При каких условиях возникает искровой разряд. Искровой разряд и его применение

Искровой разряд имеет вид ярких зигзагообразных разветвляющихся нитей-каналов, которые пронизывают разрядный промежуток и исчезают, сменяясь новыми. Исследования показали, что каналы искрового разряда начинают расти иногда от положительного электрода, иногда от отрицательного, а иногда и от какой-нибудь точки между электродами. Это объясняется тем, что ионизация ударом в случае искрового разряда происходит не по всему объему газа, а по отдельным каналам, проходящим в тех местах, в которых концентрация ионов случайно оказалась наибольшей. Искровой разряд сопровождается выделением большого количества теплоты, ярким свечением газа, треском или громом. Все эти явления вызываются электронными и ионными лавинами, которые возникают в искровых каналах и приводят к огромному увеличению давления, достигающему 107108 Па, и повышению температуры до 10000 С.

Характерным примером искрового разряда является молния. Главный канал молнии имеет диаметр от 10 до 25 см., а длина молнии может достигать нескольких километров. Максимальная сила тока импульса молнии достигает десятков и сотен тысяч ампер.

При малой длине разрядного промежутка искровой разряд вызывает специфическое разрушение анода, называемое эрозией . Это явление было использовано в электроискровом методе резки, сверления и других видах точной обработки металла.

Искровой промежуток применяется в качестве предохранителя от перенапряжения в электрических линиях передач (например, в телефонных линиях). Если вблизи линии проходит сильный кратковременный ток, то в проводах этой линии индуцируются напряжении и токи, которые могут разрушить электрическую установку и опасны для жизни людей. Во избежание этого используются специальные предохранители, состоящие из двух изогнутых электродов, один из которых присоединен к линии, а другой заземлен. Если потенциал линии относительно земли сильно возрастает, то между электродами возникает искровой разряд, который вместе с нагретым им воздухом поднимается вверх, удлиняется и обрывается.

Наконец, электрическая искра применяется для измерения больших разностей потенциалов с помощью шарового разрядника , электродами которого служат два металлических шара с полированной поверхностью. Шары раздвигают, и на них подается измеряемая разность потенциалов. Затем шары сближают до тех пор, пока между ними не проскочит искра. Зная диаметр шаров, расстояние между ними, давление, температуру и влажность воздуха, находят разность потенциалов между шарами по специальным таблицам. Этим методом можно измерять с точностью до нескольких процентов разности потенциалов порядка десятков тысяч вольт.

Искровой разряд.

Если между двумя электродами в воздухе появляется электрическое поле напряженностью порядка 3·10 В/м, то возникает электрическая искра в виде ярко светящегося сложно изогнутого тонкого канала, соединяющего оба электрода (рис.4.8).

Пример искрового разряда – молния. Особенности такого разряда объясняются теорией стримеров. Согласно этой теории возникновению ярко светящегося канала искры предшествует появление отдельных слабо светящихся скоплений ионизированных частиц. В промежутке между электродами эти скопления – стримеры образуют проводящие мостики, по которым затем устремляется мощный поток электронов. Причиной возникновения стримеров является как образование электронных лавин, так и фотоионизация, т.е. ионизация газа возникающим в разряде излучением. В результате образуются вторичные лавины, которые нагоняют друг друга, образуя хорошо проводящий канал. Так, сила тока в канале молнии может составлять от 10 до 10 А, а напряжение между облаком и землей перед возникновением молнии достигает 10 – 10 В.

Съемки камерой с вращающимся объективом показали, что молнии предшествует развитие слабо светящегося канала – лидера, распространяющегося от облака к земле со скоростью 10 – 10 м/с. При этом происходит сильный разогрев воздуха в главном канале и возникает ударная звуковая волна – гром.

В промышленности используют электроискровую обработку металлов – упрочнение поверхности и сверление.

Коронный разряд.

Если один электрод тонкий (провод), а другой имеет большую поверхность (цилиндр) (рис.4.9), то возникает неоднородное электрическое поле. У провода силовые линии сгущаются и при напряженности поля 3·10 В/м возникают электронные лавины и свечение у провода в виде короны.

При удалении от провода напряженность поля уменьшается и электронные лавины обрываются.

Коронный разряд возникает при отрицательном потенциале на проводе, при положительном и при переменном напряжении между проводом и цилиндром. Меняется только направление лавин.

Электроны вылетающие за пределы короны, присоединяются к нейтральным атомам, заряжая их отрицательно. Это используют в электростатических фильтрах для очистки промышленных газов. Газ с пылью пропускают через систему электродов провод – цилиндр. Пыль заряжается прилипающими электронами и притягивается к цилиндру, затем стряхивается в бункер, а в атмосферу выходит газ без пыли.

Коронный разряд может возникнуть возле любых тонких проводников, заострений. Такой разряд наблюдался в предгрозовую пору на верхушках корабельных мачт, деревьев. Можно наблюдать зажигание короны возле проводов, находящихся под высоким напряжением. Для предотвращения коронного разряда и токов утечки, проводники должны иметь достаточно большой диаметр.

Дуговой разряд.

