Предел лимитных функций. Пределы в математике для чайников: объяснение, теория, примеры решений

Калькулятор пределов онлайн на сайт для полноценного закрепления студентами и школьниками пройденного материала и тренировки своих практических навыков. Как использовать калькулятор пределов онлайн на нашем ресурсе? Делается это даже очень запросто, нужно лишь всего-навсего вписать исходную функцию в имеющееся поле, выбрать из селектора необходимое предельное значение для переменной и нажать на кнопку "Решение". Если в некоторой точке нужно вычислить предельное значение, тогда Вам необходимо вписать значение этой самой точки - или числовое, или символьное. Калькулятор пределов онлайн поможет найти в заданной точке, предельной в интервале определения функции, значение предела, и эта величина, куда устремляется значение исследуемой функции при устремлении её аргумента к данной точке, есть решение предела. По онлайн калькулятору пределов на нашем ресурсе сайт можем сказать следующее - существует огромное количество аналогов в сети интернет, можно найти достойные из них, нужно с трудом этой поискать. Но тут столкнетесь с тем, что один сайт другому сайту - рознь. Многие из них совсем не предлагают калькулятор пределов онлайн, в отличие от нас. Если в любой известной поисковой системе, будь-то Яндекс или Google, вы будете искать сайты по фразе "Калькулятор пределов онлайн", то сайт окажется на первых строчках в поисковой выдаче. Это означает, что нам доверяют эти поисковики, и на нашем сайте только качественный контент, а главное полезный для учеников школ и вузов! Продолжим разговор о калькуляторах пределов и вообще о теории предельного перехода. Очень часто в определении предела функции формулируется понятие окрестностей. Здесь пределы от функций, а также решение этих пределов, Изучаются только в точках, являющихся предельными для области определения функций, ведая, что в каждой окрестности такой точки имеются точки из области определения этой функции. Это позволяет говорить о стремлении переменной функции к заданной точке. Если в некоторой точке области определения функции существует предел и калькулятор пределов онлайн выдает подробное предельное решение функции в данной точке, то функция оказывается непрерывной в этой точке. Пусть наш калькулятор пределов онлайн с решением даст какой-нибудь положительный результат, а мы проверим его на других сайтах. Этим самым можно доказать качество нашего ресурса, а оно, как известно уже многим, на высоте и заслуживает высочайшей оценки. Наряду с этим, есть возможность пределы онлайн калькулятор с подробным решением изучать и самостоятельно, но под пристальным контролем профессионального преподавателя. Зачастую такое действие приведет к ожидаемым результатам. Все студенты просто мечтают, чтобы калькулятор пределов онлайн с решением подробно расписал их сложную задачку, заданную преподавателем еще в начале семестра. Но не так все просто. Нужно сначала изучить теорию, а потом пользоваться бесплатным калькулятором. Как и пределы онлайн, калькулятор подробным образом выдаст нужные записи, и вы останетесь довольны результатом. Но предельная точка области определения может и не принадлежать этой самой области определения и это доказывается подробным вычислением калькулятором пределов онлайн. Пример: можно рассматривать предел функции на концах открытого отрезка, на котором определена наша функция. При этом сами границы отрезка в область определения и не входят. В этом смысле система окрестностей этой точки есть частный случай такой базы подмножеств. Калькулятор пределов онлайн с подробным решением производится в режиме реального времени и для него применяются формулы в заданном явном аналитическом виде. Предел функции с применением калькулятора пределов онлайн с подробным решением является обобщением понятия предела последовательности: изначально под пределом функции в точке понимали предел последовательности элементов области значений функции, составленной из образов точек последовательности элементов области определения функции, сходящейся к заданной точке (предел в которой рассматривается); если такой предел существует, то говорят, что функция сходится к указанному значению; если такого предела не существует, то говорят, что функция расходится. В общем то говоря, теория предельного перехода - это основное понятие всего математического анализа. Всё базируется именно на предельных переходах, то есть подробное решение пределов заложено в основу науки математического анализа, а калькулятор пределов онлайн закладывает базу в обучение студентов. Калькулятор пределов онлайн с подробным решением на сайте сайт - это уникальный сервис для получения точного и мгновенного ответа в режиме реального времени. Не редко, а точнее очень часто, у студентов сразу возникают сложности в решении пределов при начальном изучении математического анализа. Мы гарантируем, что решение