Регрессионный анализ теория. А) Графический анализ простой линейной регрессии

А) Графический анализ простой линейной регрессии.

Простое линейное уравнение регрессии y=a+bx. Если между случайными величинами У и X существует корреляционная связь, то значение у = ý + ,

где ý – теоретическое значение у, полученное из уравнения ý = f(x),

 – погрешность отклонения теоретического уравнения ý от фактических (экспериментальных) данных.

Уравнение зависимости средней величины ý от х, то есть ý = f(x) называют уравнением регрессии. Регрессионный анализ состоит из четырёх зтапов:

1) постановка задачи и установление причин связи.

2) ограничение объекта исследований, сбор статастической информации.

3) выбор уравнения связи на основе анализа и характера собранных данных.

4) расчёт числовых значений, характеристик корреляционной связи.

Если две переменные связаны таким образом, что изменение одной переменной соответствует систематическому изменению другой переменной, то для оценки и выбора уравнения связи между ними применяют регрессионный анализ в том случае, если эти переменные известны. В отличие от регрессионного анализа, корреляционный анализ применяют для анализа тесноты связи между X и У.

Рассмотрим нахождение прямой при регрессионном анализе:

Теоретическое уравнение регрессии.

Термин «простая регрессия» указывает на то, что величина одной переменной оценивается на основе знаний о другой переменной. В отличие от простой многофакторная регрессия применяется для оценки переменной на основе знания двух, трёх и более переменных. Рассмотрим графический анализ простой линейной регрессии.

Предположим, имеются результаты отборочных испытании по предварительному найму на работу и производительности труда.

Результаты отбора (100 баллов), x

Производительность (20 баллов), y

Нанеся точки на график, получим диаграмму (поле) рассеяния. Используем её для анализа результатов отборочных испытаний и производительности труда.

По диаграмме рассеяния проанализируем линию регрессии. В регрессионном анализе всегда указываются хотя бы две переменные. Систематическое изменение одной переменной связано с изменением другой. Основная цель регрессионного анализа заключается в оценке величины одной переменной, если величина другой переменной известна. Для полной задачи важна оценка производительности труда.

Независимой переменной в регрессионном анализе называется величина, которая используется в качестве основы для анализа другой переменной. В данном случае – это результаты отборочных испытаний (по оси X).

Зависимой переменной называется оцениваемая величина (по оси У). В регрессионном анализе может быть только одна зависимая переменная и несколько независимых переменных.

Для простого регрессионного анализа зависимость можно представить в двухкоординатной системе (х и у), по оси X – независимая переменная, по оси У – зависимая. Наносим точки пересечения таким образом, чтобы на графике была представлена пара величин. График называют диаграммой рассеяния . Ее построение – это второй этап регрессионного анализа, поскольку первый – это выбор анализируемых величин и сбор данных выборки. Таким образом, регрессионный анализ применяется для статистического анализа. Связь между выборочными данными диаграммы линейная.

Для оценки величины переменной у на основе переменной х необходимо определить положение линии, которая наилучшим образом представляет связь между х и у на основе расположения точек диаграммы рассеяния. В нашем примере это анализ производительности. Линия, проведенная через точки рассеяния – линия регрессии . Одним из способов построения линии регрессии, основанном на визуальном опыте, является способ построения от руки. По нашей линии регрессии можно определить производительность труда. При нахождении уравнения линии регрессии

часто применяют критерий наименьших квадратов. Наиболее подходящей является та линия, где сумма квадратов отклонений минимальна

Математическое уравнение линии роста представляет закон роста в арифметической прогрессии:

у = а b х .

Y = а + b х – приведённое уравнение с одним параметром является простейшим видом уравнения связи. Оно приемлемо для средних величин. Чтобы точнее выразить связь между х и у , вводится дополнительный коэффициент пропорциональности b , который указывает наклон линии регрессии.

Б) Построение теоретической линии регрессии.