Дуговой разряд был открыт в 1802 году профессором физики В.Петровым. Он получил разряд в виде светящейся дуги, раздвигая два угольных электрода, предварительно приведенные в соприкосновение и присоединенные к мощной батарее гальванических элементов. В месте контакта сопротивление цепи высокое и происходит сильный разогрев, угли раскаляются. В результате возникает термоэлектронная эмиссия из катода. Электроны бомбардируют анод, образуя в нем углубление – кратер. Температура анода около 4000 К, при 20 атм она может подняться до 7000 К. Сила тока достигает десятков и сотен ампер, а напряжение на разрядном промежутке составляет несколько десятков вольт. Этот тип дугового разряда применяется для сварки и резки металлов.

4. Плазмой называют сильно ионизованный газ, в котором концентрации положительных ионов и отрицательных электронов практически одинаковы. Плазма может быть высокотемпературной, полученной при высоких температурах термической ионизацией атомов, например, при термоядерном синтезе или в области дугового разряда. Газоразрядная низкотемпературная плазма возникает в электрическом поле.

Плазма имеет сходство с обычными газами и подчиняется газовым законам. Однако по электропроводности она приближается к металлам, для нее характерно сильное взаимодействие с электрическими и магнитными полями. Наличие подвижных разноименно заряженных частиц сопровождается их рекомбинацией и свечением.

Плазма используется в магнитогидродинамических (МГД) генераторах электрического тока. Низкотемпературная плазма применяется в газовых лазерах и плазменных телевизорах.

ЛЕКЦИЯ 5

Тема: Магнитное поле в вакууме и в веществе

Вопросы: 1) Действие магнитного поля на проводник с током. Магнитная

индукция.

2) Магнитное поле проводника с током. Закон Био-Савара-Лапласа.

3) Контур с током в магнитном поле.

4) Работа в магнитном поле.

1. В 1820 году Ампер открыл действие тока на магнитную стрелку: при пропускании тока через проводник расположенная рядом с ним магнитная стрелка поворачивается перпендикулярно к проводнику. Опыты Ампера показали, что проводники с током притягиваются друг к другу, если токи в них текут в одну сторону, и отталкиваются, если токи текут в противоположных направлениях. Таким образом, было установлено, что вокруг проводников с током существует магнитное поле. Обнаружить его можно по действию на проводник с током или постоянный магнит.

Пусть в однородном магнитном поле помещен прямой проводник длиной l с током I (рис.5.1).

Из опытов было установлено, что на проводник со стороны магнитного поля действует сила (сила Ампера)

F = I l B sinα,

где α – угол между проводником и направлением магнитного поля.

Направление силы можно определить по правилу левой руки (если четыре пальца расположить по направлению тока, а силовые линии магнитного поля будут входить в ладонь, то отогнутый большой палец покажет направление силы).

Если угол α между направлениями вектора В и тока в проводнике отличен от 90°, то для определения направления силы более удобно пользоваться правилом буравчика: воображаемый буравчик располагается перпендикулярно плоскости, содержащей вектор В и проводник с током, затем его рукоятка поворачивается от направления тока к направлению вектора В . Поступательное перемещение буравчика будет показывать направление силы. Правило буравчика часто называют правилом правого винта.

Сила Ампера зависит как от силы тока, так и от магнитного поля. Величина В называется магнитной индукцией и служит основной силовой характеристикой магнитного поля.

Если положить I = 1 А, l = 1 м, α = 90º, то B = F. Отсюда вытекает физический смысл В. Магнитной индукцией В называется физическая величина, численно равная силе, с которой магнитное поле действует на прямой проводник единичной длины с током единичной силы, расположенный перпендикулярно к силовым линиям магнитного поля.

Единица измерения магнитной индукции: [B] = Н/А·м = Тл (тесла).

Теперь становится понятным, почему два проводника с током притягиваются или отталкиваются: в зависимости от направления токов магнитное поле одного проводника выталкивает или втягивает другой проводник с током.

Магнитное поле удобно изображать с помощью силовых линий. Представление о таких линиях дает расположение железных опилок возле полюсов постоянного магнита.

Линией магнитной индукции (силовой линией) называется такая линия, проведенная в магнитном поле, касательная к которой в любой точке совпадает с вектором магнитной индукции в этой точке. Линии магнитной индукции замкнуты и охватывают проводник с током. Тот факт, что силовые линии не имеют начала, говорит об отсутствии магнитных зарядов.

Направление силовых линий определяется по правилу буравчика: если ввинчивать буравчик так, чтобы винт двигался по направлению тока, то направление движения рукоятки совпадет с направлением силовой линии. Густота силовых линий пропорциональна величине магнитной индукции. Вблизи проводника с током магнитное поле неоднородно, чем ближе к проводнику, тем поле сильнее и силовые линии гуще. Однородное магнитное поле можно создать внутри длинной катушки с током.

Как видно из рисунка 5.6, магнитное поле катушки с током аналогично магнитному полю постоянного магнита, т.е. имеет «северный» конец N, из которого выходят силовые линии, и «южный» S, в который силовые линии входят. Индикаторные магнитные стрелки ориентируются по направлению касательных к линиям индукции.