калькулятором пределов онлайн на нашем сервисе - залог точности и получения качественного ответа.. Ответ на подробное решение предела калькулятором получите в считанные секунды, можно сказать даже мгновенно. Если вы укажете некорректные данные, то есть символы, недопустимые системой, - ничего страшного, сервис автоматически сообщит вам об ошибке. Исправите введённую ранее функцию (или предельную точку) и получите верное подробное решение калькулятором предела онлайн. Доверьтесь нам, и мы вас не подведем никогда. Вы сможете легко пользоваться сайтом и калькулятор пределов онлайн с решением подробно распишет пошаговые действия по вычислению задачи. Нужно всего лишь подождать несколько секунд и получите заветный ответ. Для решения пределов онлайн калькулятором с подробным решением применяются все возможные приёмы, особенно очень часто используется метод Лопиталя, так как он универсален и приводит к ответу быстрее, чем другие способы вычисления предела функции. Часто онлайн подробное решение калькулятором предела требуется для вычисления суммы числовой последовательности. Как известно, для нахождения суммы числовой последовательности, надо лишь верно выразить частичную сумму этой последовательности, а дальше всё просто, применяя наш бесплатный сервис сайт, так как вычисление предела с помощью нашего калькулятора пределов онлайн от частичной суммы это и будет итоговая сумма последовательности числовой. Подробное решение калькулятором пределов онлайн с помощью сервиса сайт представляет студентам видеть ход решения задач, что делает понимание теории пределов легким и доступным практически каждому. Будьте сосредоточены и не позвольте неверным действиям доставлять себе неприятности в виде неудовлетворительных оценок. Как всякое подробное решение калькулятором пределов онлайн сервисом, задача будет представлена в удобном и понятном виде, с подробным решением, с соблюдением всех норм и правил получения решения.. При этом вы сможете экономить время и деньги, так как мы не просим за это абсолютно ничего. На нашем сайте подробное решение калькуляторов пределов онлайн доступно двадцать четыре часа в сутки всегда. В сути все калькуляторы пределов онлайн с решением могут и не подробно выдавать ход поэтапного решения, об этом нужно не забывать и всем следить. Как только пределы онлайн калькулятор с подробным решением предлагает вам нажать на кнопку "Решение", то сначала будьте добры все проверьте. то есть проверьте введенную функцию, также предельное значение и только тогда продолжайте действие. Это избавит вас от мучительных переживаний за неуспешные вычисления. И затем пределы онлайн калькулятор подробным законом выдаст правильное факторное представление пошагового действия. Если же подробное решение калькулятор пределов онлайн вдруг не выдал, то может быть несколько причин этому. Во-первых, проверьте записанное функциональное выражение. Оно должно содержать переменную "x", иначе вся функция будет воспринята системой как константа. Дальше проверьте предельное значение, если указали заданную точку или символьное значение. Оно также должно содержать только латинские буквы - это важно! Затем можно заново попробовать найти подробное решение пределов онлайн на нашем великолепном сервисе, и воспользоваться полученным результатом. Как только говорят, что пределы решение онлайн подробно это очень сложно - не верьте, а главное не паникуйте, всё разрешаемо в рамках учебного курса. Рекомендуем Вам без паники уделить всего несколько минут нашему сервису и проверить заданное упражнение. Если все-таки пределы решение онлайн подробно невозможно решить, значит, вы допустили опечатку, так как в противном случае сайт решает практически любую задачу без особых сложностей. Но не нужно думать, что без труда и без вложенных усилий сможете получить желаемый результат сразу. По любому нужно уделить достаточно времени на изучение материала. Можно каждый калькулятор пределов онлайн с решением подробно выдаться на этапе построения выставленного решения и предположить обратное. Но не суть как это выразить, так как нас беспокоит сам процесс научного подхода. В итоге покажем, как калькулятор пределов с решением онлайн подробно базируется на фундаментальном аспекте математики как науке. Выделить пять основных принципов, и начать дальнейшие действия. Вас спросят о том, что доступно ли решение калькулятором пределов онлайн с подробным решением каждому, и вы ответите - да, это так и есть! Возможно, в этом смысле нет особой нацеленности на результат, однако в предел онлайн подробно заложен немного иной смысл, чем может казаться на первых порах изучения дисциплины. При взвешенном подходе, с должной расстановкой сил, можно в кратчайший срок предел онлайн подробно вывести самому.! В реальности будет так, что калькулятор пределов онлайн с решением подробно начнет быстрее пропорционально представлять все шаги пошагового вычисления.

