Применение альдегидов в пищевой промышленности. Свойства спиртов, альдегидов, кислот, сложных эфиров, фенола

1. Р. Окисления.

Альдегиды легко окисляются до карбоновых кислот. Окислителями могут служить гидроксид меди (II), оксид серебра, кислород воздуха:

Ароматические альдегиды окисляются труднее алифатических. Кетоны, как было сказано выше, окисляются труднее альдегидов. Окисление кетонов проводится в жестких условиях, в присутствии сильных окислителей. Образуются в результате смеси карбоновых кислот. Как отличить альдегиды от кетонов? Различие в способности к окислению служит основой качественных реакций, позволяющих отличить альдегиды от кетонов. Многие мягкие окислители легко реагируют с альдегидами, но инертны по отношению к кетонам. а) Реактив Толленса (аммиачный раствор оксида серебра), содержащий комплексные ионы +, дает с альдегидами реакцию «серебряного зеркала». При этом образуется металлическое серебро. Раствор оксида серебра готовят непо средственно пере д опытом:

Реактив Толленса окисляет альдегиды до соответствующих карбоновых кислот, которые в присутствии аммиака образуют аммонийные соли. Сам окислитель при этой реакции восстанавливается до металлического серебра. За тонкий серебряный налет на стенках пробирки, который образуется при этой реакции, реакция альдегидов с аммиачным раствором оксида серебра получила название реакции «серебряного зеркала». СН3-СН=O)+2OH->CH3COONH4+2Ag+3NH3+H2O. Альдегиды также восстанавливают свежеприготовленный аммиачный раствор гидроксида меди (II), обладающий светло-голубой окраской (реактив Фелинга), до желтого гидроксида меди (I), который при нагревании разлагается с выделением ярко-красного осадка оксида меди (I). СН3-СН=О + 2Cu(ОН)2 - СН3СООН+2CuОН+Н2О 2CuOH->Cu2O+H2O

2. Р. Присоединения

Гидрирование - присоединение водорода.

Карбонильные соединения восстанавливаются до спиртов водородом, алюмогидридом лития, боргидридом натрия. Водород присоединяется по связи C=O. Реакция идет труднее, чем гидрирование алкенов: требуется нагревание, высокое давление и металлический катализатор (Pt, Ni):

3. Взаимодействие с вод ой.

4. Взаимодействие, со спиртами.

При взаимодействии альдегидов со спиртами могут образовываться полуацетали и ацетали. Полуацетали представляют собой соединения, в которых при одном атоме углерода содержится гидроксильная и алкоксильная группа. К ацеталям относят вещества, в молекулах которых содержится атом углерода с двумя алкоксильными заместителями.

Ацетали, в отличие от альдегидов, более устойчивы к окислению. Благодаря обратимости взаимодействия со спиртами их часто используют в органическом синтезе для « защиты» альдегидной группы.

4.Присоединение гидросульфитов.

Гидросульфит NaHSO3 тоже присоединяется по связи C=O с образованием кристаллического производного, из которого карбонильное соединение может быть регенерировано. Бисульфитные производные используются для очистки альдегидов и кетонов.


В результате поликонденсации фенола с формальдегидом в присутствии катализаторов образуются фенолформальдегидные смолы, из которых получают пластмассы - фенопласты (бакелиты). Фенопласты - важнейшие заменители цветных и черных металлов во многих отраслях промышленности. Из них изготавливается большое количество изделий широкого потребления, электроизоляционные материалы и строительные детали. Фрагмент фенолформальдегидной смолы показан ниже:

Исходными соединениями для получения альдегидов и кетонов могут быть углеводороды, галогенопроизводные, спирты и кислоты.


Применение карбонильных соединений


Формальдегид используется для получения пластмасс, например бакелита, дубления кож, дезинфекции, протравливания семян. Совсем недавно в нашей стране разработан метод получения полиформальдегида (-СН2-О-)n, который обладает высокой химической и термической устойчивостью.