Введем понятие – магнитный поток или поток Ф вектора магнитной индукции сквозь площадку S: Ф =В Scosα, где α – угол между нормалью (перпендикуляром) к площадке и магнитной индукцией В .

Единица измерения потока вектора магнитной индукции [Ф] = Тл·м² = Вб (вебер).

Если поле неоднородное и поверхность не плоская, то ее разбивают на бесконечно малые элементы dS так, что каждый элемент можно считать плоским, а поле однородным. Поток вектора магнитной индукции через элемент поверхности dФ = ВdScosα, а через всю поверхность

2. В результате многих опытов разных ученых был выведен закон Био – Савара – Лапласа, позволяющий рассчитывать магнитную индукцию полей, создаваемых проводниками с током.


Тогда величина магнитной индукции в точке, удаленной от проводника на расстояние r определяется по закону Био-Савара-Лапласа, как

,

где величина μ0 = 4π·10 Гн/м называется магнитной постоянной.

Направление вектора dВ перпендикулярно плоскости, в которой лежат dl и r. Вектор dВ направлен по касательной ксиловой линии, проведенной через рассматриваемую точку поля, в соответствии с правилом буравчика.

Для магнитного поля выполняется принцип суперпозиции: если имеется несколько проводников с током, то магнитная индукция в любой точке равна векторной сумме магнитных индукций, создаваемых в этой точке каждым проводником отдельно. Принцип суперпозиции справедлив и для элементов тока. Применяя совместно закон Био-Савара-Лапласа и принцип суперпозиции, можно определить магнитную индукцию различных проводников с током.


Пример. Магнитное поле в центре кругового проводника с током.

Магнитные индукции каждого элемента тока dl в центре направлены в одну сторону, перпендикулярную к плоскости контура проводника, и просто суммируются. Это можно понять, если провести через центр силовые линии каждого элемента проводника с током и построить к ним касательные. Направление магнитной индукции кругового проводника с током можно определять и по правилу буравчика: если ввинчивать буравчик, вращая рукоятку по направлению тока, то винт покажет направление магнитной индукции в центре.

Величину магнитной индукции определим по закону Био-Савара-Лапласа

Создаваемые круговыми токами магнитные поля удобно описывать с помощью магнитного момента pm = IS, где I–ток в контуре, а S– площадь, обтекаемая током. За направление магнитного момента принимают направление нормали к плоскости витка, совпадающее с направлением вектора В в центре. Тогда

Можно показать, что магнитная индукция внутри длинной катушки с током (соленоида) B = μ0μnI, где n – число витков на единице длины катушки.

3. Поместим проводник, согнутый в виде прямоугольной рамки, в однородное магнитное поле.


При протекании тока по проводнику на каждую его сторону действует сила со стороны магнитного поля. На верхнюю и нижнюю стороны действуют растягивающие контур силы. На боковые стороны действуют силы F1 = F2 = IBl sin90º, где l - длина боковой стороны. Каждая из этих сил создает вращающий момент М = Fd, где d – плечо силы.

Момент пары сил М = 2Fd.= 2IBl d. Из рис.5.10 видно, что . Тогда M = IBla sinα или M = IBSsinα, где S – площадь рамки. Контур с током поворачивается до тех пор, пока его вращающий момент не станет равным нулю, т.е. станет равным нулю угол α. Таким образом, рамка с током в магнитном поле стремиться развернуться перпендикулярно к силовым линиям. Можно связать вращающий момент и магнитный момент контура с током

Вращающий момент перестает действовать, когда магнитный момент контура с током ориентирован вдоль направления магнитной индукции поля.


Рис.5.11

3. Магнитное поле может перемещать проводник с током, значит, поле совершает работу. Пусть прямой проводник длиной l под действием однородного магнитного поля переместится на расстояние dx в направлении, перпендикулярном к силовым линиям магнитного поля.


Рис.5.12

Работа dA = Fdx = Il Bdx. Так как произведение перемещения на длину проводника – это площадь dS, описываемая проводником при движении, то dA = IBdS, или dA = IdФ. Следовательно, работа по перемещению проводника в магнитном поле равна произведению силы тока в проводнике на магнитный поток, проходящий сквозь площадь, описываемую проводником при движении.

ЛЕКЦИЯ 6

Тема: Действие магнитного поля на движущийся заряд. Магнитное поле в

веществе

Вопросы: 1) Сила Лорентца.

2) Движение заряда в магнитном поле.

3) Магнитное поле в веществе.

4) Ферромагнетики.

1. Проводник с током создает в окружающем пространстве магнитное поле. Поскольку электрический ток представляет собой направленное движение заряженных частиц, то и любой движущийся заряд создает магнитное поле. Можно записать закон Био-Савара-Лапласа для одного заряда. Для этого преобразуем Idl = jSdl = nqvSdl = Nqv. Здесь j – плотность тока, n - число заряженных частиц в единице объема (концентрация частиц), v - скорость частиц. N – полное число частиц в отрезке dl проводника. Теперь магнитная индукция, создаваемая отрезком проводника с током, может быть представлена как

,

а магнитная индукция поля, создаваемого в вакууме одним зарядом q на расстоянии r от заряда

Направление силовых линий определяется по правилу буравчика.

