Расщепление воды ультразвуком. Разрыв молекул воды и Закон сохранения энергии

В данной статье поговорим про разрыв молекул воды и Закон сохранения энергии. В конце статьи эксперимент для дома.

Нет никакого смысла изобретать установки и устройства по разложению молекул воды на водород и кислород не учитывая Закон сохранения энергии. Предполагается, что возможно создать такую установку, которая на разложение воды будет затрачивать меньшее количество энергии, чем та энергия, которая выделяется в процессе сгорания (соединения в молекулу воды). В идеале, структурно, схема разложения воды и соединение кислорода и водорода в молекулу будет иметь циклический (повторяющийся) вид.

Изначально, имеется химическое соединение – вода (H 2 O). Для её разложения на составляющие – водород (Н) и кислород (О) необходимо приложить определённое количество энергии. Практически, источником этой энергии может быть аккумуляторная батарея автомобиля. В результате разложения воды образуется газ, состоящий в основном из молекул водорода (Н) и кислорода (О). Одни, называют его «Газ Брауна», другие говорят, что выделяющийся газ, ничего не имеет общего с Газом Брауна. Думаю, нет необходимости рассуждать и доказывать, как называется этот газ, ведь это не важно, пускай этим занимаются философы.

Газ, вместо бензина поступает в цилиндры двигателя внутреннего сгорания, где посредством искры от свечей системы зажигания воспламеняется. Происходит химическое соединение водорода и кислорода в воду, сопровождаемое резким выделением энергии взрыва, заставляющего двигатель работать. Вода, образованная в процессе химического соединения, выпускается из цилиндров двигателя в виде пара через выпускной коллектор.

Важным моментом является возможность повторного использования воды для процесса разложения на составляющие – водород (Н) и кислород (О), образованной в результате сгорания в двигателе. Ещё раз посмотрим на «цикл» круговорота воды и энергии. На разрыв воды, которая находится в устойчивом химическом соединении, затрачивается определённое количество энергии. В результате сгорания, наоборот выделяется определённое количество энергии. Выделяемая энергия может быть грубо рассчитана на «молекулярном» уровне. Из-за особенностей оборудования, затрачиваемую на разрыв энергию рассчитать сложнее, её проще измерить. Если пренебречь качественными характеристиками оборудования, потерями энергии на нагрев, и другими немаловажными показателями, то в результате расчётов и измерений, если они проведены правильно, окажется, что затраченная и выделенная энергии равны друг другу. Это подтверждает Закон сохранения энергии, который утверждает, что энергия никуда не пропадает и не появляется «из пустоты», она лишь переходит в другое состояние. Но мы хотим использовать воду как источник дополнительной «полезной» энергии. Откуда эта энергия вообще может взяться? Энергия тратится не только на разложение воды, но и на потери, учитывающие КПД установки по разложению и КПД двигателя. А мы хотим получить «круговорот», в котором энергии больше выделяется, чем затрачивается.

Я не привожу здесь конкретные цифры, учитывающие затраты и выработку энергии. Один из посетителей моего сайта прислал мне на Майл книгу Канарёва, за что я ему очень благодарен, в которой популярно разложены «подсчёты» энергии. Книга является очень полезной, и пара последующих статей моего сайта будет посвящена именно исследованиям Канарёва. Некоторые посетители моего сайта утверждают, что я своими статьями противоречу молекулярной физике, поэтому в своих последующих статьях я приведу на мой взгляд — основные результаты исследований молекулярщика — Канарёва, которые моей теории не противоречат, а даже наоборот подтверждают моё представление о возможности низкоамперного разложения воды.

Если считать, что вода, используемая для разложения – это самое устойчивое, конечное химическое соединение, и её химические и физические свойства такие же, как у воды, высвобождаемой в виде пара из коллектора двигателя внутреннего сгорания, то какими производительными установки по разложению не были, нет смысла пытаться получать дополнительную энергию из воды. Это противоречит Закону сохранения энергии. И тогда, все попытки использовать воду в качестве источника энергии — бесполезны, а все статьи и публикации на эту тему не более чем заблуждения людей, или просто — обман.