Это ценнейший конструкционный пластик, способный во многих случаях заменить металлы. Ацетальдегид используют для получения уксусной кислоты и некоторых пластмасс. Ацетон применяется как исходное вещество для синтеза многих соединений (например, метилметакрилата, полимеризацией которого получают оргстекло); он используется также в качестве растворителя.

Среди кислородсодержащих органических соединений огромное значение имеют целых два класса веществ, которые всегда изучают вместе за схожесть в строении и проявляемых свойствах. Это альдегиды и кетоны. Именно эти молекулы лежат в основе многих химических синтезов, а их строение достаточно интересное, чтобы стать предметом изучения. Рассмотрим подробнее, что же представляют собой эти классы соединений.

Альдегиды и кетоны: общая характеристика

С точки зрения химии, к классу альдегидов следует относить органические молекулы, содержащие кислород в составе функциональной группы -СОН, называемой карбонильной. Общая формула в этом случае будет выглядеть так: R-COH. По своей природе это могут быть как предельные, так и непредельные соединения. Также среди них встречаются и ароматические представители, наравне с алифатическими. Количество атомов углерода в радикальной цепи варьируется в достаточно широких пределах, от одного (формальдегид или метаналь) до нескольких десятков.

Кетоны также содержат карбонильную группу -СО, однако соединена она не с катионом водорода, а с другим радикалом, отличным или идентичным тому, что входит в цепь. Общая формула выглядит так: R-CO-R , . Очевидно, что альдегиды и кетоны схожи по наличию функциональной группы такого состава.

Кетоны также могут быть предельными и непредельными, да и проявляемые свойства сходны с близкородственным классом. Можно привести несколько примеров, иллюстрирующих состав молекул и отражающих принятые обозначения формул рассматриваемых веществ.

  1. Альдегиды: метаналь - НСОН, бутаналь - СН 3 -СН 2 -СН 2 -СОН, фенилуксусный - С 6 Н 5 -СН 2 -СОН.
  2. Кетоны: ацетон или диметилкетон - СН 3 -СО-СН 3 , метилэтилкетон - СН 3 -СО-С 2 Н 5 и другие.

Очевидно, что название данных соединений образуется двумя путями:

  • по рациональной номенклатуре согласно входящим в состав радикалам и классового суффикса -аль (для альдегидов) и -он (для кетонов);
  • тривиально, исторически сложившееся.

Если привести общую формулу для обоих классов веществ, то станет видно, что они являются изомерами друг другу: C n H 2n O. Для них же самих характерны следующие виды изомерии:


Чтобы различать между собой представителей обоих классов, используют качественные реакции, большинство из которых позволяют выявить именно альдегид. Так как химическая активность данных веществ несколько выше, благодаря наличию катиона водорода.

Строение молекулы

Рассмотрим, как же в пространстве выглядят альдегиды и кетоны. Строение их молекул можно отразить несколькими пунктами.

  1. Атом углерода, непосредственно входящий в функциональную группу, имеет sp 2 - гибридизацию, что позволяет части молекулы иметь плоскую пространственную форму.
  2. При этом полярность связи С=О сильна. Как более электроотрицательный, кислород забирает себе основную часть плотности, концентрируя на себе частично отрицательный заряд.
  3. В альдегидах связь О-Н является также сильно поляризованной, что делает атом водорода подвижным.

В результате получается, что подобное строение молекул позволяет рассматриваемым соединениям и окисляться, и восстанавливаться. Формула альдегида и кетона с перераспределенной электронной плотностью позволяет предсказать продукты реакций, в которых участвуют данные вещества.

История открытия и изучения

Как и многие органические соединения, выделить и изучить альдегиды и кетоны людям удалось лишь в XIX веке, когда виталистические взгляды полностью рухнули и стало понятно, что эти соединения могут образовываться синтетическим, искусственным путем, без участия живых существ.

Однако еще в 1661 году Р. Бойль сумел получить ацетон (диметилкетон), когда подвергал нагреванию ацетат кальция. Но подробно изучить это вещество и назвать его, определить систематическое положение среди других, он не смог. Лишь в 1852 году Уильямсон сумел довести это дело до конца, тогда и началась история подробного развития и накопления знаний о карбонильных соединениях.