Решение пределов функции онлайн . Найти предельное значение функции либо функциональной последовательности в точке, вычислить предельное значение функции на бесконечности. определить сходимость числового ряда и многое другое можно выполнить благодаря нашему онлайн сервису - . Мы позволяем находить лимиты функций онлайн быстро и безошибочно. Вы сами вводите переменную функции и предел, к которому она стремится, анаш сервис проводит все вычисления за вас, выдавая точный и простой ответ. Причем для нахождения предела онлайн вы можете вводить как числовые ряды, так и аналитические функции, содержащие константы в буквенном выражении. В этом случае найденный предел функции будет содержать эти константы как постоянные аргументы в выражении. Нашим сервисом решаются любые сложные задачи по нахождению пределов онлайн , достаточно указать функцию и точку в которой необходимо вычислить предельное значение функции . Вычисляя пределы онлайн , можно пользоваться различными методами и правилами их решения, при этом сверяя полученный результат с решением пределов онлайн на www.сайт, что приведет с успешному выполнению задачи - вы избежите собственных ошибок и описок. Либо вы полностью можете довериться нам и использовать наш результат в своей работе, не затрачивая лишних усилий и времени на самостоятельные вычисления предела функции. Мы допускаем ввод таких предельных значений, как бесконечность. Необходимо ввести общий член числовой последовательности и www.сайт вычислит значение предела онлайн на плюс или минус бесконечности.

Одним из основных понятий математического анализа является лимит функции и предел последовательности в точке и на бесконечности, важно уметь правильно решать пределы . С нашим сервисом это не составит никакого труда. Производится решение пределов онлайн в течение нескольких секунд, ответ точный и полный. Изучение математического анализа начинается с предельного перехода , пределы используются практически во всех разделах высшей математики, поэтому полезно иметь под рукой сервер для решения лимитов онлайн , каковым является сайт.

Неопределённость вида и вида - самые распространённые неопределённости, которые требуется раскрывать при решении пределов.

Большая часть задач на пределы, попадающихся студентам, как раз несут в себе такие неопределённости. Для их раскрытия или, точнее, ухода от неопределённостей существует несколько искусственных приёмов преобразования вида выражения под знаком предела. Эти приёмы следующие: почленное деление числителя и знаменателя на старшую степень переменной, домножение на сопряжённое выражение и разложение на множители для последующего сокращения с использованием решений квадратных уравнений и формул сокращённого умножения.

Неопределённость вида

Пример 1.

n равна 2. Поэтому почленно делим числитель и знаменатель на :

.

Комментарий к правой части выражения. Стрелками и цифрами обозначено, к чему стремятся дроби после подстановки вместо n значения бесконечность. Здесь, как и в примере 2, степень n в знаменателя больше, чем в числителе, в результате чего вся дробь стремится к бесконечно малой величине или "супермалому числу".

Получаем ответ: предел данной функции при переменной, стремящейся к бесконечности, равен .

Пример 2. .

Решение. Здесь старшая степень переменной x равна 1. Поэтому почленно делим числитель и знаменатель на x :

.

Комментарий к ходу решения. В числителе загоняем "икс" под корень третьей степени, а чтобы его первоначальная степень (1) оставалась неизменной, присваиваем ему ту же степень, что и у корня, то есть 3. Стрелок и дополнительных чисел в этой записи уже нет, так что попробуйте мысленно, но по аналогии с предыдущим примером определить, к чему стремятся выражения в числителе и знаменателе после подстановки бесконечности вместо "икса".

Получили ответ: предел данной функции при переменной, стремящейся к бесконечности, равен нулю.

Неопределённость вида

Пример 3. Раскрыть неопределённость и найти предел .