Любое химическое соединение при определённых условиях распадается или соединяется вновь. Условием для этого может служить физическая среда, в которой находится это соединение – температура, давление, освещённость, электрическое, или магнитное воздействие, либо наличие катализаторов, других химических веществ, или соединений. Воду можно назвать аномальным химическим соединением, обладающую свойствами, не присущими всем остальным химическим соединениям. К этим свойствам (в том числе) относятся реакции на изменения температуры, давления, электрического тока. В естественных Земных условиях, вода – устойчивое и «конечное» химическое соединение. В этих условиях имеется определённая температура, давление, отсутствует какое либо магнитное, или электрическое поле. Существует много попыток и вариантов изменить эти естественные условия для того, чтобы разложить воду. Из них, наиболее привлекательно выглядит разложение посредством воздействия электрического тока. Полярная связь атомов в молекулах воды настолько сильна, что можно пренебречь магнитным полем Земли, которое не оказывает никакого влияния на молекулы воды.

Небольшое отступление от темы:

Есть предположение определённых деятелей науки, что Пирамиды Хеопса не что иное, как огромные установки для концентрации энергии Земли, которую неизвестная нам цивилизация использовала для разложения воды. Узкие наклонные тоннели в Пирамиде, назначение которых до настоящего времени не раскрыто, могли использоваться для движения воды и газов. Вот такое «фантастическое» отступление.

Продолжим. Если воду поместить в поле мощного постоянного магнита, ничего не произойдёт, связь атомов будет по-прежнему сильнее этого поля. Электрическое поле, образованное мощным источником электрического тока, приложенное к воде посредством электродов, погруженных в воду, вызывает электролиз воды (разложение на водород и кислород). При этом, затраты энергии источника тока огромны — не сопоставимы с энергией, которую можно получить от обратного процесса соединения. Здесь и возникает задача минимизировать затраты энергии, но для этого необходимо понять как происходит процесс разрыва молекул и на чём можно «сэкономить».

Для того, чтобы верить в возможность использования воды, как источника энергии мы должны «оперировать» не только на уровне единичных молекул воды, а так же на уровне соединения большого числа молекул за счёт их взаимного притяжения и дипольного ориентирования. Мы должны учитывать межмолекулярные взаимодействия. Возникает резонный вопрос: Почему? А потому, что перед разрывом молекул необходимо их сначала сориентировать. Это, так же является ответом на вопрос «Почему в обычной электролизёрной установке используется постоянный электрический ток, а переменный – не работает?».

В соответствии с кластерной теорией, молекулы воды имеют положительные и отрицательные магнитные полюса. Вода в жидком состоянии имеет не плотную структуру, поэтому молекулы в ней, притягиваясь разноимёнными полюсами и отталкиваясь одноимёнными, взаимодействуют друг с другом, образуя кластеры. Если для воды, находящейся в жидком состоянии, представить оси координат и попытаться определить в каком направлении этих координат больше ориентированных молекул, у нас ничего не получится, потому что ориентация молекул воды без дополнительного внешнего воздействия — хаотична.

В твёрдом состоянии (состоянии льда) вода имеет структуру упорядоченных и точно ориентированных определённым образом друг относительно друга молекул. Сумма магнитных полей шести молекул H 2 O в состоянии льда в одной плоскости равна нулю, а связь с соседними «шестёрками» молекул в кристалле льда приводит к тому, что в целом, в определённом объёме (куске) льда отсутствует какая либо «общая» полярность.

Если лёд растает от повышения температуры, то многие связи молекул воды в «решётке» разрушатся и вода станет жидкой, но всё равно «разрушение» будет не полным. Большое количество связей молекул воды в «шестёрки» сохранится. Такая талая вода называется «структурированной», является полезной для всего живого, но для разложения на водород и кислород не подходит потому, что необходимо будет тратить дополнительную энергию на разрыв межмолекулярных связей, затрудняющих ориентацию молекул перед их «разрывом». Значительная потеря кластерных связей в талой воде произойдёт позже, естественным путём.