Физические свойства

Рассмотрим, каковы физические свойства альдегидов и кетонов. Начнем с первых.

  1. Первый представитель метаналь по агрегатному состоянию - газ, следующие одиннадцать - жидкости, свыше 12 атомов углерода входят в состав твердых альдегидов нормального строения.
  2. Температура кипения: зависит от числа атомов С, чем их больше, тем она выше. При этом чем более разветвлена цепочка, тем ниже опускается значение температуры.
  3. Для жидких альдегидов показатели вязкости, плотности, преломления зависят также от числа атомов. Чем их больше, тем они выше.
  4. Газообразный и жидкие альдегиды растворяются в воде очень хорошо, однако твердые практически не могут этого делать.
  5. Запах представителей очень приятный, часто это ароматы цветов, духов, фруктов. Лишь те альдегиды, в которых количество атомов углерода равно 1-5, являются сильно и неприятно пахнущими жидкостями.

Если обозначать свойства кетонов, то также можно выделить главные.

  1. Агрегатные состояния: низшие представители - жидкости, более массивные - твердые соединения.
  2. Запах резкий, неприятный у всех представителей.
  3. Растворимость в воде хорошая у низших, в органических растворителях отличная у всех.
  4. Летучие вещества, данный показатель превышает таковой у кислот, спиртов.
  5. Температура кипения и плавления зависит от строения молекулы, сильно варьируется от количества атомов углерода в цепи.

Это основные свойства рассматриваемых соединений, которые относятся к группе физических.

Химические свойства

Самое важное, это с чем реагируют альдегиды и кетоны, химические свойства данных соединений. Поэтому их мы рассмотрим обязательно. Сначала разберемся с альдегидами.

  1. Окисление до соответствующих карбоновых кислот. Общий вид уравнения реакции: R-COH + [O] = R-COOH. Ароматические представители еще легче вступают в подобные взаимодействия, также они способны формировать в результате сложные эфиры, имеющие важное промышленное значение. В качестве окислителей используют: кислород, реактив Толленса, гидроксид меди (II) и другие.
  2. Альдегиды проявляют себя как сильные восстановители, при этом превращаясь в предельные одноатомные спирты.
  3. Взаимодействие со спиртами с образованием продуктов ацеталей и полуацеталей.
  4. Особые реакции - поликонденсации. В результате образуются фенолформальдегидные смолы, имеющие значение для химической промышленности.
  5. Несколько специфических реакций со следующими реактивами:
  • водно-спиртовая щелочь;
  • реактив Гриньяра;
  • гидросульфиты и прочие.

Качественной реакцией на данный класс веществ является реакция "серебряного зеркала". В результате нее образуется металлическое восстановленное серебро и соответствующая карбоновая кислота. Для нее необходим аммиачный раствор оксида серебра или реактив Толлинса.

Химические свойства кетонов

Спирты, альдегиды, кетоны являются схожими по проявляемым свойствам соединениями, так как все они кислородсодержащие. Однако уже на стадии окисления становится ясно, что спирты - самые активные и легко поддающиеся воздействию соединения. Кетоны же окислить труднее всего.

  1. Окислительные свойства. В результате образуются вторичные спирты.
  2. Гидрирование также приводит к упомянутым выше продуктам.
  3. Кето-енольная таутомерия - особое специфическое свойство кетонов принимать бета-форму.
  4. Реакции альдольной конденсации с образование бета-кетоспиртов.
  5. Также кетоны способны взаимодействовать с:
  • аммиаком;
  • синильной кислотой;
  • гидросульфитами;
  • гидразином;
  • ортокремниевой кислотой.

Очевидно, что реакции таких взаимодействий очень сложны, особенно те, которые являются специфическими. Это все основные особенности, которые проявляют альдегиды и кетоны. Химические свойства лежат в основе многих синтезов важных соединений. Поэтому знать природу молекул и их характер при взаимодействиях крайне необходимо в промышленных процессах.