Решение. В числителе - разность кубов. Разложим её на множители, применяя формулу сокращённого умножения из курса школьной математики:

В знаменателе - квадратный трёхчлен, который разложим на множители, решив квадратное уравнение (ещё раз ссылка на решение квадратных уравнений):

Запишем выражение, полученное в результате преобразований и найдём предел функции:

Пример 4. Раскрыть неопределённость и найти предел

Решение. Теорема о пределе частного здесь неприменима, поскольку

Поэтому тождественно преобразуем дробь: умножив числитель и знаменатель на двучлен, сопряжённый знаменателю, и сократим на x +1. Согласно следствию из теоремы 1, получим выражение, решая которое, находим искомый предел:


Пример 5. Раскрыть неопределённость и найти предел

Решение. Непосредственная подстановка значения x = 0 в заданную функцию приводит к неопределённости вида 0/0. Чтобы раскрыть её, выполним тождественные преобразования и получим в итоге искомый предел:

Пример 6. Вычислить

Решение: воспользуемся теоремами о пределах

Ответ: 11

Пример 7. Вычислить

Решение: в этом примере пределы числителя и знаменателя при равны 0:

; . Получили , следовательно, теорему о пределе частного применять нельзя.

Разложим числитель и знаменатель на множители, чтобы сократить дробь на общий множитель, стремящийся к нулю, и, следовательно, сделать возможным применение теоремы 3.

Квадратный трехчлен в числителе разложим по формуле , где x 1 и х 2 – корни трехчлена. Разложив на множители и знаменатель, сократим дробь на (x-2), затем применим теорему 3.

Ответ:

Пример 8. Вычислить

Решение: При числитель и знаменатель стремятся к бесконечности, поэтому при непосредственном применении теоремы 3 получаем выражение , которое представляет собой неопределенность. Для избавления от неопределенности такого вида следует разделить числитель и знаменатель на старшую степень аргумента. В данном примере нужно разделить на х :

Ответ:

Пример 9. Вычислить

Решение: х 3 :

Ответ: 2

Пример 10. Вычислить

Решение: При числитель и знаменатель стремятся к бесконечности. Разделим числитель и знаменатель на старшую степень аргумента, т.е. х 5 :

=

числитель дроби стремится к 1, знаменатель к 0, поэтому дробь стремится к бесконечности.

Ответ:

Пример 11. Вычислить

Решение: При числитель и знаменатель стремятся к бесконечности. Разделим числитель и знаменатель на старшую степень аргумента, т.е. х 7 :

Ответ: 0

Производная.

Производной функции y = f(x) по аргументу x называется предел отношения ее приращения y к приращению x аргумента x, когда приращение аргумента стремится к нулю: . Если этот предел конечен, то функция y = f(x) называется дифференцируемой в точке х. Если же этот предел есть , то говорят, что функция y = f(x) имеет в точке х бесконечную производную.

Производные основных элементарных функций:

1. (const)=0 9.

3. 11.

4. 12.

5. 13.

6. 14.

Правила дифференцирования:

a)

в)

Пример 1. Найти производную функции

Решение: Если производную от второго слагаемого находим по правилу дифференцирования дроби, то первое слагаемое представляет собой сложную функцию, производная которой находится по формуле:

, где , тогда

При решении были использованы формулы: 1,2,10,а,в,г.

Ответ:

Пример 21. Найти производную функции

Решение: оба слагаемых – сложные функции, где для первого , , а для второго , , тогда

Ответ:

Приложения производной.

1. Скорость и ускорение

Пусть функция s(t) описывает положение объекта в некоторой системе координат в момент времени t. Тогда первая производная функции s(t) является мгновенной скоростью объекта:
v=s′=f′(t)
Вторая производная функции s(t) представляет собой мгновенное ускорение объекта:
w=v′=s′′=f′′(t)

2. Уравнение касательной
y−y0=f′(x0)(x−x0),
где (x0,y0) − координаты точки касания, f′(x0) − значение производной функции f(x) в точке касания.

3. Уравнение нормали
y−y0=−1f′(x0)(x−x0),

где (x0,y0) − координаты точки, в которой проведена нормаль, f′(x0) − значение производной функции f(x) в данной точке.

4. Возрастание и убывание функции
Если f′(x0)>0, то функция возрастает в точке x0. На рисунке ниже функция является возрастающей при xx2.
Если f′(x0)<0, то функция убывает в точке x0 (интервал x1 Если f′(x0)=0 или производная не существует, то данный признак не позволяет определить характер монотонности функции в точке x0.

5. Локальные экстремумы функции
Функция f(x) имеет локальный максимум в точке x1, если существует такая окрестность точки x1, что для всех x из этой окрестности выполняется неравенство f(x1)≥f(x).
Аналогично, функция f(x) имеет локальный минимум в точке x2, если существует такая окрестность точки x2, что для всех x из этой окрестности выполняется неравенство f(x2)≤f(x).

6. Критические точки
Точка x0 является критической точкой функции f(x), если производная f′(x0) в ней равна нулю или не существует.