Магнитное поле действует на ток, а значит и на каждый заряд должна тоже действовать сила. Выражение для нее получил Г.Лорентц.

На заряд q, движущийся в магнитном поле со скоростью v действует сила F = qvBsinα, где α – угол между направлением скорости и магнитной индукции. Направление силы для положительного заряда определяется по правилу левой руки или правого винта (вращать от v к B ).

Таким образом, между движущимися зарядами существует как электрическое, так и магнитное взаимодействие.

2. Пусть частица с зарядом q и скоростью v влетает в однородное магнитное поле перпендикулярно к линиям магнитной индукции B (рис.6.3).

Сила, действующая на частицу, F = qvBsin90º. Сила перпендикулярна к скорости, значит, она не совершает работы и не меняет энергию и величину скорости частицы. Однако, сила, перпендикулярная к скорости, всегда вызывает центростремительное ускорение и движение по окружности, т.е.

Радиус окружности траектории тем больше, чем больше скорость частицы. С увеличением магнитной индукции радиус уменьшается. Он зависит также от удельного заряда q/m частицы.

Период обращения частицы Т = 2πR/v. Подставив выражение для радиуса, получим , т.е. период от скорости не зависит.

Пусть теперь заряженная частица влетает в магнитное поле под углом α к направлению магнитной индукции (рис.6.4).

В этом случае скорость частицы v0 можно представить как векторную сумму тангенциальной скорости vt, направленной вдоль В, и нормальной скорости vn, перпендикулярной к В.

vt = v0 cosα, подставив эту скорость в выражение для силы Лорентца, получим F = qvtBsin0º, т.е. F = 0. Значит, вдоль силовой линии сила на частицу не действует и она движется равномерно и прямолинейно в этом направлении.

vn = v0 sinα,. сила Лоренца F = qvnBsin90º вызывает центростремительное ускорение и движение по окружности с радиусом и периодом . В результате частица описывает траекторию в виде цилиндрической спирали с шагом (расстояние между витками спирали, на которое частица перемещается вдоль силовой линии, сделав один полный оборот) f = vt T.

Закономерности движения заряженных частиц в магнитных и электрических полях используются в ускорителях, магнетронах, масс-спектрометрах и др.

3. Все вещества состоят из атомов и молекул, движение электронов в которых представляет собой замкнутые молекулярные токи. Каждый из этих токов создает магнитное поле, т.е. обладает магнитным моментом

где I – сила тока, S - площадь, обтекаемая током, n - единичный вектор нормали к плоскости витка с током.

В обычных условиях в результате теплового движения частиц магнитные моменты молекулярных токов разориентированы. Если поместить вещество в магнитное поле, то магнитные моменты частиц частично или полностью ориентируются вдоль внешнего магнитного поля, усиливая его (рис.6.6).

Вещества, способные намагничиваться, называются магнетиками. Магнитное состояние вещества характеризуется вектором намагничения, т.е. магнитным моментом единицы объема вещества

Единица измерения намагниченности – тесла. Для удобства рассмотрения ввели физическую величину Н – напряженность магнитного поля. Это силовая характеристика магнитного поля, связанная с магнитной индукцией соотношением . Она характеризует магнитное поле в вакууме. Из опытов следует, что вектор намагничения пропорционален напряженности магнитного поля , где χ – магнитная восприимчивость вещества.

Полное значение магнитной индукции в магнетике равно

Значит, магнитная индукция в веществе , где μ – магнитная проницаемость вещества. Она показывает, во сколько раз магнитное поле в веществе сильнее, чем в вакууме.

Есть некоторые вещества, у которых μ<1, их называют диамагнетиками (азот, вода, серебро, висмут). У них магнитный момент молекулярных токов устанавливается против поля, что объясняется появлением дополнительного вращения электронных орбиталей (прецессии) в магнитном поле.

У многих веществ μ >1, их называют парамагнетиками (кислород, алюминий и др.). У диамагнетиков и парамагнетиков магнитная проницаемость близка к единице, т.е. они намагничиваются слабо.

На границе раздела двух различных сред с разными значениями магнитной проницаемости линии магнитной индукции преломляются. Нормальная составляющая ветора магнитной индукции не меняется

Касательные к границе раздела составляющие индукции испытывают скачок, причем

Из этих формул вытекает закон преломления линий индукции

где - угол между линиями магнитной индукции в среде 1 и нормалью к поверхности раздела, а - соответствующий угол в среде 2. Значит, линии индукции, входя в среду с большей магнитной проницаемостью, удаляются от нормали и сгущаются (рис.6.7).

Рис.6.7 а – шар в магнитном поле (μ шара больше μ среды);

б - шар в магнитном поле (μ шара меньше μ среды);

в - железный цилиндр помещен в первоначально однородное

магнитноеполе.

4. Есть вещества, которые способны сильно намагничиваться, их магнитная проницаемость имеет величину порядка тысяч единиц и может достигать в специальных случаях миллиона. Такие свойства проявляет железо и его сплавы, поэтому этот класс веществ назвали ферромагнетиками. Свойства ферромагнетиков проявляют и другие металлы (табл.6.1).