Если в воде имеются химические примеси (соли, или кислоты), то эти примеси препятствуют соединению соседних молекул воды в кластерную решётку, отнимая у структуры воды водородные и кислородные связи, чем при низких температурах нарушают «твёрдую» структуру льда. Всем известно, что растворы кислотных и щелочных электролитов не замерзают при отрицательных температурах так же, как и солёная вода. Благодаря наличию примесей, молекулы воды становятся легко ориентируемыми под действием внешнего электрического поля. Это с одной стороны хорошо, не надо тратить лишнюю энергию на полярную ориентацию, но с другой стороны это плохо, потому, что эти растворы хорошо проводят электрический ток и в результате этого, в соответствии с Законом Ома, амплитуда тока необходимая на разрыв молекул оказывается значительной. Низкое межэлектродное напряжение приводит к низкой температуре электролиза, поэтому такая вода используется в электролизёрных установках, но для «лёгкого» разложения такая вода не годится.

Какая же вода должна применяться? Вода должна иметь минимальное количество межмолекулярных связей – для «лёгкости» полярной ориентации молекул, не должна иметь химических примесей, увеличивающих её проводимость – для уменьшения тока, используемого для разрыва молекул. Практически, такой воде соответствует дистиллированная вода.

Вы можете провести простой эксперимент сами

Налейте свеже-дистиллированную воду в пластиковую бутылку. Поместите бутылку в морозильную камеру. Выдержите бутылку около двух-трёх часов. Когда Вы достанете бутылку из морозильной камеры (трясти бутылкой нельзя), Вы увидите, что вода находится в жидком состоянии. Откройте бутылку и тонкой струйкой выливайте воду на наклонную поверхность из нетеплопроводного материала (например — широкую деревянную доску). На Ваших глазах вода будет превращаться в лёд. Если в бутылке осталась вода, закройте крышку, резким движением ударьте дном бутылки о стол. Вода в бутылке резко превратится в лёд.

Эксперимент может не получиться, если дистилляция воды была произведена более пяти суток назад, некачественно, или подвергалась тряске, в результате чего, в ней появились кластерные (межмолекулярные) связи. Время выдержки в морозильной камере, зависит от самой морозильной камеры, что так же может повлиять на «чистоту» эксперимента.

Этот эксперимент подтверждает, что минимальное количество межмолекулярных связей именно в дистиллированной воде.

Ещё один важный аргумент в пользу дистиллированной воды: Если Вы видели, как работает электролизёрная установка, то знаете, что использование водопроводной (даже очищенной через фильтр) воды загрязняет электролизёр так, что без регулярной его чистки снижается эффективность электролиза, а частая чистка сложного оборудования – лишние трудозатраты, да и оборудование из-за частых сборок – разборок придёт в негодное состояние. Поэтому даже и не думайте использовать для разложения на водород и кислород водопроводную воду. Стэнли Мэйер использовал водопроводную воду только для демонстрации, чтобы показать какая «крутая» у него установка.

Чтобы понять то, к чему нам необходимо стремиться, мы должны понять физику процессов, происходящих с молекулами воды во время воздействия электрического тока. В следующей статье мы вкратце, без «заумной нагрузки на мозг» ознакомимся с

Для этого нужен более сложный прибор - электролизер, который состоит из широкой загнутой трубки, наполненной раствором щелочи, в которую погружены два электрода из никеля.

Кислород будет выделяться в правом колене электролизера, куда подключен положительный полюс источника тока, а водород - в левом.

Это обычный тип электролизера, которым пользуются в лабораториях для получения небольших количеств чистого кислорода.

В больших количествах кислород получают в электролитических ваннах разнообразных типов.

Войдем в один из электрохимических заводов по производству кислорода и водорода. В огромных светлых залах-цехах строгими рядами стоят аппараты, к которым по медным шинам подводится постоянный ток. Это электролитические ванны. В них из воды можно получить кислород и водород.

Электролитическая ванна - сосуд, в котором параллельно друг другу расположены электроды. Сосуд наполняют раствором - электролитом. Число электродов в каждой ванне зависит от размера сосуда и от расстояния между электродами. По схеме включения электродов в электрическую цепь ванны делятся на однополярные (монополярные) и двухполярные (биполярные).

