Примеры комбинаторика сколько нечетных чисел 0 1. Комбинаторика: основные правила и формулы

Во многих комбинаторных задачах непосредственное нахождение числа интересующих нас вариантов оказывается затруднительным. Однако при некотором изменении условия задачи можно найти количество вариантов, превосходящее исходное в известное число раз. Такой прием называется методом кратного подсчета .

1. Сколько анаграмм имеет слово КЛАСС?

Трудность в том, что в этом слове две одинаковые буквы С. Будем временно считать их разными и обозначим С 1 и С 2 . Тогда число анаграмм окажется равным 5! = 120. Но те слова, которые отличаются друг из друга лишь перестановкой букв С 1 и С 2 , на самом-то деле являются одной и той же анаграммой! Поэтому 120 анаграмм разбиваются на пары одинаковых, т.е. искомое число анаграмм равно 120/2 = 60.

2. Сколько анаграмм имеет слово ШАРАДА?

Считая три буквы А различными буквами А 1 , А 2 , А 3 , получим 6! анаграмм. Но слова, которые получаются друг из друга только перестановкой букв А 1 , А 2 , А 3 , на самом деле являются одной и той же анаграммой. Поскольку имеется 3! перестановок букв А 1 , А 2 , А 3 , полученные изначально 6! анаграмм разбиваются на группы по 3! одинаковых, и число различных анаграмм оказывается равным 6!/3! = 120.

3. Сколько существует четырехзначных чисел, в записи которых есть хотя бы одна четная цифра?

Найдем количество «ненужных» четырехзначных чисел, в записи которых присутствуют только нечетные цифры. Таких чисел 5 4 = 625. Но всего четырехзначных чисел 9000, поэтому искомое количество «нужных» чисел равно 9000 – 625 = 8375.

  1. Найти число анаграмм у слов ВЕРЕСК, БАЛАГАН, ГОРОДОВОЙ.
  2. Найти число анаграмм у слов БАОБАБ, БАЛЛАДА, ПЕРЕПОЛОХ, АНАГРАММА, МАТЕМАТИКА, КОМБИНАТОРИКА, ОБОРОНОСПОСОБНОСТЬ.
  3. Сколькими способами можно поселить 7 приезжих в три гостиничных номера: одноместный, двухместный и четырехместный?
  4. В холодильнике лежат два яблока, три груши и четыре апельсина. Каждый день в течение девяти дней подряд Пете дают один какой-то фрукт. Сколькими способами это может быть сделано?
  5. Из семи лучших лыжников школы нужно отобрать команду из трех человек для участия в городских соревнованиях. Сколькими способами это можно сделать?
  6. Перед экзаменом профессор пообещал поставить двойки половине экзаменуемых. На экзамен пришло 20 студентов. Сколькими способами он может выполнить обещание?
  7. Сколько слов можно составить из пяти букв А и не более чем из трех букв Б?
  8. В продаже есть шоколадное, клубничное и молочное мороженое. Сколькими способами можно купить три мороженых?
  9. При приготовлении пиццы к сыру добавляются разные компоненты, обеспечивающие тот или иной вкус. В распоряжении Билла имеются лук, грибы, помидоры, перец и анчоусы, причем все это, по его мнению, можно добавлять к сыру. Сколько видов пиццы может приготовить Билл?
  10. Свидетель криминальной разборки запомнил, что преступники скрылись на «мерседесе», номер которого содержал буквы Т, З, У и цифры 3 и 7 (номером является строка, в которой сначала идут три буквы, а затем - три цифры). Сколько существует таких номеров?
  11. Сколько диагоналей в выпуклом n -угольнике?
  12. Сколько всего существует n -значных чисел?
  13. Сколько существует десятизначных чисел, в записи которых есть хотя бы две одинаковые цифры?
  14. Кубик бросают трижды. Среди всевозможных последовательностей результатов есть такие, в которых хотя бы один раз выпала шестерка. Сколько их?
  15. Сколько пятизначных чисел имеют в своей записи цифру 1?
  16. Сколькими способами можно расставить на шахматной доске белого и черного короля так, чтобы они не били друг друга?
  17. Сколько делителей у числа 10800?

Тип и особенности: урок открытия и изучения новых знаний с помощью решения практико-ориентированных задач .

Цель урока: научить учащихся решать комбинаторные задачи методами: 1) конечного перебора; 2) построения дерева возможных вариантов; 3) с помощью таблицы.

Оборудование: компоненты УМК «Виленкин. 5», проектор, компьютер, интерактивная доска (ИД ) , на каждой парте по 2 листа (формата А4) с 7 решенными классными задачами и по 2 листа (формата А4) с 7 тестовыми задачами . На столе учителя лежат лист (формата А4) с 7 решенными классными задачами и лист (формата А4) с 7 тестовыми задачами их решениями, распечатки проектного задания на дом.

Этапы урока

Задачи этапа

Визуальный ряд

Деятельность учителя

Деятельность учащихся

Формируемые УУД

Организационный

Собрать домашнее задание, настроить на урок

Слайд на доске:

«тяжело в учении легко в бою»

Прошу теперь сдать на проверку тетради с домашней работой. Напоминаю, что мы сегодня приступаем к изучению новой темы.

Дежурные проходят по классу собирают тетради.

Саморегуляция, прогнозирование и оценка

Актуализации теоретических знаний

Определить цель урока

На доске: дата и название темы: «Комбинаторные задачи»

Ребята, сегодня мы совершим увлекательное путешествие в мир «Комбинаторики»

Мысленно задают вопрос: «а что это такое»

Целеполагание, предметная рефлексия.

