Рефракция астрономическая. Что такое атмосферная рефракция

Атмосферной рефракцией называется отклонение световых лучей от прямой линии при прохождении ими атмосферы из-за изменения плотности воздуха с высотой. Атмосферная рефракция около земной поверхности создаёт миражи и может приводить к тому, что далёкие объекты будут казаться мерцающими, дрожащими, находящимися выше или ниже своего истинного положения. Кроме того, форма объектов может быть искажена - они могут казаться сплюснутыми или растянутыми. Термин "рефракция" относится так же и к рефракции звука.

Атмосферная рефракция является причиной того, что астрономические объекты приподнимаются над горизонтом несколько выше, чем они есть на самом деле. Рефракция влияет не только на световые лучи но и на всё электромагнитное излучение, хотя и в разной степени. Например, в видимом свете, синий цвет больше подвержен воздействию рефракции, чем красный. Это может приводить к тому, что астрономические объекты расплываются в спектр на изображениях с высоким разрешением.

По возможности астрономы планируют свои наблюдения при прохождении небесным светилом верхней точки кульминации, когда оно находится выше всего над горизонтом. Также при определении координат судна моряки никогда не будут использовать светило, высота которого менее 20° над горизонтом. Если наблюдения светила, находящегося близко к горизонту нельзя избежать, то можно оборудовать телескоп системами управления для компенсации смещения, вызванного преломлением света в атмосфере. Если дисперсия тоже является проблемой (в случае использования широкополосной камеры при наблюдениях с высоким разрешением), то может быть использовано корректирование преломления света в атмосфере (используя пару вращающихся стеклянных призм). Но так как степень атмосферной рефракции зависит от температуры и давления, а также влажности (количества водяного пара, что особенно важно при наблюдении в середине инфракрасной области спектра), то количество усилий, необходимых для успешной компенсации может быть непомерно высоким.

Атмосферная рефракция мешает наблюдениям сильнее всего тогда, когда она не является однородной, например, при наличии турбулентности в воздухе. Это является причиной мерцания звёзд и деформации видимой формы солнце на закате и восходе.

Значения атмосферной рефракции

Атмосферная рефракция равна нулю в зените, меньше 1" (одна минута дуги) при видимой высоте 45° над горизонтом, и достигают величины 5,3" при 10° высоты; рефракция быстро увеличивается с уменьшением высоты, достигая 9,9" при 5° высоты, 18,4" при 2° высоты, и 35,4" на горизонте (1976 Аллен, 125); все значения получены при температуре 10°С и атмосферном давлении 101,3 кПа.

На горизонте величина атмосферной рефракции немного больше, чем видимый диаметр Солнца. Поэтому когда полный диск солнца виден чуть выше горизонта, то он виден лишь благодаря рефракции, так как если бы не было атмосферы, то ни одной части солнечного диска не было бы видно.

В соответствии с принятым соглашением время восхода и захода Солнца относят к времени, когда верхний край Солнца появляется или исчезает над горизонтом; стандартное значение для истинной высоты Солнца составляет -50"...-34" для рефракции и -16" для полудиаметра Солнца (высота небесного тела обычно даётся для центра его диска). В случае с Луной дополнительные поправки необходимы для того, что бы учесть горизонтальный параллакс Луны и её кажущийся полудиаметр, который меняется в зависимости от расстояния системы Земля-Луна.

Ежедневные изменения погоды влияют на точное время восхода и захода солнца и луны (), и по этой причине не имеет смысла приводить время видимого захода и восхода светил с точностью большей, чем минута дуги (подробнее это описано в книге "Астрономические алгоритмы", Джин Мееус, 1991 год, стр. 103). Более точные расчёты могут быть полезны для определения происходящих изо дня в день изменений времени восхода и захода светил при использовании стандартных величин рефракции, так как понятно, что реальные изменения могут отличаться из-за непредсказуемых изменений величины рефракции.

Из-за того что атмосферная рефракция составляет 34" на горизонте, и только 29 минут дуги на высоте 0,5° над горизонтом, то при заходе или восходе солнца кажется, что оно сплющено примерно на 5" (что составляет около 1/6 его видимого диаметра).

