Приближенное значение приращения функции при достаточно малом. Вычисление приближенно с помощью дифференциала

Приближенное значение приращения функции

При достаточно малых приращение функции приближенно равно ее дифференциалу, т.е. Dy » dy и, следовательно,

Пример 2. Найти приближенное значение приращения функции y= при изменении аргумента x от значения x 0 =3 до x 1 =3,01.

Решение . Воспользуемся формулой (2.3). Для этого вычислим

X 1 - x 0 = 3,01 - 3 = 0,01, тогда

Dу » .

Приближенное значение функции в точке

В соответствии с определением приращения функции y = f(x) в точке x 0 при приращении аргумента Dx (Dx®0) Dy = f(x 0 + Dx) - f(x 0) и формулой (3.3) можно записать

f(x 0 + Dx) » f(x 0) + . (3.4)

Частными случаями формулы (3.4) являются выражения:

(1 + Dx) n » 1 + nDx (3.4a)

ln(1 + Dx) » Dx (3.4б)

sinDx » Dx (3.4в)

tgDx » Dx (3.4г)

Здесь, как и ранее предполагается, что Dx®0.

Пример 3. Найти приближенное значение функции f(x) = (3x -5) 5 в точке x 1 =2,02.

Решение . Для вычислений воспользуемся формулой (3.4). Представим x 1 в виде x 1 = x 0 + Dx. Тогда x 0 = 2, Dx = 0,02.

f(2,02)=f(2 + 0,02) » f(2) +

f(2) = (3 × 2 - 5) 5 = 1

15 × (3 × 2 - 5) 4 = 15

f(2,02) = (3 × 2,02 - 5) 5 » 1 + 15 × 0,02 = 1,3

Пример 4. Вычислить (1,01) 5 , , ln(1,02), ln .

Решение

1. Воспользуемся формулой (3.4а). Для этого представим (1,01) 5 в виде (1+0,01) 5 .

Тогда, полагая Dх = 0,01, n = 5, получим

(1,01) 5 = (1 + 0,01) 5 » 1 + 5 × 0,01 = 1,05.

2. Представив в виде (1 - 0,006) 1/6 , согласно (3.4а), получим

(1 - 0,006) 1/6 » 1 + .

3. Учитывая, что ln(1,02) = ln(1 + 0,02) и полагая Dx=0,02, по формуле (3.4б) получим

ln(1,02) = ln(1 + 0,02) » 0,02.

4. Аналогично

ln = ln(1 - 0,05) 1/5 = .

Найти приближенные значения приращения функций

155. y = 2x 3 + 5 при изменении аргумента x от значения x 0 = 2 до x 1 = 2,001

156. у = 3x 2 + 5x + 1 при x 0 = 3 и Dx = 0,001

157. y = x 3 + x - 1 при x 0 = 2 и Dx = 0,01

158. y = ln x при x 0 = 10 и Dx = 0,01

159. y = x 2 - 2x при x 0 = 3 и Dx = 0,01

Найти приближенные значения функций

160. у = 2x 2 - x + 1 в точке x 1 = 2,01

161. y = x 2 + 3x + 1 в точке x 1 = 3,02

162. y = в точке x 1 = 1,1

163. y= в точке x 1 = 3,032

164. y = в точке x 1 = 3,97

165. y = sin 2x в точке x 1 = 0,015

Вычислить приближенно

166. (1,025) 10 167. (9,06) 2 168.(1,012) 3

169. (9,95) 3 170. (1,005) 10 171. (0,975) 4

172. 173. 174.

175. 176. 177.

178. ln(1,003×e) 179. ln(1,05) 5 180. ln

181. ln0,98 182. ln 183. ln(e 2 ×0,97)

Исследование функций и построение графиков

Признаки монотонности функции



Теорема 1 (необходимое условие возрастания (убывания) функции) . Если дифференцируемая функция y = f(x), xÎ(a; b) возрастает (убывает) на интервале (a; b), то для любого x 0 Î(a; b).

Теорема 2 (достаточное условие возрастания (убывания) функции) . Если функция y = f(x), xÎ(a; b) имеет положительную (отрицательную) производную в каждой точке интервала (a; b), то эта функция возрастает (убывает) на этом интервале.

Экстремумы функции

Определение 1. Точка x 0 называется точкой максимума (минимума) функции у = f(x), если для всех x из некоторой d-окрестности точки x 0 выполняется неравенство f(x) < f(x 0) (f(x) > f(x 0)) при x ¹ x 0 .

Теорема 3 (Ферма) (необходимое условие существования экстремума) . Если точка x 0 является точкой экстремума функции y = f(x) и в этой точке существует производная , то

Теорема 4 (первое достаточное условие существования экстремума) . Пусть функция y = f(x) дифференцируема в некоторой d-окрестности точки x 0 . Тогда:

1) если производная при переходе через точку x 0 меняет знак с (+) на (-), то x 0 является точкой максимума;

2) если производная при переходе через точку x 0 меняет знак с (-) на (+), то x 0 является точкой минимума;

3) если производная при переходе через точку x 0 не меняет знак, то в точке x 0 функция не имеет экстремума.