Объяснения нового материа

ла

Первичное знакомство с основными понятиями,

методами, способами

решения

комбинаторных задач

Слайд на доске: Слово «комбинаторика» произошло от латинского слова COMBINARE , что означает «соединять», «сочетать»

Учитель задаёт вопрос как вы думаете что означает слово «комбинаторика»?

Учитель делает паузу, слушает ответы потом говорит определение.

Слово «комбинаторика» произошло от латинского слова COMBINARE , что означает «соединять», «сочетать»

Дети отвечают, выдвигая гипотезы

Внимательно слушают, читают определение на раздаточных листках

Выдвижение и проверка гипотез.

Слайд на доске

Чтобы запереть чемодан с кодовым замком, состоящий из двух каких-либо цифр. Хозяин чемодана решил использовать только цифры 1, 2 и 3. Сколькими способами он может выбрать код?

Решить эту задачу можно с помощью древа возможных вариантов или перебора всех возможных вариантов

Внимательно слушают, смотрят слайд, думают, запоминают.

Смысловое чтение.

Слайд на доске:

Решение древом возможных

Вариантов

ДЕРЕВО ВОЗМОЖНЫХ ВАРИАНТОВ Часто процесс перебора удобно осуществлять путем построения специальной схемы - так называемого дерева возможных вариантов

    изобразите корень дерева, для этого поставьте знак *.

    Чтобы выбрать первую цифру кода, у нас есть три варианта: 1; 2; 3. Поэтому от корня дерева проведите три ветви и на их концах поставите цифры 1; 2; 3.

    Для выбора второй цифры есть те же три варианта. Проводим «веточки»

Анализ объекта.

Слайд на доске:

Решение перебором

Подходящие коды - это двузначные числа, которые можно составить из цифр

1, 2, 3. Будем выписывать все такие цифры в порядке возрастания. Такой способ перебора позволит нам не пропустить никакой из кодов и в то же время не повторить ни один из них.

С начало запишем в порядке возрастания все коды, начинающиеся с цифры 1: 11, 12, 13. Затем запишем в порядке возрастания коды, начинающиеся с цифры 2: 21, 22, 23.

Затем запишем в порядке возрастания коды, начинающиеся с цифры 3: 31, 32, 33

Таким образом, имеется 9 способов выбора

кода: 11, 12, 13, 21, 22, 23, 31, 32, 33.

Внимательно слушают, смотрят слайды, думают, анализируют, классифицируют, запоминают.

Анализ объекта.

Выбор оснований критериев для сравнения, сериации, классификации объектов.

Создание и преобразование модели и схемы для решения задач в зависимости от конкретных условий.

Закрепления новых знаний

Показать практическое применение теоретических знаний

через их применение в решении практических задач

Слайд на доске с условием задачи №1

В столовой на завтрак можно выбрать пиццу, плюшку, бутерброд, а запить их можно чаем, соком. Из скольких вариантов завтрака можно выбирать?

Слайд на доске с решением

На слайде изображено дерево возможных вариантов

    первый уровень «НАПИТКИ»

два варианта: ЧАЙ, СОК.

    второй уровень три варианта: ПИЦЦА, ПЛЮШКА, БУТЕРБРОД.

Итого шесть ВАРИАНТОВ завтрака:

ЧАЙ+ПИЦЦА, ЧАЙ+ПЛЮШКА, ЧАЙ+БУТЕРБРОД, СОК+ПИЦЦА, СОК+ПЛЮШКА, СОК+БУТЕРБРОД.

Внимательно слушают, смотрят слайды, думают, анализируют, классифицируют, запоминают.

Знакомство с профессиями.

Анализ объекта.

Выбор оснований критериев для сравнения, сериации, классификации объектов.

Создание и преобразование модели и схемы для решения задач в зависимости от конкретных условий.

Слайд на доске с условием задачи №2

Из страны «Математика» в страну «Литература» ведут три дороги, а из страны «Литература» в страну «Физкультура» - четыре дороги. Сколькими способами можно попасть из страны «Математика» в

Страну «Физкультура» через страну «Литература»?

Слайд на доске с решением

Рисунок поможет нам решить эту задачу.

Переберём все «ПУТИ»

Обозначим дороги идущие из страны «МАТЕМАТИКА» так: М1, М2, М3,

а из «ЛИТЕРАТУРА» Л1, Л2, Л3,Л4.

Переберём М1+Л1, М1+Л2, М1+Л3,М1+Л4, М2+Л1, М2+Л2, М2+Л3,

М2+Л4, М3+Л1, М3+Л2, М3+Л3, М3+Л4

Натолкнуть

Детей на мысль о перемножении Количества дорог

А можно взять и перемножить количество дорог 3*4 =12

Внимательно слушают, смотрят слайды, думают, анализируют, классифицируют, запоминают.

Знакомятся с моделями и схемами для решения задач в зависимости от конкретных условий.

Слайд на доске с условием задачи №3

Шифр сейфа составляют из букв и цифр, причём на первом месте ставится буква (например А7). Сколько различных вариантов шифра можно составить, используя буквы А, В, С и цифры 3, 7, 9?

Слайд на доске с решением

2)Чтобы выбрать букву кода, у нас есть три варианта: А; B ; C . Поэтому от корня дерева проведены три ветви и на их концах поставлены буквы: А; B ; C .

