ходом. На CES 2015 компания Samsung представила телевизоры SUHD TV, в которых также была реализована подобная технология. Отмечается, что новые телевизоры обеспечивают более высокое качество изображения при цене ниже, чем у OLED-моделей. Компания LG также представила на выставке ULTRA HD телевизоры с технологией квантовых точек (Quantum Dot).

    Сравнение с OLED не случайно. Ведь многие компании сначала обратились к OLED-технологии, как к способу повысить качество изображения современных телевизоров, но столкнулись с проблемой их производства при запуске в серию. Особенно это касается OLED-телевизоров с большой диагональю экрана и сверхвысоким разрешением.

    В лице квантовых точек был найден своеобразный запасной вариант — цветовая гамма на таких телевизорах практически так же хороша, как и на OLED-дисплеях, а проблем с промышленным освоением технологии практически нет. Это позволяет компаниям выпускать телевизоры, которые по качеству картинки будут соперничать с OLED-технологией, оставаясь по цене доступными широкому кругу потребителей.



    Понравилась статья? Поделитесь с друзьями!