Определение 2. Точки, в которых производная функции обращается в нуль или не существует, называются критическими точками первого рода.

с помощью первой производной

1. Найти область определения D(f) функции у = f(x).

3. Найти критические точки первого рода.

4. Расставить критические точки в области определения D(f) функции y = f(x) и определить знак производной в промежутках, на которые критические точки делят область определения функции.

5. Выделить точки максимума и минимума функции и вычислить в этих точках значения функции.

Пример 1. Исследовать на экстремум функцию у = x 3 - 3x 2 .

Решение . В соответствии с алгоритмом нахождения экстремума функции с помощью первой производной имеем:

1. D(f): xÎ(-¥; ¥).

2. .

3. 3x 2 - 6x = 0 Þ x = 0, x = 2 - критические точки первого рода.

Производная при переходе чрез точку x = 0

меняет знак с (+) на (-), следовательно это точка

Максимума. При переходе через точку х = 2 меняет знак с (-) на (+), следовательно это точка минимума.

5. y max = f(0) = 0 3 × 3 × 0 2 = 0.

Координаты максимума (0; 0).

y min = f(2) = 2 3 - 3 × 2 2 = -4.

Координаты минимума (2; -4).

Теорема 5 (второе достаточное условие существования экстремума) . Если функция у = f(x) определена и дважды дифференцируема в некоторой окрестности точки x 0 , причем , то в точке x 0 функция f(x) имеет максимум, если и минимум, если .

Алгоритм нахождения экстремума функции

с помощью второй производной

1. Найти область определения D(f) функции y = f(x).

2. Вычислить первую производную

С одной стороны, вычисление дифференциала значительно проще, чем вычисление приращения, с другой стороны, dy≈∆y и допускаемая при этом погрешность может быть сделана сколь угодно малой за счет уменьшения ∆x. Эти обстоятельства позволяют во многих случаях заменять ∆y величиной dy. Из приближенного равенства dy≈∆y, учитывая, что ∆y = f(x) – f(x 0), а dy=f’(x 0)(x-x 0), получим f(x) ≈ f(x 0) + f’(x 0)(x – x 0), где x-x 0 = ∆x.
Пример . Вычислить .
Решение . Взяв функцию , имеем: . Полагая x 0 =16 (выбираем сами, чтобы корень извлекался), ∆x = 0,02, получим .

Пример . Вычислить значение функции f(x) = e x в точке x=0.1.
Решение . В качестве x 0 возьмем число 0, то есть x 0 =0, тогда ∆x=x-x 0 =0.1 и e 0.1 ≈e 0 + e 0 0.1 = 1+0.1 = 1.1. По таблице e 0.1 ≈1.1052. Ошибка получилась незначительная.
Отметим еще одно важное свойство дифференциала. Формула для нахождения дифференциала dy=f’(x)dx верна как в случае, когда x – независимая переменная, так и в случае, когда x – функция от новой переменной t . Это свойство дифференциала называется свойством инвариантности его формы. Например, для функции y=tg(x) дифференциал запишется в виде независимо от того, является ли x независимой переменной или функцией. В случае, если x – функция и конкретно задана, например x=t 2 , то вычисление dy можно продолжить, для чего найдем dx=2tdt и подставим в ранее полученное выражение для dy:
.
Если вместо формулы (2) воспользовались бы неинвариантной формулой (1), то в случае, когда x – функция, мы не могли бы подобным образом продолжить вычисление dy, так как ∆x, вообще говоря, не совпадает с dx .

Рассмотрим широко распространенную задачу о приближенном вычислении значения функции с помощью дифференциала .

Здесь и далее речь пойдёт о дифференциалах первого порядка, для краткости часто будем говорить просто «дифференциал». Задача о приближенных вычислениях с помощью дифференциала обладает жёстким алгоритмом решения, и, следовательно, особых трудностей возникнуть не должно. Единственное, есть небольшие подводные камни, которые тоже будут подчищены. Так что смело ныряйте головой вниз.

Кроме того, в разделе присутствуют формулы нахождения абсолютной и относительной погрешностей вычислений. Материал очень полезный, поскольку погрешности приходится рассчитывать и в других задачах.

Для успешного освоения примеров необходимо уметь находить производные функций хотя бы на среднем уровне, поэтому если с дифференцированием совсем нелады, пожалуйста, начните с нахождения производной в точке и с нахождения дифференциала в точке . Из технических средств потребуется микрокалькулятор с различными математическими функциями. Можно использовать возможности MS Excel, но в данном случае он менее удобен.