Табл.6.1 Ферромагнитные металлы

Ферромагнетики - вещества (как правило, в твёрдом кристаллическом или аморфном состоянии), в которых ниже определённой критической температуры ТК (точки Кюри) устанавливается дальний ферромагнитный порядок магнитных моментов атомов. Иными словами, ферромагнетик - такое вещество, которое при охлаждении ниже определённой температуры приобретает магнитные свойства. Выше точки Кюри ферромагнитные свойства исчезают.

Для ферромагнетиков характерна сильная ориентировка магнитных моментов атомов без внешнего магнитного поля. В результате обменного взаимодействия электронов образуются отдельные области самопроизвольного намагничения – домены. Такие домены были обнаружены на опыте с помощью порошковых фигур. На хорошо отполированную поверхность ферромагнетика помещают слой жидкости с порошком оксида железа. Крупинки оседают в местах неоднородности магнитного поля, то есть у стенок доменов, и границы доменов хорошо видны в микроскопе (рис.6.7).

Рис. 6.7 а – без магнитного поля; б – магнитное поле перпендикулярно плоскости чертежа; в – магнитное поле противоположного направления.

Направления намагничения в отдельных доменах различны и таковы, что полный магнитный момент ферромагнетика равен нулю. При включении внешнего магнитного поля растут домены, у которых вектор намагничения составляет острый угол с направлением внешнего магнитного поля, а объем доменов с тупым углом уменьшается.

Рис.6.8 Процесс намагничения ферромагнетика: а,б,в – смещение

границ; г и д – вращение вектора намагничения

В случае слабых полей (область 1) смещения границ обратимы и точно следуют за изменением поля. При увеличении поля смещения границ доменов делаются необратимыми и невыгодные домены исчезают. Затем при еще большем увеличении поля изменяется направление магнитного момента внутри домена. В очень сильном магнитном поле магнитные моменты всех доменов устанавливаются параллельно полю и ферромагнетик теперь намагничен до насыщения.

Все эти процессы намагничивания происходят с некоторой задержкой, то есть отстают от изменения поля, это явление называется гистерезисом (рис.6.8).

Рис.6.9 Петля гистерезиса

Если уменьшать магнитное поле, то когда поле Н станет равным нулю, в магнетике наблюдается остаточное намагничение +В. Чтобы полностью размагнитить магнетик, надо приложить магнитное поле противоположного знака –Нс. Это поле называют коэрцитивной силой ферромагнетика.

При циклическом перемагничении ферромагнетика изменение индукции в нем будет изображаться петлей гистерезиса. Работа при циклическом перемагничении пропорциональна площади петли гистерезиса. На нее затрачивается энергия магнитного поля, которая в конечном итоге превращается в тепло.

Искровой разряд возникает в тех случаях, когда напряженность электрического поля достигает пробивного для данного газа значения Значение зависит от давления газа; для воздуха при атмосферном давлении оно составляет около . С увеличением давления возрастает. Согласно экспериментальному закону Пашена отношение пробивной напряженности поля к давлению приблизительно постоянно:

Искровой разряд сопровождается образованием ярко светящегося извилистого, разветвленного канала, по которому проходит кратковременный импульс тока большой силы. Примером можт служить молния; длина ее бывает до 10 км, диаметр канала - до 40 см, сила тока может достигать 100 000 и более ампер, продолжительность импульса составляет около .

Каждая молния состоит из нескольких (до 50) импульсов, следующих по одному и тому же каналу; их общая длительность (вместе с промежутками между импульсами) может достигать нескольких секунд. Температура газа в искровом канале бывает до 10000 К. Быстрый сильный нагрев газа приводит к резкому повышению давления и возникновению ударных и звуковых волн. Поэтому искровой разряд сопровождается звуковыми явлениями - от слабого треска при искре малой мощности до раскатов грома, сопровождающих молнию.

Возникновению искры предшествует образование в газе сильно ионизированного канала, получившего название стримера. Этот канал получается путем перекрытия отдельных электронных лавин, возникающих на пути искры. Родоначальником каждой лавины служит электрон, образующийся путем фотоионизации. Схема развития стримера показана на рис. 87.1. Пусть напряженность поля такова, что электрон, вылетевший за счет какого-либо процесса из катода, приобретает на длине свободного пробега энергию, достаточную для ионизации.

Поэтому происходит размножение электронов - возникает лавина (образующиеся при этом положительные ионы не играют существенной роли вследствие гораздо меньшей подвижности; они лишь обусловливают пространственный заряд, вызывающий перераспределение потенциала). Коротковолновое излучение, испускаемое атомом, у которого при ионизации был вырван один из внутренних электронов (это излучение показано на схеме волнистыми линиями), вызывает фотоионизацию молекул, причем образовавшиеся электроны порождают все новые лавины. После перекрывания лавин образуется хорошо проводящий канал - стример, по которому устремляется от катода к аноду мощный поток электронов - происходит пробой.