Процесс её нахождения заключается в выборе и обосновании типа кривой и расчётов параметров а , b , с и т.д. Процесс построения называют выравниванием, и запас кривых, предлагаемых мат. анализом, разнообразен. Чаще всего в экономических задачах используют семейство кривых, уравнения которые выражаются многочленами целых положительных степеней.

1)
– уравнение прямой,

2)
– уравнение гиперболы,

3)
– уравнение параболы,

где ý – ординаты теоретической линии регрессии.

Выбрав тип уравнения, необходимо найти параметры, от которых зависит это уравнение. Например, характер расположения точек в поле рассеяния показал, что теоретическая линия регрессии является прямой.

Диаграмма рассеяния позволяет представить производительность труда с помощью регрессионного анализа. В экономике с помощью регрессионного анализа предсказываются многие характеристики, влияющие на конечный продукт (с учётом ценообразования).

В) Критерий наименьших кадратов для нахождения прямой линии.

Один из критериев, которые мы могли бы применить для подходящей линии регрессии на диаграмме рассеяния, основан на выборе линии, для которой сумма квадратов погрешностей будет минимальна.

Близость точек рассеяния к прямой измеряется ординатами отрезков. Отклонения этих точек могут быть положительными и отрицательными, но сумма квадратов отклонений теоретической прямой от экспериментальной всегда положительна и должна быть минимальна. Факт несовпадения всех точек рассеяния с положением линии регрессии указывает на существование расхождения между экспериментальными и теоретическими данными. Таким образом, можно сказать, что никакая другая линия регрессии, кроме той, которую нашли, не может дать меньшую сумму отклонений между экспериментальными и опытными данными. Следовательно, найдя теоретическое уравнение ý и линию регрессии, мы удовлетворяем требованию наименьших квадратов.

Это делается с помощью уравнения связи
, используя формулы для нахождения параметров а и b . Взяв теоретическое значение
и обозначив левую часть уравнения черезf , получим функцию
от неизвестных параметрова и b . Значения а и b будут удовлетворять минимуму функции f и находятся из уравнений частных производных
и
. Этонеобходимое условие , однако для положительной квадратической функции это является и достаточным условием для нахождения а и b .

Выведем из уравнений частных производных формулы параметров а и b :



получим систему уравнений:

где
– среднеарифметические погрешности.

Подставив числовые значения, найдем параметры а и b .

Существует понятие
. Это коэффициент аппроксимации.

Если е < 33%, то модель приемлема для дальнейшего анализа;

Если е > 33%, то берём гиперболу, параболу и т.д. Это даёт право для анализа в различных ситуациях.

Вывод: по критерию коэффициента аппроксимации наиболее подходящей является та линия, для которых

, и никакая другая линия регрессии для нашей задачи не даёт минимум отклонений.

Г) Квадратическая ошибка оценки, проверка их типичности.

Применительно к совокупности, у которой число параметров исследования меньше 30 (n < 30), для проверки типичности параметров уравнения регрессии используется t -критерий Стьюдента. При этом вычисляется фактическое значение t -критерия:

Отсюда

где – остаточная среднеквадратическая погрешность. Полученныеt a и t b сравнивают с критическим t k из таблицы Стьюдента с учётом принятого уровня значимости ( = 0,01 = 99% или  = 0,05 = 95%). P = f = k 1 = m – число параметров исследуемого уравнения (степень свободы). Например, если y = a + bx ; m = 2, k 2 = f 2 = p 2 = n – (m + 1), где n – количество исследуемых признаков.

t a < t k < t b .

Вывод : по проверенным на типичность параметрам уравнения регрессии производится построение математической модели связи
. При этом параметры примененной в анализе математической функции (линейная, гипербола, парабола) получают соответствующие количественные значения. Смысловое содержание полученных таким образом моделей состоит в том, что они характеризуют среднюю величину результативного признака
от факторного признака X .

Д) Криволинейная регрессия.