Расчёт атмосферной рефракции

Строгий расчёт преломления требует численного интегрирования, используя этот метод, описанный в статье Ауэра и Стендиша Астрономическая рефракция : расчёт для всех зенитных углов, 2000 . Беннетт (1982) в своей статье "Расчёт астрономической рефракции для применения в морской навигации" вывел простую эмпирическую формулу для определения величины рефракции в зависимости от видимой высоты светил, используя алгоритм Гарфинкеля (1967) в качестве опорного, если h a - это видимая высота светила в градусах, то рефракция R в угловых минутах будет равна

точность формулы составляет до 0,07" для высот от 0° до -90° (Meeus 1991, 102). Смардсон (1986) вывел формулу для определения рефракции относительно истинной высоты светил; если h - это истинная высота светила в градусах, то рефракция R в угловых минутах составит

формула согласуется с формулой Беннетта с точностью до 0.1". Обе формулы будут верными при атмосферном давлении равном 101,0 кПа и температуре 10° С; для различных значений давления Р и температуры Т результат расчёта рефракции, произведённый по этим формулам следует умножить на

(по данным Мееуса, 1991, 103). Рефракция увеличивается примерно на 1% при увеличении давления на каждые 0,9 кПа и уменьшается примерно на 1% на каждые 0,9 кПа снижения давления. Точно так же рефракция увеличивается примерно на 1% при уменьшении температуры на каждые 3° С и рефракция уменьшается примерно на 1% при повышении температуры на каждые 3° С.

График зависимости величины рефракции от высоты (Беннет, 1982)

Случайные атмосферные эффекты, вызванные рефракцией

Турбулентность атмосферы увеличивает и уменьшает видимую яркость звёзд, делая их ярче или слабее за миллисекунды. Медленные компоненты этих колебаний видны нам как мерцание.

Кроме того, турбулентность вызывает небольшие случайные перемещения видимого изображения звезды, а также производит быстрые изменения в его структуре. Эти эффекты не видны невооружённым глазом, но их легко увидеть даже в небольшой телескоп.

Астрономическая рефракция (атмосферная рефракция ) - преломление в атмосфере световых лучей от небесных светил. Поскольку плотность планетных атмосфер убывает с высотой, преломление света происходит таким образом, что своей выпуклостью искривлённый луч всегда обращен в сторону зенита. В связи с этим рефракция всегда «приподнимает» изображения небесных светил над их истинным положением. Другое видимое следствие рефракции (точнее, разницы её значений на разных высотах) - сплющивание видимого диска Солнца или Луны на горизонте.

Значения рефракции

Величина рефракции сильно зависит от высоты наблюдаемого объекта над горизонтом и меняется от 0 в зените до около 35 минут дуги на горизонте. Кроме того, есть зависимость от атмосферного давления и температуры: увеличение значения рефракции на 1 % может быть вызвано повышением давления на 0,01 атм или понижением температуры на 3 градуса Цельсия. Есть и зависимость величины рефракции от длины волны света (атмосферная дисперсия): коротковолновый (синий) свет преломляется сильнее длинноволнового (красного), и на горизонте эта разница достигает около 0,5 минуты дуги.

Величина рефракции на некоторых высотах (при температуре 10 °C и давлении 760 мм рт. ст.) :

видимая (искажённая рефракцией)
высота, градусы
величина рефракции,
минуты дуги :
90 0
70 0,4
50 0,8
30 1,7
20 2,6
10 5,3
5 9,9
4 11,8
3 14,4
2 18,4
1 24,7
0 35,4

Таким образом, рефракция на горизонте несколько превышает видимый угловой диаметр Солнца. Поэтому в тот момент, когда оно касается горизонта нижним краем диска, мы видим его только благодаря рефракции: если бы её не было, солнечный диск был бы уже целиком под горизонтом. То же относится и к Луне.

Напишите отзыв о статье "Астрономическая рефракция"

Примечания

Литература

Жаров В. Е. . . «Астронет» (2002). Проверено 18 октября 2012. .