3)Для выбора цифры есть те же три варианта. Проводим «веточки»

Двигаясь от корня дерева по ветвям, мы получим все возможные коды

А3, А7, А9, В3, В7, В9, С3, С7, С9

Или Всего 3*3=9 вариантов

Внимательно слушают, смотрят слайды, думают, анализируют, классифицируют, запоминают.

Знакомятся с моделями и схемами для решения задач в зависимости от конкретных условий.

Слайд на доске с условием задачи №4

Несколько стран в качестве символа своего государства решили использовать флаг в виде трёх горизонтальных полос одинаковых по ширине, но разных по цвету: белый, синий, красный. Сколько стран могут использовать такую символику при условии, что у каждой страны свой, отличный от других, флаг?

Слайд на доске с решением

Первый способ: обозначим цвета полосок первыми буквами названий цветов

Б – белый, К – красный, С – синий.

Решим перебором:

БСК, БКС, СБК, СКБ, КБС, КСБ

Всего шесть вариантов.

Второй способ:

Берем карандаши и рисуем флаги

Внимательно слушают, смотрят слайды, думают, анализируют, классифицируют, запоминают.

Знакомятся с моделями и схемами для решения задач в зависимости от конкретных условий.

Слайд на доске с условием задачи №5

В семье 4 человек, и за столом в кухне стоят 4 стула. В семье решили каждый вечер, ужиная, рассаживаться на эти 4 стула по новому. Сколько дней члены семьи смогут делать это без повторений?

Слайд на доске с решением

Второй способ решения

Для наглядности раскрасим стулья разными цветами.

Зафиксируем красный стул вверху и, будем переставлять остальные три, получим шесть вариантов.

Эту же операцию проделаем с остальными цветами, получим 6*4=24 различных вариантов.

Второй способ:

На первый стул может сесть любой член семьи, т. е. 4 варианта; на второй – 3 человека так, как один член семьи уже сидит; на третий – 2 человека так, как

двое сидят; на четвёртый только один так, как три члена семьи уже сидят.

Итак, перемножим все варианты

4*3*2*1= 24

Внимательно слушают, смотрят слайды, думают, анализируют, классифицируют, запоминают.

Знакомятся с моделями и схемами для решения задач в зависимости от конкретных условий.

Слайд на доске с условием задачи №6

Вася решил пойти на новогодний

карнавал в костюме мушкетёра. В ателье проката ему предложили на выбор: три вида брюк, два камзола, три шляпы. Сколько различных карнавальных костюмов можно составить из этих предметов?

Слайд на доске с решением

Обозначим: первую шапку Ш1, вторую – Ш2, третью – Ш3

1) на слайде изображён корень дерева, в виде знака *.

2) первый уровень трое брюк;

3) второй уровень два камзола;

4) третий уровень три шапки;

Всего 18 вариантов

Или просто перемножить «уровни»

3*2*3=18

Внимательно слушают, смотрят слайды, думают, анализируют, классифицируют, запоминают.

Знакомятся с моделями и схемами для решения задач в зависимости от конкретных условий.

Слайд на доске с условием задачи №7

При встрече 7 гномов обменялись рукопожатиями. Сколько всего было сделано рукопожатий?

Семь гномов решили обменяться фотографиями. Сколько нужно фотографий?

Слайд на доске с решением: а)

Слайд на доске с решением: б)

Эти две задачи очень похожи, но всё-таки они разные

При решении таких задач лучше использовать таблицу.

1)Нарисуем таблицу 8*8, первая строка и первый столбец это гномы.

2)Вычеркнем диагональ таблицы так, как гном сам с собою не может поздороваться.

3) Ячейки это кто с кем поздоровался.

4) Нижняя часть таблицы повторяет верхнюю.

Первый гном поздоровался со вторым = второй гном поздоровался с первым.

Всего 21 рукопожатие.

Задача б) отличается от а) тем, что нужно

учитывать нижнюю часть таблицы так, как

первый гном подарил фото второму, НЕРАВНО второй гном подарил фото первому.

Всего 42 фото.

Внимательно слушают, смотрят слайды, думают, анализируют, классифицируют, запоминают.

Знакомятся с моделями и схемами для решения задач в зависимости от конкретных условий.

Систематизации знаний

Систематизировать методы решений комбинаторных задач.

Слайды на доске

И следующий слайд,

Слайды решений задачи №7

Мы познакомились с тремя методами решения 1) древо вариантов; 2) перебор;

3) табличное представление данных

Внимательно слушают, смотрят слайды, думают, анализируют, классифицируют, запоминают.

Систематизация знаний по трём

методам.

Усвоения новых знаний

Дать определе-

ние комбинаторных задачач.

Слайд на доске

Попросить детей своими словами определить понятие «Комбинаторные задачи»

Отвечают на вопрос

Установление аналогий.

Умение классифициро

вать.

Определить три метода решения задач этого типа.

Следующий слайд;

Слайд решения задачи №7

Попросить детей своими словами рассказать о трёх методах решения

комбинаторных задач

Отвечают на вопрос

Умение классифициро

вать.

Выбор наиболее эффективных способов решения задач в зависимости от конкретных решений

Сделать вывод о многовариантном решении комбинаторных задач

Слайд

Спросить у детей, как вы думаете все ли комбинаторные задачи можно решить разными методами?