Если электроды имеют форму, при которой поле в межэлектродном пространстве приблизительно однородно (например, представляет собой шары достаточно большого диаметра), то пробой возникает при вполне определенном напряжении значение которого зависит от расстояния между шарами . На этом основан искровой вольтметр, с помощью которого измеряют высокое напряжение . При измерениях определяется наибольшее расстояние при котором возникает искра. Умножив затем на получают значение измеряемого напряжения.

Если один из электродов (или оба) имеет очень большую кривизну (например, электродом служит тонкая проволока или острие) то при не слишком большом напряжении возникает так называемый коронный разряд. При увеличении напряжения этот разряд переходит в искровой или дуговой.

При коронном разряде ионизация и возбуждение молекул происходят не во всем межэлектродном пространстве, а лишь вблизи электрода с малым радиусом кривизны, где напряженность ноля достигает значений, равных или превышающих . В этой части разряда газ светится. Свечение имеет вид короны, окружающей электрод, чем и вызвано название этого вида разряда. Коронный разряд с острия имеет вид светящейся кисти, в связи с чем его иногда называют кистевым разрядом. В зависимости от знака коронирующего электрода говорят о положительной или отрицательной коронах. Между коронирующим слоем и некоронирующим электродом расположена внешняя область короны. Режим пробоя существует только в пределах коронирующего слоя. Поэтому можно сказать, что коронный разряд представляет собой неполный пробой газового промежутка.

В случае отрицательной короны явления на катоде сходны с явлениями на катоде тлеющего разряда. Ускоренные полем положительные ионы выбивают из катода электроны, которые вызывают ионизацию и возбуждение молекул в коронирующем слое. Во внешней области короны поле недостаточно для того, чтобы сообщить электронам энергию, необходимую для ионизации или возбуждения молекул.

Поэтому проникшие в эту область электроны дрейфуют под действием ноля к аноду. Часть электронов захватывается молекулами, вследствие чего образуются отрицательные ионы. Таким образом, ток во внешней области обусловливается только отрицательными носителями - электронами и отрицательными ионами. В этой области разряд имеет несамостоятельный характер.

В положительной короне электронные лавины зарождаются у внешней границы короны и устремляются к коронирующему электроду - аноду. Возникновение электронов, порождающих лавины, обусловлено фотоионизацией, вызванной излучением коронирующего слоя. Носителями тока во внешней области короны служат положительные ионы, которые дрейфуют под действием поля к катоду.

Если оба электрода имеют большую кривизну (два коронирующих электрода), вблизи каждого из них протекают процессы, присущие коронирующему электроду данного знака. Оба коронирующих слоя разделяются внешней областью, в которой движутся встречные потоки положительных и отрицательных носителей тока. Такая корона называется двуполярной.

Упоминавшийся в § 82 при рассмотрении счетчиков самостоятельный газовый разряд представляет собой коронный разряд.

Толщина коронирующего слоя и сила разрядного тока растут с увеличением напряжения. При небольшом напряжении размеры короны малы и ее свечение незаметно. Такая микроскопическая корона возникает вблизи острия, с которого стекает электрический ветер (см. § 24).

Корона, появляющаяся под действием атмосферного электричества на верхушках корабельных мачт, деревьев и т. п., получила в старину название огней святого Эльма.

В высоковольтных устройствах, в частности в линиях высоковольтных передач, коронный разряд приводит к вредным утечкам тока. Поэтому приходится принимать меры для его предотвращения. С этой целью, например, провода высоковольтных линий берут достаточно большого диаметра, тем большего, чем выше напряжение линии.

Полезное применение в технике коронный разряд нашел в электрофильтрах. Очищаемый газ движется в трубе, по оси которой расположен отрицательный коронирующий электрод. Отрицательные ионы, имеющиеся в большом количестве во внешней области короны, оседают на загрязняющих газ частицах или капельках и увлекаются вместе с ними к внешнему некоронирующему электроду. Достигнув этого электрода, частицы нейтрализуются и оседают на нем. Впоследствии при ударах по трубе осадок, образованный уловленными частицами, осыпается в сборник.

Молния - это искровой разряд электростатического заряда кучевого облака, сопровождающийся ослепительной вспышкой и резким звуком (громом). Таким образом, следует рассмотреть подробно классификацию разрядов и понять, почему же сверкает молния.

Виды разрядов

темный (таунсендовский);

коронный;

искровой.

Искровой разряд

Этот разряд характеризуется прерывистой формой (даже при пользовании источниками постоянного тока). Он возникает в газе обычно при давлениях порядка атмосферного. В естественных природных условиях искровой разряд наблюдается в виде молний. Внешне искровой разряд представляет собой пучок ярких зигзагообразных разветвляющихся тонких полосок, мгновенно пронизывающих разрядный промежуток, быстро гаснущих и постоянно сменяющих друг друга. Эти полоски называют искровыми каналами. Они начинаются как от положительных, так и от отрицательных, а также от любой точки между ними. Каналы, развивающиеся от положительного электрода, имеют четкие нитевидные очертания, а развивающиеся от отрицательных - диффузные края и более мелкое ветвление.