Реакции присоединения альдегидов и кетонов

Мы уже рассмотрели данные реакции, однако не давали им такого названия. К присоединению можно отнести все взаимодействия, в результате которых активность проявила карбонильная группа. А точнее, подвижный атом водорода. Именно поэтому в данном вопросе преимущество отдается именно альдегидам, вследствие их лучшей реакционноспособности.

С какими веществами возможны реакции альдегидов и кетонов по нуклеофильному замещению? Это:

  1. Синильная кислота, образуются циангидрины - исходное сырье при синтезе аминокислот.
  2. Аммиак, амины.
  3. Спирты.
  4. Воду.
  5. Гидросульфат натрия.
  6. Реактив Гриньяра.
  7. Тиолы и другие.

Эти реакции имеют важное промышленное значение, поскольку продукты используются в разных областях жизнедеятельности людей.

Способы получения

Существует несколько основных методов, которыми синтезируют альдегиды и кетоны. Получение в лаборатории и промышленности можно выразить в следующих способах.

  1. Самым распространенным методом, в том числе и в лабораториях, является окисление соответствующих спиртов: первичных до альдегидов, вторичных до представителей кетонов. В качестве окислительного агента могут выступать: хроматы, ионы меди, перманганат калия. Общий вид реакции: R-OH + Cu (KMnO 4) = R-COH.
  2. В промышленности часто используют способ, основанный на окислении алкенов - оксосинтез. Основной агент синтез-газ, смесь СО 2 + Н 2 . Результатом становится альдегид с большим на один углерод числом атомов в цепи. R=R-R + СО 2 + Н 2 = R-R-R-COH.
  3. Окисление алкенов озоном - озонолиз. Результат также предполагает альдегид, но кроме этого еще и кетон в смеси. Если продукты мысленно соединить, убрав кислород, станет ясно, какой исходный алкен был взят.
  4. Реакция Кучерова - гидратация алкинов. Обязательный агент - соли ртути. Один из промышленных способов синтеза альдегидов и кетонов. R≡R-R + Hg 2+ + H 2 O = R-R-COH.
  5. Гидролиз дигалогенпроизводных углеводородов.
  6. Восстановление: карбоновых кислот, амидов, нитрилов, хлорангидридов, сложных эфиров. В результате образуется как альдегид, так и кетон.
  7. Пиролиз смесей карбоновых кислот над катализаторами в виде оксидов металлов. Смесь должна быть парообразной. Суть заключается в отщеплении между молекулами диоксида углерода и воды. В результате образуется альдегид или кетон.

Ароматические альдегиды и кетоны получают иными способами, так как данные соединения имеют ароматический радикал (фенил, например).

  1. По Фриделю-Крафтсу: в исходных реагентах ароматический углеводород и дигалогензамещенный кетон. Катализатор - ALCL 3 . В результате образуется ароматический альдегид или кетон. Другое название процесса - ацилирование.
  2. Окисление толуола действием разных агентов.
  3. Восстановлением ароматических карбоновых кислот.

Естественно, что в промышленности стараются использовать те методы, в которых исходное сырье как можно более дешевое, а катализаторы менее токсичные. Для синтеза альдегидов - это окисление алкенов кислородом.

Применение в промышленности и значение

Применение альдегидов и кетонов осуществляется в таких отраслях промышленности, как:

  • фармацевтика;
  • химический синтез;
  • медицина;
  • парфюмерная область;
  • пищевая промышленность;
  • лакокрасочное производство;
  • синтез пластмасс, тканей и прочее.

Можно обозначить еще не одну область, ведь ежегодно только формальдегида синтезируется приблизительно 6 млн т в год! Его 40% раствор именуется формалином и используется для хранения анатомических объектов. Он же идет на изготовление лекарственных препаратов, антисептиков и полимеров.