После показа слайда физкульт. минутка (к доске вызываются 3 ученика и разными способами рассаживаются за парту)

Отвечают на вопрос

Создавать модели и схемы для решения задач в зависимости от конкретных условий

Рефлек

сии

Провести самостоятельную работу в группах, в малых группах, индиви- дуально.

диагонали

пополам

равны

под прямым углом

да

Да

да

На парте у каждого лист (формата А4) с семью задачами (приложение№1)

Слайд с ответами

Таблица на доске (ответы команд)

Коман-

да №1

Коман-

да №2

7 а

7 б

Из класса выбираются две команды по 8 -12 человек. Даётся им задание:

  1. Распределиться по задачам: на одну задачу по одному или по двое учеников.

  2. На решение отводится не более 7 минут

Примечание: создать команды может учитель, распределение по задачам нет, только дети сами должны распределиться за 1 минуту. Если не смогут, то по местоположению детей, ученик получит свою задачу.

  1. за каждую правильно решенную

задачу команда получит 1 балл

  1. проверяет класс: на доске выписываются ответы команд. Дети решавшие свою задачу говорят ответ дежурный записывает его

  2. правильные ответы на слайде

Ученики, которые не задействованы в командах, решают по своему выбору и любое количество задач из семи

Выполняют самостоятельную работу в коллективе, в парах, индивидуально.

Сочетание индивидуальной самостоятельной работы и сотрудничество в коллективе

Объяснения домашнего задания

Обеспече

ние понимания детьми цели, содержания и способов выполне

ния домашнего задания.

У каждого ученика на парте лежит текст этого домашнего

задания.

Проектное домашнее задание

Придумать каждому по три

любые комбинаторные задачи.

Группа не более 5 человек

Эти задачи мы (Учитель и ученики) будем использовать в дальнейшем в конкурсах викторинах, и не только внутри класса, но и школы.

То есть создадим банк «Задач для викторин»

Продумывают условия выполнения д/з:

1)индивидуально или в группе;

2) что использовать при составлении задач, какие ресурсы.

Саморегуля

ция, развитие самосознания, ответствен

ного отношения


Приложение №1

Задача №1

В столовой на завтрак можно выбрать булочку, пирожок с капустой, пирожок с картошкой, бутерброд, а запить их можно чаем, компотом. Из скольких вариантов завтрака можно выбирать?

Задача №2

Из страны «Математика» в страну «Литература» ведут четыре дороги, а из страны «Литература» в страну «Физкультура» - пять дорог. Сколькими способами можно попасть из страны «Математика» в

страну «Физкультура» через страну «Литература»?

Задача №3

Шифр сейфа составляют из букв и цифр, причём на первом месте ставится буква (например А7). Сколько различных вариантов шифра можно составить, используя буквы А, M , F и цифры 1, 4, 6, 9?

Задача №4

Несколько стран в качестве символа своего государства решили использовать флаг в виде четырёх горизонтальных полос одинаковых по ширине, но разных по цвету: белый, синий, красный, зелёный. Сколько стран могут использовать такую символику при условии, что у каждой страны свой, отличный от других, флаг?

Задача №5

В семье 5 человек, и за столом в кухне стоят 5 стульев. В семье решили каждый вечер, ужиная, рассаживаться на эти 5 стульев по новому. Сколько дней члены семьи смогут делать это без повторений?

Задача №6

Вася решил пойти на новогодний карнавал в костюме мушкетёра. В ателье проката ему предложили на выбор: четыре вида брюк, два камзола, две шляпы. Сколько различных карнавальных костюмов можно составить из этих предметов?

Задача №7

При встрече 4 гнома обменялись рукопожатиями. Сколько всего было сделано рукопожатий?

Пять гномов решили обменяться фотографиями. Сколько нужно фотографий?

Приложение №2

Домашнее задание (Проектная деятельность)

Проектное домашнее задание

Придумать каждому по три

любые комбинаторные задачи.

При придумывании задач можно использовать: Учебник «Виленкин. Математика 5; другие книги; ресурсы интернета.

Можно объединяться в группы, но условие,

каждый ученик по три задачи остаётся.

Группа не более 5 человек

3) УМК « Дорофеев Математика 5»;

4) Ресурсы Интернета (gif1000)

В этом параграфе мы рассмотрим еще несколько комбинаторных задач, при решении которых будем пользоваться установленными выше формулами и правилами.

Пример 1. В некотором государстве каждые два человека отличаются набором зубов. Каково максимально возможное число жителей этого государства, если наибольшее число зубов у человека равно 32?

Решение. Эту задачу можно решить двумя способами. Первый способ заключается в том, что мы сначала ищем, сколько людей может иметь зубов, а потом просуммируем полученные результаты от до . Ясно, что мест из 32 можно выбрать способами. Поэтому ровно k зубов имеют не более чем жителей. А тогда общее число жителей не превосходит

Полученный этим способом ответ оказался очень громоздким. Выгоднее избрать другой путь, которым мы уже пользовались при решении примера 5 в § 2, - применить метод индукции.

Если речь идет об одном зубе, то возможны только два человека - один с зубом и второй без него. При двух зубах число возможных наборов зубов становится равным четырем: нет ни одного зуба, есть первый, есть второй и есть оба.

Увеличив число зубов до трех, мы удвоим число возможностей и получим восемь различных наборов. Действительно, каждый из рассмотренных наборов двух зубов может встретиться дважды - когда нет третьего зуба и когда он есть.