Т.к. искровой разряд возникает при больших давлениях газа, то потенциал зажигания очень высок. (Для сухого воздуха, например, при давлении 1 атм. и расстоянии между электродами 10 мм, пробивное напряжение 30 кВ.) Но после того как разрядный промежуток "искровым" каналом, сопротивление промежутка становится очень малым, через канал проходит кратковременный импульс тока большой силы, в течение которого на разрядный промежуток приходится лишь незначительное сопротивление. Если мощность источника не очень велика, то после такого импульса тока разряд прекращается. Напряжение между электродами начинает расти до прежнего значения, и пробой газа повторяется с образованием нового искрового канала.

Электрическая искра возникает в том случае, если электрическое поле в газе достигает некоторой определенной величины Ек (критическая напряженность поля или напряженность пробоя), которая зависит от рода газа и его состояния. Например, для воздуха при нормальных условиях Ек3*106 В/м.

Величина Ек увеличивается с увеличением давления. Отношение критической напряженности поле к давлению газа р для данного газа остается приблизительным в широкой области изменения давления: Ек/рconst.

Время нарастания напряжения тем больше, чем больше емкость С между электродами. Поэтому включение конденсатора параллельно разрядному промежутку увеличивает время между двумя последующими искрами, а сами искры становятся более мощными. Через канал искры проходит большой электрический заряд, и поэтому увеличивается амплитуда и длительность импульса тока. При большой емкости С канал искры ярко светится и имеет вид широких полос. То же самое происходит при увеличении мощности источника тока. Тогда говорят о конденсированном искровом разряде, или о конденсированной искре. Максимальная сила тока в импульсе, при искровом разряде, меняется в широких пределах, в зависимости от параметров цепи разряда и условий в разрядном промежутке, достигая нескольких сотен килоампер. При дальнейшем увеличении мощности источника, искровой разряд переходит в дуговой разряд.

В результате прохождения импульса тока через канал искры в канале выделяется большое количество энергии (порядка 0,1 - 1 Дж на каждый сантиметр длины канала). С выделением энергии связано скачкообразное увеличение давления в окружающем газе - образование цилиндрической ударной волны, температура на фронте которой ~104 К. Происходит быстрое расширение канала искры, со скоростью порядка тепловой скорости атомов газа. По мере продвижения ударной волны температура на ее фронте начинает падать, а сам фронт отходит от границы канала. Возникновение ударных волн объясняются звуковые эффекты, сопровождающие искровой разряд: характерное потрескивание в слабых разрядах и мощные раскаты в случае молний.

В момент существования канала, особенно при высоких давлениях, наблюдается более яркое свечение искрового разряда. Яркость свечения неоднородна по сечению канала имеет максимум в его центре.

Рассмотрим механизм искрового разряда.

В настоящее время общепринятой считается так называемая стримерная теория искрового разряда, подтвержденная прямыми опытами. Качественно она объясняет основные особенности искрового разряда, хотя в количественном отношении и не может считаться завершенной. Если вблизи катода зародилась электронная лавина, то на ее пути проходит ионизация и возбуждение молекул и атомов газа. Существенно, что световые кванты, испускаемые возбужденными атомами и молекулами, распространяясь к аноду со скорость света, сами производят ионизацию газа, и дают начало первым электронным лавинам. Таким путем во всем объеме газа появляются слабо святящиеся скопления ионизированного газа, называемые стримерами. В процессе своего развития отдельные электронные лавины догоняют друг друга и, сливаясь вместе, образуют хорошо проводящий мостик из стримеров. По этому в последующий момент времени и устремляется мощный поток электронов, образующий канал искрового разряда. Поскольку проводящий мостик образуется в результате слияния практически одновременно возникающих стримеров, время его образования много меньше времени, которое требуется отдельной электронной лавине для прохождения расстояний от катода к аноду. Наряду с отрицательными стримерами, т.е. стримерами, распространяющимися от катода к аноду, существуют также положительные стримеры, которые распространяются в противоположном направлении.

Свободные электроны получают в таком поле огромные ускорения. Эти ускорения направлены вниз, поскольку нижняя часть тучи заряжена отрицательно, а поверхность земли положительно. На пути от первого столкновения до другого, электроны приобретают значительную кинетическую энергию. Поэтому, сталкиваясь с атомами или молекулами, они ионизируют их. В результате рождаются новые (вторичные) электроны, которые, в свою очередь, ускоряются в поле тучи и затем в столкновениях ионизуют новые атомы и молекулы. Возникают целые лавины быстрых электронов, образующие у самого "дна" тучи, плазменные "нити" - стример.

Сливаясь друг с другом, стримеры дают начало плазменному каналу, по которому в последствии пройдет импульс основного тока. Этот развивающийся от "дна" тучи к поверхности земли плазменный канал наполнен свободными электронами и ионами, и поэтому может хорошо проводить электрический ток. Его называют лидером или точнее ступенчатым лидером. Дело в том, что канал формируется не плавно, а скачками - "ступенями".

Почему в движении лидера наступают паузы и притом относительно регулярные - точно неизвестно. Существует несколько теорий ступенчатых лидеров.