Уксусный альдегид, или этаналь, также массово производимый продукт. Количество ежегодного потребления в мире составляет около 4 млн т. Он - основа многих химических синтезов, при которых образуются важные продукты. Например:

  • уксусная кислота и ее ангидрид;
  • ацетат целлюлозы;
  • лекарства;
  • бутадиен - основа каучука;
  • ацетатное волокно.

Ароматические альдегиды и кетоны - это составная часть многих ароматизаторов, как пищевых, так и парфюмерных. Большинство из них имеют очень приятные цветочные, цитрусовые, травяные ароматы. Это позволяет изготовлять на их основе:

  • освежители воздуха различного рода;
  • туалетные и парфюмерные воды;
  • различные чистящие и моющие средства.

Некоторые из них являются ароматическими добавками к пище, разрешенными к употреблению. Их природное содержание в эфирных маслах, фруктах и смолах доказывают возможность подобного использования.

Отдельные представители

Такой альдегид, как цитраль, представляет собой жидкость с большой вязкостью и сильным ароматом лимона. В природе содержится как раз в эфирных маслах последнего. Также в составе эвкалипта, сорго, кебаба.

Хорошо известны области его применения:

  • педиатрия - понижение внутричерепного давления;
  • нормализация артериального давления у взрослых;
  • компонент лекарства для органов зрения;
  • составная часть многих душистых веществ;
  • противовоспалительное средство и антисептик;
  • сырье для синтеза ретинола;
  • ароматизатор в пищевых целях.

Альдегиды и кетоны относятся к карбонильным органическим соединениям. Карбонильными соединениями называют органические вещества, в молекулах которых имеется группа >С=О (карбонил или оксогруппа).

Общая формула карбонильных соединений:

Функциональная группа –СН=О называется альдегидной. Кетоны - органические вещества, молекулы которых содержат карбонильную группу, соединенную с двумя углеводородными радикалами. Общие формулы: R 2 C=O, R–CO–R" или

Модели простейших карбонильных соединений

Название

Формальдегид (метаналь)

H 2 C=O

Ацетальдегид (этаналь)

СH 3 -CH=O

Ацетон (пропанон)

(СH 3 ) 2 C=O

Номенклатура альдегидов и кетонов.

Систематические названия альдегидов строят по названию соответствующего углеводорода и добавлением суффикса -аль . Нумерацию цепи начинают с карбонильного атома углерода. Тривиальные названия производят от тривиальных названий тех кислот, в которые альдегиды превращаются при окислении.

Формула

Название

систематическое

тривиальное

H 2 C=O

метаналь

муравьиный альдегид (формальдегид)

CH 3 CH=O

этаналь

уксусный альдегид (ацетальдегид)

(CH 3 ) 2 CHCH=O

2-метил-пропаналь

изомасляный альдегид

CH 3 CH=CHCH=O

бутен-2-аль

кротоновый альдегид

Систематические названия кетонов несложного строения производят от названий радикалов (в порядке увеличения) с добавлением слова кетон . Например: CH 3 –CO–CH 3 - диметилкетон (ацетон); CH 3 CH 2 CH 2 –CO–CH 3 - метилпропилкетон. В более общем случае название кетона строится по названию соответствующего углеводорода и суффикса -он ; нумерацию цепи начинают от конца цепи, ближайшего к карбонильной группе (заместительная номенклатура ИЮПАК). Примеры: CH 3 –CO–CH 3 - пропанон (ацетон); CH 3 CH 2 CH 2 –CO–CH 3 - пентанон- 2; CH 2 =CH–CH 2 –CO–CH 3 - пентен-4-он- 2.

Изомерия альдегидов и кетонов .

Для альдегидов и кетонов характерна структурная изомерия .

Изомерия альдегидов :

изомерия углеродного скелета, начиная с С 4

межклассовая изомерия с кетонами, начиная с С 3

циклическими оксидами (с С 2)

непредельными спиртами и простыми эфирами (с С 3)

Изомерия кетонов : углеродного скелета (c C 5)

положения карбонильной группы (c C 5)

межклассовая изомерия (аналогично альдегидам).

Строение карбонильной группы C=O.