Обозначим число возможных наборов зубов через . Предыдущими рассуждениями мы доказали, что Допустим, что для некоторого справедливо равенство и докажем, что аналогичное равенство справедливо и для случая зубов. Среди всех различных наборов, входящих в имеется ровно наборов, в которых отсутствует (к зуб, и столько же наборов, в которых зуб имеется. Поэтому

Таким образом, при возможных зубах число всех людей, отличающихся набором зубов, равно . В нашем случае поэтому мы получаем Как известно, . Поэтому , так что возможное население этого государства больше нынешнего населения всего земного шара.

Заметим, что полученный нами результат на самом деле дает больше, чем только оценку возможного населения забавного государства. Сравнивая полученное значение с написанным выше выражением как суммы сочетаний, мы приходим к формуле:

Более того, из приведенного выше доказательства по индукции вытекает, что аналогичное равенство справедливо при любом то есть что имеет место формула

Пример 2. Дана прямоугольная сетка квадратов размером . Каково число различных дорог на этой сетке, ведущих из левого верхнего угла в правый нижний (рис. 46)? (Все звенья дороги предполагаются идущими или вправо, или вниз - без возвращений;

сходная ситуация возникает, скажем, при выборе одного из кратчайших маршрутов между двумя городскими перекрестками.)

Решение. Всякая дорога представляет собой ломаную, содержащую горизонтальных и вертикальных звеньев, то есть состоящую из звеньев. Различные дороги отличаются одна от другой лишь порядком чередования горизонтальных и вертикальных звеньев. Поэтому число возможных дорог равно числу способов, которыми можно выбрать вертикальных отрезксв из общего числа отрезков, а следовательно, есть

Можно было бы рассматривать число способов выбора не вертикальных, а горизонтальных отрезков и тогда мы получили бы ответ Но формула (9) из § 3 показывает, что

Полученный результат можно использовать для вывода еще одной интересной формулы. Пусть наша сетка является квадратной, то есть имеет размеры Тогда из приведенного выше решения следует, что число различных дорог, соединяющих левый верхний угол с правым нижним, равно .

Вместе с тем число этих дорог можно подсчитать иначе. Рассмотрим диагональ, идущую из нижнего левого угла в верхний правый, и обозначим вершины, лежащие на этой диагонали, через . Так как каждая дорога обязательно проходит через одну - и притом единственную точку этой диагонали, то общее число дорог есть сумма числа дорог, идущих через точку через точку через точку через точку .

Найдем число возможных дорог, идущих через точку Если нумерация точек произведена снизу вверх, как

это показано на рис. 47, то точка отстоит от нижней горизонтали на расстоянии считая за единицу измерения длину стороны квадрата сетки. От правой вертикали ее отделяют тогда горизонтальных отрезка.

Дорог, соединяющих верхний левый угол с точкой будет тогда а дорог, соединяющих точку с нижним правым углом, будет (это видно из рассмотрения равных прямоугольников, противоположными вершинами которых служат верхний левый угол исходного квадрата и точка и соответственно точка и нижний правый угол квадрата). Поэтому общее число дорог, соединяющих верхний левый угол с нижним правым и проходящих через равно Но тогда общее число всех дорог равно сумме

Сравнивая полученную сумму с найденным выше выражением для числа дорог, мы придем к формуле:

Пример 3. Шесть пассажиров садятся на остановке в трамвайный поезд, состоящий из трех трамвайных вагонов. Каким числом различных способов могут они распределиться в вагонах?

Решение. Прежде всего необходимо указать, что задача сформулирована недостаточно точно и допускает два различных толкования. Нас может интересовать или только число пассажиров в каждом вагоне или же кто именно в каком вагоне находится. Рассмотрим обе возможные формулировки.

Сначала рассмотрим случай, когда учитывается, кто в каком вагоне находится, то есть когда случаи «пассажир А в первом вагоне, а пассажир В - во втором» и «пассажир В в первом вагоне, а пассажир А - во втором» считаются различными.

Здесь мы имеем размещения с повторениями из трех элементов по шесть элементов: для каждого из шести пассажиров имеются три возможности. Пользуясь формулой (1) из § 4, получаем, что число различных способов, которыми шесть пассажиров могут распределиться в трех вагонах, равно:

Иной результат получится в том случае, если нас интересует лишь число пассажиров в каждом вагоне, так что случай «один пассажир в первом вагоне и один во втором» является единственным, независимо от того, кто из пассажиров где находится. Здесь нужно

Но подсчитывать уже не размещения, а Сочетания с повторениями. По формуле (4) из §4 находим, что число различных способов распределения пассажиров в этом случае равно

Пример 4. Сколькими способами можно распределить 28 костей домино между 4 игроками так, чтобы каждый получил 7 костей?

Решение. Первый игрок может выбрать 7 костей способами. После этого второй игрок должен выбрать 7 костей из оставшихся 21 кости. Это можно сделать способами. Третий игрок может выбрать кости Си способами, а четвертый - способом. Всего получаем

способов раздела костей.

Эту задачу можно решить иначе. Упорядочим все кости и отдадим первые 7 костей первому игроку, вторые 7 костей - второму игроку и т. д. Так как 28 костей можно упорядочить 28! способами, то получаем 28! способов раздела. Но некоторые из этих способов приводят к одинаковым результатам - игрокам неважно, в каком порядке приходят к ним кости, а важно лишь, какие именно кости они получат. Поэтому результат не изменится, если мы как угодно переставим друг с другом первые 7 костей, потом вторые 7 костей и т. д. Первые 7 костей можно переставить 7! способами, вторые 7 костей - тоже 7! способами и т. д. Всего получим перестановок, дающих то же распределение костей, что и данная. Поэтому число способов раздела костей равно

Пример 5. Сколькими способами можно разделить 40 яблок между 4 мальчиками (все яблоки считаются одинаковыми)?