Отрывок, характеризующий Астрономическая рефракция

– Ну что? – сказал Пьер, с удивлением смотревший на странное оживление своего друга и заметивший взгляд, который он вставая бросил на Наташу.
– Мне надо, мне надо поговорить с тобой, – сказал князь Андрей. – Ты знаешь наши женские перчатки (он говорил о тех масонских перчатках, которые давались вновь избранному брату для вручения любимой женщине). – Я… Но нет, я после поговорю с тобой… – И с странным блеском в глазах и беспокойством в движениях князь Андрей подошел к Наташе и сел подле нее. Пьер видел, как князь Андрей что то спросил у нее, и она вспыхнув отвечала ему.
Но в это время Берг подошел к Пьеру, настоятельно упрашивая его принять участие в споре между генералом и полковником об испанских делах.
Берг был доволен и счастлив. Улыбка радости не сходила с его лица. Вечер был очень хорош и совершенно такой, как и другие вечера, которые он видел. Всё было похоже. И дамские, тонкие разговоры, и карты, и за картами генерал, возвышающий голос, и самовар, и печенье; но одного еще недоставало, того, что он всегда видел на вечерах, которым он желал подражать.
Недоставало громкого разговора между мужчинами и спора о чем нибудь важном и умном. Генерал начал этот разговор и к нему то Берг привлек Пьера.

На другой день князь Андрей поехал к Ростовым обедать, так как его звал граф Илья Андреич, и провел у них целый день.
Все в доме чувствовали для кого ездил князь Андрей, и он, не скрывая, целый день старался быть с Наташей. Не только в душе Наташи испуганной, но счастливой и восторженной, но во всем доме чувствовался страх перед чем то важным, имеющим совершиться. Графиня печальными и серьезно строгими глазами смотрела на князя Андрея, когда он говорил с Наташей, и робко и притворно начинала какой нибудь ничтожный разговор, как скоро он оглядывался на нее. Соня боялась уйти от Наташи и боялась быть помехой, когда она была с ними. Наташа бледнела от страха ожидания, когда она на минуты оставалась с ним с глазу на глаз. Князь Андрей поражал ее своей робостью. Она чувствовала, что ему нужно было сказать ей что то, но что он не мог на это решиться.
Когда вечером князь Андрей уехал, графиня подошла к Наташе и шопотом сказала:
– Ну что?
– Мама, ради Бога ничего не спрашивайте у меня теперь. Это нельзя говорить, – сказала Наташа.
Но несмотря на то, в этот вечер Наташа, то взволнованная, то испуганная, с останавливающимися глазами лежала долго в постели матери. То она рассказывала ей, как он хвалил ее, то как он говорил, что поедет за границу, то, что он спрашивал, где они будут жить это лето, то как он спрашивал ее про Бориса.

Астрономическая рефракция – явление преломления лучей света в земной атмосфере. Вследствие рефракции наблюдаемое (измеряемое) направление на светило не соответствует действительному, которое имело бы место при отсутствии атмосферы. Уголr, на который отклоняется луч в атмосфере, также называется рефракцией.

Строение атмосферы сложное и нестабильное. Чтобы получить формулу, вполне определяющую величину рефракции, надо выбрать модель атмосферы.
В геодезической астрономии принята модель нормальной атмосферы, определяющаяся следующими положениями:

Атмосфера состоит из ряда слоев;

Плотность воздуха d в каждом слое постоянна и убывает с высотой;

Нормаль к границе двух сред, проведенная в точке падения луча, совпадает с отвесной линией.

В основе теории рефракции лежат законы преломления света:

1. Луч падающий, луч преломленный и нормаль, проведенная в точке падения к границе двух сред, лежат в одной плоскости.

Отсюда следует вывод, что для нормальной атмосферы преломление света происходит в вертикальной плоскости, то есть рефракция влияет только на зенитное расстояние, но не на азимут светила.

2. Закон Снеллиуса. Отношение синуса угла падения i 1 к синусу угла преломления i 2 для данных двух сред есть величина постоянная, равная отношению показателя преломления m 2 к показателю преломления m 1:

sin i 1 /sin i 2 = m 2 / m 1 .

Отсюда следует, что если плотность второго слоя d 2 больше плотности первого слоя d 1 , то m 2 > m 1 , и i 2 < i 1 , то есть луч, попадая из менее плотного слоя в более плотный слой, отклоняется к отвесной линии.