 Свойства альдегидов и кетонов определяются строением карбонильной группы >C=O.

Связь С=О сильно полярна. Ее дипольный момент (2,6-2,8D) значительно выше, чем у связи С–О в спиртах (0,70D). Электроны кратной связи С=О, в особенности более подвижные -электроны, смещены к электроотрицательному атому кислорода, что приводит к появлению на нем частичного отрицательного заряда. Карбонильный углерод приобретает частичный положительный заряд.

 Поэтому углерод подвергается атаке нуклеофильными реагентами, а кислород - электрофильными, в том числе Н + .

В молекулах альдегидов и кетонов отсутствуют атомы водорода, способные к образованию водородных связей. Поэтому их температуры кипения ниже, чем у соответствующих спиртов. Метаналь (формальдегид) - газ, альдегиды С 2 –C 5 и кетоны С 3 –С 4 - жидкости, высшие - твердые вещества. Низшие гомологи растворимы в воде, благодаря образованию водородных связей между атомами водорода молекул воды и карбонильными атомами кислорода. С увеличением углеводородного радикала растворимость в воде падает.

Реакционные центры альдегидов и кетонов

sp 2 -Гибридизованный атом углерода карбонильной группы образует три σ-связи, лежащие в одной плоскости, и π-связь с атомом кислорода за счет негибридизованной p-орбитали. Вследствие различия в электроотрицательности атомов углерода и кислорода π-связь между ними сильно поляризована (рис. 5.1). В результате на атоме углерода карбонильной группы возникает частичный положительный заряд δ+, а на атоме кислорода - частичный отрицательный заряд δ-. Поскольку атом углерода электронодефицитен, он представляет собой центр для нуклеофильной атаки.

Распределение электронной плотности в молекулах альдегидов и кетонов с учетом передачи электронного влияния электроно-

Рис. 5.1. Электронное строение карбонильной группы

дефицитного атома углерода карбонильной группы по σ-связям представлено на схеме 5.1.

Схема 5.1. Реакционные центры в молекуле альдегидов и кетонов

В молекулах альдегидов и кетонов присутствует несколько реакционных центров:

Электрофильный центр - атом углерода карбонильной группы - предопределяет возможность нуклеофильной атаки;

Основный центр - атом кислорода - обусловливает возможность атаки протоном;

СН-кислотный центр, атом водорода которого обладает слабой протонной подвижностью и может, в частности, подвергаться атаке сильным основанием.

В целом альдегиды и кетоны обладают высокой реакционной способностью.

Альдегиды и их химические свойства

Альдегидами называют такие органические вещества, в молекулах которых есть карбонильная группа, связанная, минимум, с одним атомом водорода и углеводородным радикалом.

Химические свойства альдегидов предопределяются в их молекуле наличием карбонильной группы. В связи с этим в молекуле карбонильной группы можно наблюдать реакции присоединения.

Так, например, если взять и пропустить пары формальдегида разом с водородом над разогретым никелевым катализатором, то произойдет присоединение водорода и формальдегид восстановиться в метиловый спирт. Кроме этого полярный характер данной связи порождает и такую реакцию альдегидов, как присоединение воды.

А теперь давайте рассмотрим все особенности реакций от присоединения воды. Следовало бы отметить, что к углеродному атому карбонильной группы, который несет частичный положительный заряд, благодаря электронной паре кислородного атома, добавляется гидроксильная группа.



При таком присоединении характерны следующие реакции:

Во-первых, происходит гидрирование и образуются первичные спирты RСН2ОН.
Во-вторых, происходит добавление спиртов и образование полуацеталей R-СН (ОН) – ОR. А в присутствии хлороводорода НСl, выступающего катализатором и при излишке спирта мы наблюдаем образование ацетали RСН (ОR)2;
В-третьих, происходит добавление гидросульфита натрия NаНSO3 и образуются производные гидросульфитных альдегидов. При окислении альдегидов можно наблюдать такие особенные реакции, как взаимодействие с аммиачным раствором оксида серебра (I) и с гидроксидом меди (II) и образование карбоновых кислот.