Комбинаторикой называется раздел математики, изучающий вопрос о том, сколько комбинаций определенного типа можно составить из данных предметов (элементов).

Правило умножения (основная формула комбинаторики)

Общее число способов, которыми можно выбрать по одному элементу из каждой группы и расставить их в определенном порядке (то есть получить упорядоченную совокупность ), равно:

Пример 1

Монету подбросили 3 раза. Сколько различных результатов бросаний можно ожидать?

Решение

Первая монета имеет альтернативы – либо орел, либо решка. Для второй монеты также есть альтернативы и т.д., т.е. .

Искомое количество способов:

Правило сложения

Если любые две группы и не имеют общих элементов, то выбор одного элемента или из , или из , …или из можно осуществить способами.

Пример 2

На полке 30 книг, из них 20 математических, 6 технических и 4 экономических. Сколько существует способов выбора одной математической или одной экономической книги.

Решение

Математическая книга может быть выбрана способами, экономическая - способами.

По правилу суммы существует способа выбора математической или экономической книги.

Размещения и перестановки

Размещения – это упорядоченные совокупности элементов, отличающиеся друг от друга либо составом, либо порядком элементов.

Размещения без повторений , когда отобранный элемент перед отбором следующего не возвращается в генеральную совокупность. Такой выбор называется последовательным выбором без возвращения, а его результат – размещением без повторений из элементов по .

Число различных способов, которыми можно произвести последовательный выбор без возвращения элементов из генеральной совокупности объема , равно:

Пример 3

Расписание дня состоит из 5 различных уроков. Определите число вариантов расписания при выборе из 11 дисциплин.

Решение

Каждый вариант расписания представляет набор 5 дисциплин из 11, отличающихся от других вариантов как составом, так и порядком следования. поэтому:

Перестановки – это упорядоченные совокупности, отличающиеся друг от друга только порядком элементов. Число всех перестановок множества из элементов равно

Пример 4

Сколькими способами можно рассадить 4 человек за одним столом?

Решение

Каждый вариант рассадки отличается только порядком участников, то есть является перестановкой из 4 элементов:

Размещения с повторениями , когда отобранный элемент перед отбором следующего возвращается в генеральную совокупность. Такой выбор называется последовательным выбором с возвращением, а его результат - размещением с повторениями из элементов по .

Общее число различных способов, которыми можно произвести выбор с возвращением элементов из генеральной совокупности объема , равно

Пример 5

Лифт останавливается на 7 этажах. Сколькими способами могут выйти на этих этажах 6 пассажиров, находящихся в кабине лифта?

Решение

Каждый из способов распределения пассажиров по этажам представляет собой комбинацию 6 пассажиров по 7 этажам, отличающуюся от других комбинаций как составом, так и их порядком. Так как одном этаже может выйти как один, так и несколько пассажиров, то одни и те же пассажиры могут повторяться. Поэтому число таких комбинаций равно числу размещений с повторениями из 7 элементов по 6:

Сочетания

Сочетаниями из n элементов по k называются неупорядоченные совокупности, отличающиеся друг от друга хотя бы одним элементом.

Пусть из генеральной совокупности берется сразу несколько элементов (либо элементы берут последовательно, но порядок их появления не учитывается). В результате такого одновременного неупорядоченного выбора элементов из генеральной совокупности объема получаются комбинации, которые называются сочетаниями без повторений из элементов по .

Число сочетаний из элементов по равно:

Пример 6

В ящике 9 яблок. Сколькими способами можно выбрать 3 яблока из ящика?

Решение

Каждый вариант выбора состоит из 3 яблок и отличается от других только составом, то есть представляет собой сочетания без повторений из 9 элементов:

Количество способов, которыми можно выбрать 3 яблока из 9:

Пусть из генеральной совокупности объема выбирается элементов, один за другим, причем каждый отобранный элемент перед отбором следующего возвращается в генеральную совокупность. При этом ведется запись, какие элементы появились и сколько раз, однако порядок их появления не учитывается. Получившиеся совокупности называются сочетаниями с повторениями из элементов по .

Число сочетаний с повторениями из элементов по :

Пример 7

На почте продают открытки 3 видов. Сколькими способами можно купить 6 открыток?

Это задача на отыскание числа сочетаний с повторениями из 3 по 6:

Разбиение множества на группы

Пусть множество из различных элементов разбивается на групп так, то в первую группу попадают элементов, во вторую - элементов, в -ю группу - элементов, причем . Такую ситуацию называют разбиением множества на группы.

Число разбиений на групп, когда в первую попадают элементов, во вторую - элементов, в k-ю группу - элементов, равно:

Пример 8

Группу из 16 человек требуется разбить на три подгруппы, в первой из которых должно быть 5 человек, во второй – 7 человек, в третьей – 4 человека. Сколькими способами это можно сделать?

Класс: 5

В данной статье рассмотрим один из уроков в курсе математики 5 класса, посвященного знакомству с комбинаторикой.

Цели урока.

Образовательные :

Познакомить учащихся с новым типом задач (комбинаторные задачи), приемами их решения – перебор возможных вариантов, построение дерева возможных вариантов, применение правила умножения;

Ввести новое понятие – факториал, закрепить его при решении задач, примеров, уравнений.