Урок состоит из двух частей:

– Приближенные вычисления с помощью дифференциала значения функции одной переменной в точке.

– Приближенные вычисления с помощью полного дифференциала значения функции двух переменных в точке.

Рассматриваемое задание тесно связано с понятием дифференциала, но, поскольку урока о смысле производной и дифференциала у нас пока нет, ограничимся формальным рассмотрением примеров, чего вполне достаточно, чтобы научиться их решать.

Приближенные вычисления с помощью дифференциала функции одной переменной

В первом параграфе рулит функция одной переменной. Как все знают, она обозначается через y или через f (x ). Для данной задачи намного удобнее использовать второе обозначение. Сразу перейдем к популярному примеру, который часто встречается на практике:

Пример 1



Решение: Пожалуйста, перепишите в тетрадь рабочую формулу для приближенного вычисления с помощью дифференциала:

Начинаем разбираться, здесь всё просто!

На первом этапе необходимо составить функцию . По условию предложено вычислить кубический корень из числа: , поэтому соответствующая функция имеет вид: .

Нам нужно с помощью формулы найти приближенное значение .

Смотрим на левую часть формулы , и в голову приходит мысль, что число 67 необходимо представить в виде . Как проще всего это сделать? Рекомендую следующий алгоритм: вычислим данное значение на калькуляторе:

– получилось 4 с хвостиком, это важный ориентир для решения.

В качестве x 0 подбираем «хорошее» значение, чтобы корень извлекался нацело . Естественно, это значение x 0 должно быть как можно ближе к 67.

В данном случае x 0 = 64. Действительно, .

Примечание: Когда с подбором x 0 всё равно возникает затруднение, просто посмотрите на скалькулированное значение (в данном случае ), возьмите ближайшую целую часть (в данном случае 4) и возведите её нужную в степень (в данном случае ). В результате и будет выполнен нужный подбор x 0 = 64.

Если x 0 = 64, то приращение аргумента: .

Итак, число 67 представлено в виде суммы

Сначала вычислим значение функции в точке x 0 = 64. Собственно, это уже сделано ранее:

Дифференциал в точке находится по формуле:

– эту формулу тоже можете переписать к себе в тетрадь.

Из формулы следует, что нужно взять первую производную:

И найти её значение в точке x 0:

.

Таким образом:

Всё готово! Согласно формуле :

Найденное приближенное значение достаточно близко к значению 4,06154810045, вычисленному с помощью микрокалькулятора.

Ответ:

Пример 2

Вычислить приближенно , заменяя приращения функции ее дифференциалом.

Это пример для самостоятельного решения. Примерный образец чистового оформления и ответ в конце урока. Начинающим сначала рекомендую вычислить точное значение на микрокалькуляторе, чтобы выяснить, какое число принять за x 0 , а какое – за Δx . Следует отметить, что Δx в данном примере будет отрицательным.

У некоторых, возможно, возник вопрос, зачем нужна эта задача, если можно всё спокойно и более точно подсчитать на калькуляторе? Согласен, задача глупая и наивная. Но попытаюсь немного её оправдать. Во-первых, задание иллюстрирует смысл дифференциала функции. Во-вторых, в древние времена калькулятор был чем-то вроде личного вертолета в наше время. Сам видел, как из одного из институтов году где-то в 1985-86 выбросили компьютер размером с комнату (со всего города сбежались радиолюбители с отвертками, и через пару часов от агрегата остался только корпус). Антиквариат водился и у нас на физфаке, правда, размером поменьше – где-то с парту. Вот так вот и мучились наши предки с методами приближенных вычислений. Конная повозка – тоже транспорт.

Так или иначе, задача осталась в стандартном курсе высшей математики, и решать её придётся. Это основной ответ на ваш вопрос =).

Пример 3

Вычислить приближенно с помощью дифференциала значение функции в точке x = 1,97. Вычислить более точное значение функции в точке x = 1,97 с помощью микрокалькулятора, оценить абсолютную и относительную погрешность вычислений.

Фактически, это задание запросто можно переформулировать так: «Вычислить приближенное значение с помощью дифференциала»

Решение: Используем знакомую формулу:

В данном случае уже дана готовая функция: . Ещё раз обращаю внимание, что для обозначения функции вместо «игрека» удобнее использовать f (x ).

Значение x = 1,97 необходимо представить в виде x 0 = Δx . Ну, тут легче, мы видим, что число 1,97 очень близко к «двойке», поэтому напрашивается x 0 = 2. И, следовательно: .

Вычислим значение функции в точке x 0 = 2:

Используя формулу , вычислим дифференциал в этой же точке.

Находим первую производную:

И её значение в точке x 0 = 2:

Таким образом, дифференциал в точке:

В результате, по формуле :

Вторая часть задания состоит в том, чтобы найти абсолютную и относительную погрешность вычислений.



Понравилась статья? Поделитесь с друзьями!