Рассмотрим, как влияет астрономическая рефракция на координаты светила. Допустим, что поверхность Земли – плоскость в точке наблюдения М
(рис. 1.20). Луч, падающий в вакууме от звезды, преломляется, попадая в земную атмосферу. Вследствие этогонаблюдаемое направление на светило не соответствует действительному, которое имело бы место при отсутствии атмосферы. На рис. 1.20 видно, что топоцентрическое зенитное расстояние z топ есть сумма измеренного зенитного расстояния z" и рефракции r:

Z топ = z" + r.

Для модели нормальной атмосферы астрономическая рефракция не изменяет горизонтальное направление, то есть азимут топоцентрический равен азимуту измеренному

Выведем формулу для вычисления значения r.

Согласно закону Снеллиуса,

sin z топ /sin z" = m/1,

отсюда sin z топ = m sin z", или

sin (z" + r) = m sin z". (1.12)

Раскроем левую часть (1.12):

sin z" cos r + sin r cos z" = m sin z".

Поскольку угол r мал, то

cos r ~ 1, sin r = r"/206265".

sin z" + cos z"r"/206265" = m sin z". (1.13)

Разделим обе части выражения (1.13) на sin z" и выразим r":

r" = (m - 1) tg z" · 206265".

Таким образом, астрономическая рефракция r зависит от зенитного расстояния светила и коэффициента преломления воздуха. Показатель преломления m пропорционален плотности атмосферы d, которая, в свою очередь, зависит от температуры и давления. Используя законы Бойля – Мариотта и Гей – Люссака, можно записать для любого состояния атмосферы:

r = 21.67′′ B tg z′/(273 + t o C), (1.14)

где В - давление, мм рт. ст.,

t – температура в градусах Цельсия,

z" – измеренное зенитное расстояние.

Для нормальной атмосферы с t o = 0 o C и В = 760 мм рт. ст. значение рефракции есть r о = 60.3"tg z"; при t o = 10 o C и В = 760 мм рт. ст. соотвествующее значение r о = 58.1"tg z".

Выражения для r о называются средней рефракцией и применяются в приближенных астрономических определениях с погрешностью более 1".

С увеличением зенитного расстояния величина рефракции растет. На горизонте значение рефракции для нормальной атмосферы достигает величины примерно 35¢.

Для определения поправки за рефракцию составляются специальные таблицы. В Астрономическом ежегоднике приводится несколько видов таблиц:

Таблица средней рефракции, где r вычислена для постоянных температуры t = 10 o C и давления В = 760 мм рт. ст., как функция от измеренного зенитного расстояния, то есть, r о = f (z", t 10 , B 760);

Таблица поправок в среднюю рефракцию за температуру и давление.

При помощи этих таблиц можно получить значение рефракции с точностью до 1".

Значения рефракции с точностью 0.1" приведены в логарифмической таблице.

Параллакс

Параллаксом называется изменение направления на объект при наблюдении его из разных точек пространства. Земля участвует в двух движениях – суточном и годичном, поэтому наблюдения небесных светил, выполняемые даже с одного и того же пункта земной поверхности, всякий раз производят из разных точек пространства.

Суточный параллакс возникает вследствие наблюдения светил в разное время суток. Поправка за суточный параллакс есть приведение наблюдений, выполненных на поверхности Земли, к центру Земли (переход от топоцентрических координат к геоцентрическим).



Годичный параллакс обусловлен наблюдениями в разное время года. Поправка за годичный параллакс – приведение наблюдений к центру Солнца (барицентру Солнечной системы), или переход от геоцентрических координат к гелиоцентрическим (барицентрическим).

Рефракция астрономическая

Рефракция астрономическая (атмосферная рефракция ) - преломление в атмосфере световых лучей от небесных светил. Поскольку плотность планетных атмосфер всегда убывает с высотой, преломление света происходит таким образом, что своей выпуклостью искривленный луч всегда обращен в сторону зенита. В связи с этим рефракция всегда «приподнимает» изображения небесных светил над их истинным положением. Другое видимое следствие рефракции (точнее, разницы её значений на разных высотах) - сплющивание видимого диска Солнца или Луны на горизонте.