Воспитательные :

Формирование уважения к товарищам, умения слушать и слышать собеседника

Формирование отношения к дружбе как одной из важнейших человеческих ценностей.

Развивающие :

Формирование интереса к предмету;

Формирование вычислительных навыков;

Развитие логического мышления;

Формирование умения доказывать, обосновывать свое мнение.

Ход урока

1. Организационный момент

Учитель: Сегодня у нас с вами необычный урок. Мы будем решать задачи, связанные с одним из интереснейших разделов математики – комбинаторикой. В науке и в реальной жизни очень часто приходится решать задачи, главным вопросом которых является вопрос “Сколькими способами это можно сделать?”. Например:

Сколькими способами можно поставить ученику оценку на уроке?

Сколькими способами можно назначить дежурного в классе?

Сколькими способами можно назначить двух дежурных в классе?

Решая такие задачи, приходится составлять различные комбинации из конечного числа элементов и подсчитывать число комбинаций. Такие задачи получили название комбинаторных задач, а раздел математики, в котором рассматриваются подобные задачи, называют комбинаторикой. А какой еще теме будет посвящен урок, вы узнаете, когда мы проверим, как вы справились с выполнением домашнего задания.

2. Проверка выполнения домашнего задания

(На предыдущем уроке домашнее задание составляется таким образом, чтобы заданий было ровно 6. Например, в учебнике Виленкина Н.Я. и др. это могут быть № 693(а, в), 735(1), 765(а,б,в))

На доске – таблица и закрепленные магнитами карточки. На карточках с одной стороны – ответ к заданию из домашней работы, с другой стороны – буква.

Учитель: Проверим домашнюю работу. Откройте тетради, возьмите карандаши. Найдите ответы к номерам домашней работы.

Учащиеся выходят к доске по одному, выбирают карточку с ответом и прикрепляют ее в ячейку таблицы под номером задания. Сначала карточки закрепляют в клетках таблицы вверх стороной, на которой записан ответ, чтобы учащиеся могли проверить правильность выполнения домашней работы. Остальные проверяют свои ответы в тетрадях.

№ упражнений 693(а) 693(в) 735(1) 765(а) 765(б) 765(в)
Ответы 25 13 6 182 000 6 300 65 000

Варианты ответов (располагаются на разных сторонах карточек). Карточек делают заведомо избыточное количество, чтобы часть ответов была неверной.

д р у ж б а м п о
25 13 6 182 000 6 300 65 000 49 12 18 200

“5” - если все верно

“4” - если одна ошибка

“3” - 2-3 ошибки

“2” - больше 3 ошибок

Учитель: Перевернем карточки, какое слово получили? (ДРУЖБА). Действительно, сегодня на уроке мы будем не только решать математические задачи, совершенствовать навыки вычислений, но и говорить о дружбе.

3. Новый материал.

Учитель: Итак, мы уже сказали, что будем сегодня учиться решать задачи, главным вопросом которых является вопрос “Сколькими способами..”.

Имеются три слова “ДРУЖБА”, “ДЕЛО”, “ЛЮБИТ” (нарезать листочки с этими словами – по 7 карточек на каждое слово). Сколькими способами из этих слов можно составить фразу?

Учащиеся предлагают варианты, эти варианты составляют на доске.

Ответ: 6 способов.

Учитель: Как вы думаете, какой вариант является верным с точки зрения русского языка? (Дружба любит дело). Как вы понимаете это высказывание?

Учитель: Здесь был приведен полный перебор всех возможных вариантов, или, как обычно говорят, всех возможных комбинаций. Поэтому это комбинаторная задача. Давайте подумаем, как можно записать, оформить решение этой задачи.

1 способ. Обозначим предложенные слова заглавными буквами:

ДРУЖБА – Д

ЛЮБИТ – Л

ДЕЛО – Е (возьмем вторую букву этого слова)

Тогда все названные вами способы можно просто перечислить: ДЛЕ, ДЕЛ, ЛДЕ, ЛЕД, ЕДЛ, ЕЛД.

Оказывается, решение можно оформить в виде модели, которую называют деревом возможных вариантов. Она, во-первых, наглядна, как всякая картинка, и, во-вторых, позволяет все учесть, ничего не пропустив,

Учащиеся под руководством учителя составляют схему:

Способ 3 (рассуждение)

На первом месте может стоять одно из трех слов: ДРУЖБА, ЛЮБИТ, ДЕЛО. Если первое слово выбрано, то на втором месте может стоять одно из двух оставшихся слов, а на третьем месте – только одно оставшееся слово. Значит, всего вариантов: .

Заметим, что последний прием называется правилом умножения.

У каждого из этих трех способов есть свои преимущества и свои недостатки (обсудить) Выбор решения – за вами! Отметим все же, что правило умножения позволяет в один шаг решать самые разнообразные задачи.

У Ани 3 подруги, и она каждой из них купила по шоколадке и хочет подарить их к празднику. Сколькими способами она может это сделать?

Решение: Решение выполняют на доске ученики (решение выполняется 3 способами)

В компании друзей – 6 человек: Андрей, Борис, Витя, Гриша, Дима, Егор. В школьной столовой за столом 6 стульев. Друзья решили каждый день, завтракая, рассаживаться на эти 6 стульев по-разному. Сколько раз они смогут это сделать без повторений?