В монополярной ванне половина всех электродов подключается к положительному полюсу источника тока, а вторая половина - к отрицательному полюсу.

В такой ванне каждый электрод служит или анодом, или катодом, и на обеих сторонах его идет один и тот же процесс.

В биполярной ванне источник тока подключается только к крайним электродам, один из которых служит анодом, а другой - катодом. С анода ток поступает в электролит, через который он переносится ионами к близлежащему электроду и заряжает его отрицательно.

Проходя через электрод, ток снова входит в электролит, заряжая обратную сторону этого электрода положительно. Таким образом, проходя от одного электрода к другому, ток доходит до катода.

В биполярной ванне только анод и катод работают как монополярные электроды. Все же остальные электроды, расположенные между ними, являются с одной стороны катодами (-), а с другой стороны - анодами (+).

При прохождении электрического тока через ванну между электродами выделяются кислород и водород. Эти газы нужно отделить друг от друга и направить каждый по своему трубопроводу.

Существуют два способа отделения кислорода от водорода в электролитической ванне.

Первый из них заключается в том, что электроды отгораживаются друг от друга металлическими колоколами. Образующиеся на электродах газы поднимаются в виде пузырьков кверху и попадают каждый в свой колокол, откуда через верхний отвод направляются в трубопроводы.

Этим способом кислород легко отделить от водорода. Однако такое разделение приводит к излишним, непроизводительным затратам электроэнергии, так как электроды приходится ставить на большом расстоянии друг от друга.

Другой способ разделения кислорода и водорода при электролизе заключается в том, что между электродами ставится перегородка - диафрагма, которая является непроницаемой для пузырьков газа, но хорошо пропускает электрический ток. Диафрагма может быть сделана из плотно сотканной асбестовой ткани толщиной 1,5-2 миллиметра. Эту ткань натягивают между двумя стенками сосуда, создавая тем самым изолированные друг от друга катодные и анодные пространства.

Водород из всех катодных и кислород из всех анодных пространств поступают в сборные трубы. Оттуда по трубопроводам каждый газ направляется в отдельное помещение. В этих помещениях под давлением 150 атмосфер полученными газами наполняют стальные баллоны. Баллоны направляют во все уголки нашей страны. Кислород и водород находят широкое применение в различных областях народного хозяйства.

В отличие от традиционного топлива, которое выделяет вредные выхлопные газы, загрязняющие атмосферу и приводящие к изменению климатических условий, водородное топливо абсолютно безвредно для окружающей среды.

Почему все транспортные средства не используют водород в качестве топлива?

До сих пор экологически чистый процесс получения водорода требовал большого количества драгоценных металлов, что значительно повышает стоимость водородного топлива, особенно в сравнении с традиционным.

Путем химического взаимодействия атомов водорода с атомами кислорода, находящегося в воздухе, водородное топливо вырабатывает достаточно энергии для двигателя автомобиля, а «выхлопами» такого мотора становится чистая вода. Однако сегодня практически каждый «чистый» двигатель, который работает на водородном топливе, использует водород, полученный с помощью природного газа - процесс, экологическая чистота которого находится под сомнением.

Как получить «чистый» водород?

С помощью электрических потоков воду можно разделить на атомы кислорода и водорода. Этот процесс требует большого количества дорогих металлов, таких как платина или иридий, - они хорошо проводят электричество и не портятся, находясь в воде долгое время.

Процесс расщепления молекулы воды на атомы водорода и кислорода называется электролизом и проходит следующим образом: два электрода опускаются в воду, по ним проводится ток, под действием которого атомы водорода стремятся к отрицательно заряженному катоду, а атомы кислорода к положительно заряженному аноду.

Новый прорыв

Ученые из Стэндфордского университета провели уникальный эксперимент, в результате которого совершили процесс электролиза с помощью стандартных никелевых электродов под рекордно низким напряжением - обычная батарейка в 1.5 Вольт.