7. Первый достаточный признак существования экстремума
Если функция f(x) возрастает (f′(x)>0) для всех x в некотором интервале (a,x1] и убывает (f′(x)<0) для всех x в интервале и возрастает (f′(x)>0) для всех x из интервала $

Пример 3
Решить $ \lim \limits_{x \to -1} \frac{x^2-1}{x+1} $
Решение

Как всегда начинаем с подстановки значения $ x $ в выражение, стоящее под знаком предела.

$$ \lim \limits_{x \to -1} \frac{x^2-1}{x+1} = \frac{(-1)^2-1}{-1+1}=\frac{0}{0} $$

Что теперь дальше? Что же должно получиться в итоге? Так как это неопределенность, то это ещё не ответ и продолжаем вычисление. Так как в числители у нас многочлен, то разложим его на множители, помощью знакомой всем формулы ещё со школьной скамьи $$ a^2-b^2=(a-b)(a+b) $$. Вспомнили? Отлично! Теперь вперед и с песней применять её :)

Получаем, что числитель $ x^2-1=(x-1)(x+1) $

Продолжаем решать учитывая вышеприведенное преобразование:

$$ \lim \limits_{x \to -1}\frac{x^2-1}{x+1} = \lim \limits_{x \to -1}\frac{(x-1)(x+1)}{x+1} = $$

$$ = \lim \limits_{x \to -1}(x-1)=-1-1=-2 $$

Ответ
$$ \lim \limits_{x \to -1} \frac{x^2-1}{x+1} = -2 $$

Устремим предел в последних двух примерах к бесконечности и рассмотрим неопределенность: $ \bigg [\frac{\infty}{\infty} \bigg ] $

Пример 5
Вычислить $ \lim \limits_{x \to \infty} \frac{x^2-1}{x+1} $
Решение

$ \lim \limits_{x \to \infty} \frac{x^2-1}{x+1} = \frac{\infty}{\infty} $

Что же делать? Как быть? Не стоит паниковать, потому что невозможное - возможно. Нужно вынести за скобки и в числителе и в знаменателе икс, а потом его сократить. После этого предел попытаться вычислить. Пробуем...

$$ \lim \limits_{x \to \infty} \frac{x^2-1}{x+1} =\lim \limits_{x \to \infty} \frac{x^2(1-\frac{1}{x^2})}{x(1+\frac{1}{x})} = $$

$$ = \lim \limits_{x \to \infty} \frac{x(1-\frac{1}{x^2})}{(1+\frac{1}{x})} = $$

Используя определение из примера 2 и подставляя в место х бесконечность получаем:

$$ = \frac{\infty(1-\frac{1}{\infty})}{(1+\frac{1}{\infty})} = \frac{\infty \cdot 1}{1+0} = \frac{\infty}{1} = \infty $$

Ответ
$$ \lim \limits_{x \to \infty} \frac{x^2-1}{x+1} = \infty $$

Алгоритм вычисления лимитов

Итак, давайте кратко подведем итог разобранным примерам и составим алгоритм решения пределов:

  1. Подставить точку х в выражение, следующее после знака предела. Если получается определенное число, либо бесконечность, то предел решен полностью. В противном случае имеем неопределенность: "ноль делить на ноль" или "бесконечность делить на бесконечность" и переходим к следующим пунктам инструкции.
  2. Чтобы устранить неопределенность "ноль делить на ноль" нужно разложить числитель и знаменатель на множители. Сократить подобные. Подставить точку х в выражение, стоящее под знаком предела.
  3. Если неопределенность "бесконечность делить на бесконечность", тогда выносим и в числителе, и в знаменателе x наибольшей степени. Сокращаем иксы. Подставляем значения икса из под предела в оставшееся выражение.

В этой статье Вы ознакомились с основами решения пределов, часто используемых в курсе Математического анализа. Конечно же это не все типы задач, предлагающихся экзаменаторами, а только простейшие пределы. В следующих статьях поговорим о других типах заданий, но сперва необходимо усвоить этот урок, чтобы двигаться далее. Обсудим, что делать, если есть корни, степени, изучим бесконечно малые эквивалентные функции, замечательные пределы, правило Лопиталя.

Если у Вас не получается самостоятельно решить пределы, то не паникуйте. Мы всегда рады помочь!



Понравилась статья? Поделитесь с друзьями!