Фактическое положение Солнца ниже горизонта (желтый диск) и его видимое положение(оранжевый) во время восхода/захода.

Значения рефракции

Величина рефракции сильно зависит от высоты наблюдаемого объекта над горизонтом и меняется от 0 в зените до около 35 минут дуги на горизонте. Кроме того, есть зависимость от атмосферного давления и температуры: увеличение значения рефракции на 1 % может быть вызвано повышением давления на 0,01 атм или понижением температуры на 3 градуса Цельсия. Есть и зависимость величины рефракции от длины волны света (атмосферная дисперсия): коротковолновый (синий) свет преломляется сильнее длинноволнового (красного), и на горизонте эта разница достигает около 0,5 минуты дуги.

Величина рефракции на некоторых высотах (при температуре 10°C и давлении 760 мм рт.ст.) :

Таким образом, рефракция на горизонте несколько превышает видимый угловой диаметр Солнца. Поэтому в тот момент, когда оно касается горизонта нижним краем диска, мы видим его только благодаря рефракции: если бы её не было, солнечный диск был бы уже целиком под горизонтом. То же относится и к Луне.

Примечания

Литература

Жаров В. Е. 6.1. Рефракция . Сферическая астрономия . «Астронет» (2002). Архивировано из первоисточника 27 октября 2012. Проверено 18 октября 2012.


Wikimedia Foundation . 2010 .

Смотреть что такое "Рефракция астрономическая" в других словарях:

    - (Refraction) угол между истинным и видимым направлениями на небесное светило, образующийся вследствие преломления луча света, идущего от светила к земной атмосфере. Вследствие Р. А. видимое положение светил приподнято над горизонтом. Наибольшей… … Морской словарь

    Рефракция света в атмосфере [позднелат. refractio ‒ преломление, от лат. refractus ‒ преломленный (refringo ‒ ломаю, преломляю)], атмосферно оптическое явление, вызываемое преломлением световых лучей в атмосфере и проявляющееся в кажущемся… …

    астрономическая рефракция - Преломление света в атмосфере Земли или другой планеты, приводящее к различию между видимым и истинным направлениями на небесное тело. [Сборник рекомендуемых терминов. Выпуск 79. Физическая оптика. Академия наук СССР. Комитет научно технической… … Справочник технического переводчика

    РЕФРАКЦИЯ - (1) астрономическая явление преломления световых лучей, исходящих от небесных светил, при прохождении через атмосферу; поскольку плотность атмосферы всегда убывает с высотой, преломление света происходит таким образом, что своей выпуклостью… … Большая политехническая энциклопедия

    I Рефракция света в атмосфере [позднелат. refractio преломление, от лат. refractus преломленный (refringo ломаю, преломляю)], атмосферно оптическое явление, вызываемое преломлением световых лучей в атмосфере и проявляющееся в кажущемся… … Большая советская энциклопедия - У этого термина существуют и другие значения, см. Луна (значения). Луна … Википедия

    До Петра Великого русскими не было произведено научных трудов по астрономии. Петр Великий, посещая обсерватории в Гринвиче и Копенгагене, во второе посещение первой из них произвел сам полное определение положения Венеры с помощью стенного круга … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

Рефракция: общие понятия, модели стандартных атмосфер - рефракция для плоскопараллельных слоев, для сферических слоев. Таблицы рефракции. Влияние аномалий рефракции на видимые координаты светил.

Общие понятия

Влияние рефракции является важной проблемой для наземной астрономии, где выполняются измерения больших углов на небесной сфере, при определении экваториальных координат светил, вычислении моментов их восхода и захода.

астрономической (или атмосферной) рефракцией . Из-за этого наблюдаемое (видимое) зенитное расстояние z¢ светила меньше его истинного (т.е. при отсутствии атмосферы) зенитного расстояния z, а видимая высота h¢ несколько больше истинной высоты h. Рефракция как бы приподнимает светило над горизонтом.

Разность r = z - z¢ = h¢ - h , называется рефракцией.