При полимеризации альдегидов характерны такие особенные реакции, как линейная и циклическая полимеризация.

Если говорить о химических свойствах альдегидов, следует упомянуть и реакцию окисления. К таким реакциям можно отнести реакцию «серебряного зеркала» и реакцию светофор.

Пронаблюдать за необычной реакцией «серебряного зеркала» можно, проведя в классе интересный опыт. Для этого вам понадобиться чисто вымытая пробирка, в которую следует налить несколько миллилитров аммиачного раствора оксида серебра, а потом к нему добавить четыре или пять капель формалина. Следующим этапом при проведении этого опыта нужно пробирку поместить в стакан с горячей водой и тогда вы сможете увидеть, как на стенках пробирки появляется блестящий слой. Это образовавшееся покрытие является осадком металлического серебра.



А вот так называемая реакция «светофор»:



Физические свойства альдегидов

Теперь давайте приступим к рассмотрению физических свойств альдегидов. Какими же свойствами обладают эти вещества? Следует обратить внимание на то, что ряд простых альдегидов являют из себя бесцветный газ, более сложные представлены в виде жидкости, а вот высшие альдегиды – это твердые вещества. Чем больше молекулярная масса альдегидов, тем выше температура кипения. Так, например, пропионовый альдегид достигает точки кипения при 48,8 градусов, а вот пропиловый спиртзакипает при 97,8 0С.

Если говорить о плотности альдегидов, то она меньше единицы. Так, например, уксусный и муравьиный альдегид имеет свойство неплохо растворяться в воде, а более сложные альдегиды имеют более слабую способность к растворению.

Альдегиды, которые относятся к низшему разряду, имеют резкий и неприятный запах, а твердые и нерастворимые в воде, наоборот характеризуются приятным цветочным запахом.

Нахождение альдегидов в природе

В природе, повсеместно встречаются представители различных групп альдегидов. Они присутствуют в зеленых частях растений. Эта одна из простейших групп альдегидов, к которым относится муравьиный альдегид СН2О.

Также встречаются альдегиды с более сложным составом. К таким видам относятся ванилин или виноградный сахар.

Но так как альдегиды обладают способностью легко вступать во всякие взаимодействия, имеют склонность к окислению и восстановлению, то можно с уверенностью сказать, что альдегиды очень способны к различным реакциям и поэтому в чистом виде они встречаются крайне редко. А вот их производные можно встретить повсеместно, как в растительной среде, так и животной.



Применение альдегидов

Альдегидная группа присутствует в целом ряде природных веществ. Их отличительной чертой, по крайней мере, многих из них, является запах. Так, например представители высших альдегидов, владеют различными ароматами и входят в состав эфирных масел. Ну и, как вам уже известно, такие масла присутствуют в цветочных, пряных и душистых растениях, плодах и фруктах. Они отыскали масштабное использование в производстве промышленных товаров и при производстве парфюмерии.

Алифатический альдегид СН3(СН2)7С(Н)=О можно найти в эфирных маслах цитрусовых. Такие альдегиды имеют запах апельсина, и применяется в пищевой промышленности, как ароматизатор, а также в косметике, парфюмерии и бытовой химии, в качестве отдушки.

Муравьиный альдегид – это бесцветный газ, который имеет резкий специфический запах и легко растворяется в воде. Такой водный раствор формальдегида еще называют формалином. Формальдегид очень ядовит, но в медицине его применяют в разбавленном виде в качестве дезинфицирующего средства. Его используют для дезинфекции инструментов, а его слабый раствор используют для обмывания кожи при сильной потливости.

Кроме того, формальдегид используют при дублении кожи, так как он имеет способности соединяться белковыми веществами, которые имеются в составе кожи.

В сельском хозяйстве формальдегид прекрасно зарекомендовал себя при обработке зерна перед посевными работами. Его применяют для производства пластмасс, которые так необходимы для техники и бытовых нужд.