По данным ученых, конструкция электродов из никеля и его оксида позволила процессу успешно завершиться под таким низким напряжением. До этого никому не удавалось совершить подобное. Новая технология в промышленных масштабах поможет производителям водородного топлива значительно сэкономить на электричестве и проводниках. Сейчас ученые работают над тем, как увеличить продолжительность работы никелевых проводников в воде.

Подробности Опубликовано: 01.11.2015 11:03

Разработка недорогого метода создания чистого топлива для современных ученых является, чем-то вроде поисков философского камня для алхимиков прошлого. Но если у последних, судя по ценам на золото, в конечном итоге что-то не заладилось, то первые – добиваются определенных успехов в своих работах. Одним из таких способов может служить применение солнечного света, который расщепляет воду на ее составляющие – водород и кислород, а затем отделять водород и использовать его как топливо. Но процесс расщепления воды не так уж и прост.

Двое ученых из Института молекулярной инженерии (IME) и Висконсинского университета в Мадисоне серьезно продвинулись в деле создания «зеленого» топлива, значительно улучшив эффективность ключевых процессов и предложив несколько концептуально новых инструментов, которые позволят более широко применять технологии расщепления воды с помощью солнечного света. Результаты из работы опубликованы в журнале Nature Communications .

В своем исследовании, специалист в области электронных структур и симуляторов, профессор IME Джулия Галли (Giulia Galli) и профессор химии Кьйонг-Шин Чой (Kyoung-Shin Choi) Висконсинского университета нашли способ увеличить эффективность, с которой расщепляющий воду электрод адсорбирует фотоны света и, в то же время, улучшили поток электронов от одного электрода к другому. Симуляторы позволили им понять, что происходит на атомном уровне.

«Наши результаты вдохновят других исследователей в области поисков методов улучшения нескольких процессов с помощью одного подхода, - говорит Чой. – То есть, дело не только в достижении более высокой эффективности, но и создании новой стратегии в этом направлении».

Создавая электрод, который улавливает световое излучение, ученые стремились использовать как можно больше спектров солнечного света, способных возбудить электроны и преобразовать их в структуру, которая является оптимальной для реакции расщепления. Довольно важным моментом, хотя и свойственным для несколько другой области проблемы, является необходимость обеспечения легкого перемещения электронов между электродами, создающего электрический ток. До сих пор ученым приходилось прибегать к отдельным манипуляциям для улучшения адсорбции фотонов и движения электронов в тестируемых ими материалах.

Чой со своим коллегой доктором Тэ Ву Ким (Tae Woo Kim) пришли к заключению, что если нагреть электрод, изготовленный из материала на основе ванадата висмута , до 350 градусов Цельсия в азотной среде, некоторые частицы азота войдут в соединение с основным материалом. В результате была улучшена и адсорбция фотонов, и транспортировка электронов, однако, какое влияние на это оказывает азот, оставалось невыясненным. Было решено обратиться к Галли с тем, чтобы пролить свет на вопрос с помощью ее симуляторов.

С помощью тестов Галли обнаружилось, что азот воздействует на электроды несколькими способами. Нагревание в азотной среде способствует выделению атомов кислорода из ванадата висмута, создавая «дефекты», которые улучшают перенос электронов. Но позднее ученые выяснили, что помимо дефектов, перемещению заряженных частиц способствует также и сам азот, понижая порог энергии , необходимой для начала преобразования электрода в ту структуру, которая способна расщеплять воду. Это означает, что электроды могут использовать больше солнечной энергии.

«Теперь мы понимаем, что происходит на микроскопическом уровне», - отмечает Галли. – «Так что наша концепция внедрения носовых элементов и новых дефектов в материал может быть использована в других системах, в которых требуется улучшить эффективность. Более того, ее можно применять и в отношении других материалов».

Процессы, в которых теоретики и практики тесно взаимодействуют, являются естественными для науки. Но когда сотрудничество специалистов разных областей возникает на столь раннем этапе – явление, не совсем обычное. Двое ученых «нашли друг друга» с помощью Национального научного фонда и созданного им проекта CCI Solar – инновационного центра, объединяющего специалистов различных научных отраслей в поисках решений для создания технологий расщепления воды.



Понравилась статья? Поделитесь с друзьями!