Рис. Явление рефракции в земной атмосфере

Рефракция изменяет лишь зенитные расстояния z, но не изменяет часовые углы. Если светило находится в кульминации, то рефракция изменяет только его склонение и на ту же величину, что и зенитное расстояние, так как в этом случае плоскости его часового и вертикального кругов совпадают. В остальных случаях, когда эти плоскости пересекаются под некоторым углом, рефракция изменяет и склонение, и прямое восхождение светила.

Следует отметить, что рефракция в зените принимает значение r = 0, а на горизонте она достигает 0.5 - 2 градуса. Из-за рефракции диски Солнца и Луны вблизи горизонта выглядят овальными, так как у нижнего края диска рефракция на 6¢ больше, чем у верхнего и поэтому вертикальный диаметр диска кажется укороченным в сравнении с горизонтальным диаметром, который рефракцией не искажается.

Эмпирически, т.е. опытным путем из наблюдений выведено приближенное выражение для определения общей (средней) рефракции:

r = 60².25 ´В\760´273\(273 0 +t 0) ´ tgz¢,

где: В - атмосферное давление, t 0 - температура воздуха.

Тогда, при температуре, равной 0 0 и при давлении 760 мм ртутного столба рефракция для видимых лучей (l =550 миллимикрон) равна:

r =60².25 ´ tgz¢ = К´ tgz¢. Здесь К – постоянная рефракции при указанных выше условиях.

По приведенным формулам рефракция вычисляется для зенитного расстояния не более 70 угловых градусов с точностью до 0.¢¢01 . Пулковские таблицы (5-е издание) позволяют учитывать влияние рефракции до зенитного расстояния z = 80 угловых градусов.

Для более точных расчетов учитывается зависимость рефракции не только от высоты объекта над горизонтом, но и от состояния атмосферы, главным образом от ее плотности, которая сама является функцией, в основном температуры и давления. Поправки на рефракцию рассчитываются при давлении В [мм.рт.ст.] и температуре С по формуле:

Для учета влияния рефракции с высокой точностью (0.¢¢01 и выше) теория рефракции достаточно сложна и рассматривается в специальных курсах (Яценко, Нефедьева А.И.и др). Функционально величина рефракции зависит от многих параметров: высоты (H), широты места (j), также температуры воздуха (t), атмосферного давления (p), атмосферного давления (В) на пути светового луча от небесного светила до наблюдателя и различна для разных длин волн электромагнитного спектра (l) и каждого зенитного расстояния (z). Современные расчеты рефракции выполняются на ЭВМ.

Следует также отметить, что рефракцию по степени ее влияния и учета разделяют на нормальную (табличную) и аномальную . Точность учета нормальной рефракции определяется качеством модели стандартной атмосферы и до зенитных расстояний не более 70 градусов достигает 0.¢¢01 и выше. Большое значение здесь имеет выбор места наблюдений - высокогорье, с хорошим астроклиматом и регулярным рельефом местности, обеспечивающим отсутствие наклонных слоев воздуха. При дифференциальных измерениях с достаточным числом опорных звезд на ПЗС кадрах можно учитывать влияние вариаций рефракции, таких как дневная и годичная.

Аномальная рефракция , такая как инструментальная и павильонная учитывается обычно достаточно хорошо с помощью систем сбора метеоданных. В приземном слое атмосферы (до 50 метров) используются такие методы как размещение метеодатчиков на мачтах и зондирование. Во всех указанных случаях можно достичь точности учета аномалий рефракции не хуже 0.²01. Труднее устранить влияние флуктуаций рефракции, обусловленных атмосферной турбуленцией высокой частоты, которые имеют доминирующее влияние. Спектр мощности дрожаний показывает, что их амплитуда значительна в диапазоне от 15гц до 0.02гц. Отсюда следует, что оптимальное время регистрации небесных обьектов должно быть не менее 50 секунд. Эмпирические формулы, выведенные Э.Хегом (e =± 0.²33(T+0.65) - 0.25 ,

где Т - время регистрации) и И.Г.Колчинским (e =1\Ön(± 0.²33(secz) 0.5 , где n - число моментов регистрации) показывают, что при таком времени регистрации для зенитного расстояния (z) равного нулю, точность положения (e) звезды, около 0.²06-0.²10.