Учитель: Какой способ мы выберем? (Учащиеся под руководством учителя должны придти к выводу, что это третий способ – правило умножения).

Решение оформляет на доске ученик.

Для удобства рассуждений будем считать, что друзья усаживаются за стол поочередно. Будем считать, что первой усаживается за стол Андрей. У него 6 вариантов выбора стула. Вторым усаживается Борис, и независимо выбирает стул из 5 оставшихся. Витя делает свой выбор третьим и на выбор у него будет 4 стула. У Гриши будет уже 3 варианта, у Димы – 2, у Егора – 1. По правилу умножения получаем:

Ответ – 720 дней или почти 2 года.

Учитель: Как мы видим, условия задач разные, а решения, по сути дела, одинаковы. Удобно, поэтому ввести и одинаковые обозначения для этих ответов.

Определение: произведение всех натуральных чисел от 1 до п включительно называется п – факториал и обозначается символом п!

Знак п ! читается “Эн факториал”, что в дословном переводе с английского языка обозначает “состоящий из п множителей”. Отметим важную особенность этой величины – ее быстрый рост.

Вычислите:

а) 1!; б) 2!; в) 3!; г) 4!; д) 5!; е)10!

Считают, что 0! =1 (записать)

Задача 5.

Учитель: ДРУЖБА – одно из важнейших богатств, которое может быть у человека. Недаром о дружбе слагаются стихи и песни, сочиняют пословицы и поговорки. Какие пословицы и поговорки о дружбе вы знаете?

Друзья познаются в беде.
Не имей сто рублей, а имей сто друзей.
Один в поле не воин.
Сам погибай, а товарища выручай.
Старый друг лучше новых двух.
Без друга в жизни туго.

Молодцы! Для каждого человека очень важно, чтобы у него были хорошие, настоящие друзья. Давайте решим несколько примеров с применением нового понятия – факториал, и узнаем новую пословицу о дружбе.

7!+ 8! – (13 - 5) 2 6! – 5!

Карточки с ответами выполняют с запасом (есть карточки с числами, не являющимися ответами).

Таблица после заполнения:

7!+ 8! – (13 - 5) 2 6! – 5!
5048 40256 600 24 7
Нет друга - ищи, а нашел - береги

Задание 6.

К Васе в гости пришли 4 друзей, и они собираются смотреть новый фильм. У Васи в комнате есть кресло и еще он принес 4 стула из кухни. Кресло он, несомненно, займет сам, а на стульях рассадит своих друзей. Вася подсчитал, что рассадить друзей он сможет 24 способами.

Учитель: Правильно ли рассчитал Вася? (Да, с точки зрения математики)

Хорошо ли он поступил? (Обсуждается моральный аспект проблемы)

4. Физкультурная минутка.

Учитель: А теперь давайте немного отдохнем, а для этого проведем физкультурную минутку. Если я правильно прочитаю выражение, то вы встаете и поднимаете руки вверх, а если неправильно – садитесь, руки в бок.

Встали. Начинаем, будьте внимательны.

Выражение Слова учителя Верно / неверно
5! +3 Сумма 5! и 3 +
2 – 7! Произведение 2 и 7! -
4х: 2! Частное 4х и 2! +
5! + 7! + 3! Сумма 5!, 7! и 3! +
20! - 19! Частное 20! и 19! -

6. Самостоятельная работа.

Учитель: Ну, а теперь, когда мы хорошо отдохнули, давайте проверим, что мы научились делать сегодня на уроке. Для этого выполним самостоятельную работу.

Вариант 1 Вариант 2
1. В 5 классе в среду 5 уроков: математика, русский язык, литература, музыка и труд. Сколько вариантов расписания на день можно составить? 1. Шесть разных писем раскладывают в 6 разных конвертов. Сколько существует способов такого раскладывания?
2. Вычислите:

а) 6! – 2; б) 4! + (2+3) 2

2. Вычислите:

а) 3 2 + 5! б) (9-4) 2 + 4!

3. Сколькими способами 5 мальчиков могут занять очередь к билетной кассе, если первым все равно будет Толя? 3. Сколькими способами Даша может съесть обед, состоящий из первого, второго, третьего и пирожного, если первым она наверняка съест пирожное?

7. Домашнее задание.

Придумать, записать условия и решения 2 комбинаторных задач на тему “Семья”. Оформить на листах А4, можно выполнить рисунки к задачам.

8. Итог урока.

Давайте подведем итоги урока.

Что нового узнали? (Получили правило умножения, рассмотрели его геометрическую модель – дерево вариантов, ввели новое понятие – факториал)

Что понравилось?

Что запомнилось?

Оценки за урок.

Литература:

  1. Е.А.Бунимович, В.А. Булычев. Вероятность и статистика в курсе математики общеобразовательной школы: лекции 1- 4, 5 – 8. – М.: Педагогический университет “Первое сентября”, 2006.
  2. Виленкин Н.Я. Математика. 5 класс: учебник для общеобразоват. учреждений/ Н.Я.Виленкин и др. – М. : Мнемозина, 2009.
  3. Смыкалова Е.В. Дополнительные главы по математике для учащихся 5 класса. СПб: СМИО. Пресс, 2006.
  4. Мордкович А.Г. События. Вероятности. Статистическая обработка данных: Доп. Параграфы к курсу алгебры 7-9 кл. общеобразовательных учреждений / А.Г. Мордкович, П.В. Семенов. – М.: Мнемозина, 2006.


Понравилась статья? Поделитесь с друзьями!