Уксусный альдегид являет из себя бесцветную жидкость, которая имеет запах прелых яблок и легко растворяется в воде. Применяется он для получения уксусной кислоты и других веществ. Но так как он является ядовитым веществом, то может вызвать отравление организма или воспаление слизистых оболочек глаз и дыхательных путей.

Альдегиды- класс органических соединений, содержащих карбонильную группу -СОННазвание альдегидов происходит от названия углеводородных радикалов с добавлением суффикса -аль Общая формула предельных альдегидов СnH2n+1COH. Номенклатура и изомерия

Номенклатура этих двух групп соединений строится по-разному . Тривиальные названия альдегидов связывают их с тривиальными названиями кислот, в которые они переходят при окислении

Из кетонов лишь немногие имеют тривиальные названия (например, ацетон). Для них широко используется радикально-функциональная номенклатура , в которой названия кетонов даются с использованием названий радикалов, связанных с карбонильной группой. По номенклатуре ИЮПАК названия альдегидов производятся от названия углеводорода с тем же числом атомов углерода путём добавления окончания –аль .Длякетонов эта номенклатура требует окончания –он . Цифрой обозначается положение функциональной группы в цепи кетона.

Соединение Названия по триви-альной и радикально-функциональной номенклатурам Названия по номенклатуре ИЮПАК
муравьиный альдегид; формальдегид метаналь
уксусный альдегид; ацетальдегид этаналь
пропионовый альдегид пропиональ
масляный альдегид бутаналь
изомасляный альдегид метилпропаналь
валериановый альдегид пентаналь
изовалериановый альдегид 3-метилбутаналь
ацетон; диметилкетон пропанон
метилэтилкетон бутанон
метилпропилкетон пентанон-2
метилизопропилкетон 3-метилбутанон-2

Изомерия альдегидов и кетонов полностью отражается номенклатурой и комментарий не требует. Альдегиды и кетоны с одинаковым числом атомов углерода являются изомерами . Например:

Способы получения – Окисление или каталитическое дегидрирование первичных спиртов до альдегидов, вторичных – до кетонов . Реакции эти уже упоминались при рассмотрении химических свойств спиртов.

– Пиролиз кальциевых или бариевых солей карбоновых кислот, одна из которых – соль муравьиной кислоты, даёт альдегиды.

– Гидролиз геминальных (заместители у одного углерода) дигалогеналканов

– Гидратация ацетилена и его гомологов протекает в присутствии сульфата ртути (реакция Кучерова) или над гетерогенным катализатором

Физические свойства. Муравьиный альдегид – газ. Остальные низшие альдегиды и кетоны – жидкости, плохо растворимые в воде. Альдегиды имеют удушливый запах. Кетоны пахнут обычно приятно. 1. Р. Окисления.Альдегиды легко окисляются до карбоновых кислот. Окислителями могут служить гидроксид меди (II), оксид серебра, кислород воздуха:

Ароматические альдегиды окисляются труднее алифатических. Кетоны, как было сказано выше, окисляются труднее альдегидов. Окисление кетонов проводится в жестких условиях, в присутствии сильных окислителей. Образуются в результате смеси карбоновых кислот. При этом образуется металлическое серебро. Раствор оксида серебра готовят непосредственно перед опытом:

Альдегиды также восстанавливают свежеприготовленный аммиачный раствор гидроксида меди (II), обладающий светло-голубой окраской (реактив Фелинга), до желтого гидроксида меди (I), который при нагревании разлагается с выделением ярко-красного осадка оксида меди (I). СН3-СН=О + 2Cu(ОН)2 - СН3СООН+2CuОН+Н2О 2CuOH->Cu2O+H2O

2. Р. Присоединения. Гидрирование - присоединение водорода.Карбонильные соединения восстанавливаются до спиртов водородом, алюмогидридом лития, боргидридом натрия. Водород присоединяется по связи C=O. Реакция идет труднее, чем гидрирование алкенов: требуется нагревание, высокое давление и металлический катализатор (Pt,Ni



Понравилась статья? Поделитесь с друзьями!