В 1938 году Шонланд выдвинул два возможных объяснения задержки, которая вызывает ступенчатый характер лидера. Согласно одному из них, должно происходить движение электронов вниз по каналу ведущего стримера (пилота). Однако часть электронов захватывается атомами и положительно заряженными ионами, так что требуется некоторое время для поступления новых продвигающихся электронов, прежде чем возникнет градиент потенциала, достаточный для того, чтобы ток продолжался. Согласно другой точке зрения, время требуется для того, чтобы положительно заряженные ионы скопились под головкой канала лидера и, таким образом, создали на ней достаточный градиент потенциала. В 1944 году Брюс предложил иное объяснение, в основе которого лежит перерастание тлеющего разряда в дуговой. Он рассмотрел "коронный разряд", аналогичный разряду острия, существующий вокруг канала лидера не только на головке канала, но и по всей его длине. Он дал объяснение тому, что условия для существования дугового разряда будут устанавливаться на некоторое время после того, как канал разовьется на определенное расстояние и, следовательно, возникнут ступени. Это явление еще до конца не изучено и конкретной теории пока нет. А вот физические процессы, происходящие вблизи головки лидера, вполне понятны. Напряженность поля под тучей достаточно велика - она составляет B/м; в области пространства непосредственно перед головкой лидера она еще больше. Увеличение напряженности поля в этой области хорошо объясняет рис.4, где штриховыми кривыми показаны сечения эквипотенциальных поверхностей, а сплошными кривыми - лини напряженности поля. В сильном электрическом поле вблизи головки лидера происходит интенсивная ионизация атомов и молекул воздуха. Она происходит за счет, во-первых, бомбардировки атомов и молекул быстрыми электронами, вылетающими из лидера (так называемая ударная ионизация), и, во-вторых, поглощение атомами и молекулами фотонов ультрафиолетового излучения, испускаемого лидером (фотоионизация). Вследствие интенсивной ионизации встречающихся на пути лидера атомов и молекул воздуха плазменный канал растет, лидер движется к поверхности земли.

С учетом остановок по пути лидеру, чтобы достигнуть земли, потребовалось 10...20 мс при расстоянии 1 км между тучей и земной поверхностью. Теперь тучу соединяет с землей плазменный канал, прекрасно проводящий ток. Канал ионизированного газа как бы замкнул тучу с землей накоротко. На этом первая стадия развития начального импульса заканчивается.

Вторая стадия протекает быстро и мощно. По проложенному лидером пути устремляется основной ток. Импульс тока длится примерно 0,1мс. Сила тока достигает значений порядка А. Выделяется значительное количество энергии (до Дж). Температура газа в канале достигает. Именно в этот момент рождается тот необычайно яркий свет, который мы наблюдаем при разряде молнии, и возникает гром, вызванный внезапным расширением внезапно нагретого газа.

Существенно, что и свечение, и разогрев плазменного канала развиваются в направлении от земли к туче, т.е. снизу вверх. Для объяснения этого явления разобьем условно весь канал на несколько частей. Как только канал образовался (головка лидера достигла земли), вниз соскакивают прежде всего электроны, которые находились в самой нижней его части; поэтому нижняя часть канала первой начинает светиться и разогреваться. Затем к земле устремляются электроны из следующей (более высоко находящейся части канала); начинаются свечение и разогрев этой части. И так постепенно - от низа до верха - в движение к земле включаются все новые и новые электроны; в результате свечение и разогрев канала распространяются в направлении снизу вверх.

После того, как прошел импульс основного тока, наступает пауза длительностью от 10 до 50мс. За это время канал практически гаснет, его температура падает, степень ионизации канала существенно уменьшается.

Однако в туче еще сохранился большой заряд, поэтому новый лидер устремляется из тучи к земле, готовя дорогу для нового импульса тока. Лидеры второго и последующих ударов являются не ступенчатыми, а стреловидными. Стреловидные лидеры аналогичны ступеням ступенчатого лидера. Однако поскольку ионизированный канал уже существует, необходимость в пилоте и ступенях отпадает. Так как ионизация в канале стреловидного лидера "старше", чем у ступенчатого лидера, рекомбинация и диффузия у носителей носителей заряда происходят интенсивнее, а поэтому и степень ионизации в канале стреловидного лидера ниже. В результате скорость стреловидного лидера меньше скорости отдельных ступеней ступенчатого лидера, но больше скорости пилота. Значения скорости стреловидного лидера составляют от до м/с.

Если между последующими ударами молнии пройдет больше времени, чем обычно, то степень ионизации может быть настолько низкой, особенно в нижней части канала, что возникает необходимость в новом пилоте для повторной ионизации воздуха. Это объясняет отдельные случаи образования ступеней на нижних концах лидеров, предшествующих не первому, а последующим главным ударам молнии.

Как говорилось выше, новый лидер идет по пути, который был проторен начальным лидером. Он без остановки (1мс) пробегает весь путь сверху до низу. И снова следует мощный импульс основного тока. После очередной паузы все повторяется. В итоге высвечиваются несколько мощных импульсов, которые мы естественно, воспринимаем как единый разряд молнии, как единую яркую вспышку.



Понравилась статья? Поделитесь с друзьями!