По другим оценкам такой тип рефракции может быть учтен посредством измерений в течение одной-двух минут с точностью до 0."03 (А.Яценко), до 0."03-0."06 для звезд в диапазоне 9-16 величины (I.Reqiume) или до 0."05 (E.Hog). Расчеты, проведенные в обсерватории США USNO Стоуном и Даном показали, что при ПЗС регистрации на автоматическом меридианном телескопе (поле зрения 30" x 30" и время экспозиции 100 секунд) можно определить положения звезд дифференциально с точностью до 0.²04. Перспективная оценка, выполненная американскими астрономами Colavita, Zacharias и др. (см. табл.7.1) для широкоугольных наблюдений в видимом диапазоне длин волн показывает, что с помощью двухцветной методики можно достигнуть атмосферного предела точности, около 0.²01.

Для перспективных телескопов с полем зрения ПЗС, порядка, 60"x60", с использованием многоцветовой методики наблюдений, отражательной оптики, наконец с использованием дифференциальными методами опорных каталогов высокой плотности и точности на уровне космических каталогов типа HC и TC

вполне реально достижение точности, порядка нескольких миллисекунд (0.²005).

Рефракция

Видимое положение светила над горизонтом, строго говоря, отличается от вычисленного по формуле (1.37). Дело в том, что лучи света от небесного тела, прежде чем попасть в глаз наблюдателя, проходят сквозь атмосферу Земли и преломляются в ней, а так как плотность атмосферы увеличивается к поверхности Земли, то луч света (рис. 19) все более и более отклоняется в одну и ту же сторону по кривой линии, так что направление ОМ 1 , по которому наблюдатель О видит светило, оказывается отклоненным в сторону зенита и не совпадающим с направлением ОМ 2 (параллельным ВМ ), по которому он видел бы светило при отсутствии атмосферы.

Явление преломления световых лучей при прохождении ими земной атмосферы называется астрономической рефракцией.

Угол M 1 OM 2 называется углом рефракции или рефракцией r . Угол ZOM 1 называется видимым зенитным расстоянием светила z", а угол ZOM 2 - истинным зенитным расстоянием z.

Непосредственно из рис. 19 следует

z - z" = r или z = z" + r ,

т.е. истинное зенитное расстояние светила больше видимого на величину рефракции r . Рефракция как бы приподнимает светило над горизонтом.

По законам преломления света луч падающий и луч преломленный лежат в одной плоскости. Следовательно, траектория луча МВО и направления ОМ 2 и OM 1 лежат в одной вертикальной плоскости. Поэтому рефракция не изменяет азимута светила, и, кроме того, равна нулю, если светило находится в зените.

Если светило находится в кульминации, то рефракция изменяет только его склонение и на ту же величину, что и зенитное расстояние, так как в этом случае плоскости его часового и вертикального кругов совпадают. В остальных случаях, когда эти плоскости пересекаются под некоторым углом, рефракция изменяет и склонение, и прямое восхождение светила.

Точная теория рефракции очень сложна и рассматривается в специальных курсах. Рефракция зависит не только от высоты светила над горизонтом, но и от состояния атмосферы, главным образом от ее плотности, которая сама является функцией, в основном температуры и давления. При давлении В мм. рт. ст. и температуре С приближенное значение рефракции

По формулам (1.38) и (1.39) рефракция вычисляется в тех случаях, когда видимое зенитное расстояние z" < 70°. При z" > 70° формулы (1.38) и (1.39) дают ошибку больше 1", увеличивающуюся при дальнейшем приближении к горизонту до бесконечности, тогда как действительная величина рефракции в горизонте составляет около 35". Поэтому для зенитных расстояний z" > 70° рефракция определяется путем сочетания теории со специальными наблюдениями.

Вследствие рефракции наблюдается изменение формы дисков Солнца и Луны при их восходе или заходе. Рефракция нижних краев дисков этих светил у горизонта почти на 6" больше рефракции верхних краев, а так как горизонтальные диаметры рефракцией не изменяются, то видимые диски Солнца и Луны принимают овальную форму.



Понравилась статья? Поделитесь с друзьями!