Довольно часто встречается криволинейная зависимость, когда между переменными устанавливается меняющееся соотношение. Интенсивность возрастания (убывания) зависит от уровня нахождения X. Криволинейная зависимость бывает разных видов. Например, рассмотрим зависимость между урожаем и осадками. С увеличением осадков при равных природных условиях интенсивное увеличение урожая, но до определенного предела. После критической точки осадки оказываются излишними, и урожайность катастрофически падает. Из примера видно, что вначале связь была положительной, а потом отрицательной. Критическая точка - оптимальный уровень признака X, которому соответствует максимальное или минимальное значение признака У.

В экономике такая связь наблюдается между ценой и потреблением, производительностью и стажем.

Параболическая зависимость.

Если данные показывают, что увеличение факторного признака приводит к росту результативного признака, то в качестве уравнения регрессии берется уравнение второго порядка (парабола).

. Коэффициенты a,b,c находятся из уравнений частных производных:

Получаем систему уравнений:

Виды криволинейных уравнений:

,

,

Вправе предполагать, что между производительностью труда и баллами отборочных испытаний существует криволинейная зависимость. Это означает, что с ростом бальной системы производительность начнёт на каком-то уровне уменьшаться, поэтому прямая модель может оказаться криволинейной.

Третьей моделью будет гипербола, и во всех уравнениях вместо переменной х будет стоять выражение .

ВЫВОД ИТОГОВ

Таблица 8.3а. Регрессионная статистика
Регрессионная статистика
Множественный R 0,998364
R-квадрат 0,99673
Нормированный R-квадрат 0,996321
Стандартная ошибка 0,42405
Наблюдения 10

Сначала рассмотрим верхнюю часть расчетов, представленную в таблице 8.3а , - регрессионную статистику.

Величина R-квадрат , называемая также мерой определенности, характеризует качество полученной регрессионной прямой. Это качество выражается степенью соответствия между исходными данными и регрессионной моделью (расчетными данными). Мера определенности всегда находится в пределах интервала .

В большинстве случаев значение R-квадрат находится между этими значениями, называемыми экстремальными, т.е. между нулем и единицей.

Если значение R-квадрата близко к единице, это означает, что построенная модель объясняет почти всю изменчивость соответствующих переменных. И наоборот, значение R-квадрата , близкое к нулю, означает плохое качество построенной модели.

В нашем примере мера определенности равна 0,99673, что говорит об очень хорошей подгонке регрессионной прямой к исходным данным.

Множественный R - коэффициент множественной корреляции R - выражает степень зависимости независимых переменных (X) и зависимой переменной (Y).

Множественный R равен квадратному корню из коэффициента детерминации, эта величина принимает значения в интервале от нуля до единицы.

В простом линейном регрессионном анализе множественный R равен коэффициенту корреляции Пирсона. Действительно, множественный R в нашем случае равен коэффициенту корреляции Пирсона из предыдущего примера (0,998364).

Таблица 8.3б. Коэффициенты регрессии
Коэффициенты Стандартная ошибка t-статистика
Y-пересечение 2,694545455 0,33176878 8,121757129
Переменная X 1 2,305454545 0,04668634 49,38177965
* Приведен усеченный вариант расчетов

Теперь рассмотрим среднюю часть расчетов, представленную в таблице 8.3б . Здесь даны коэффициент регрессии b (2,305454545) и смещение по оси ординат, т.е. константа a (2,694545455).

Исходя из расчетов, можем записать уравнение регрессии таким образом:

Y= x*2,305454545+2,694545455

Направление связи между переменными определяется на основании знаков (отрицательный или положительный) коэффициентов регрессии (коэффициента b).

Если знак при коэффициенте регрессии - положительный, связь зависимой переменной с независимой будет положительной. В нашем случае знак коэффициента регрессии положительный, следовательно, связь также является положительной.

Если знак при коэффициенте регрессии - отрицательный, связь зависимой переменной с независимой является отрицательной (обратной).

В таблице 8.3в . представлены результаты вывода остатков . Для того чтобы эти результаты появились в отчете, необходимо при запуске инструмента "Регрессия" активировать чекбокс "Остатки".

ВЫВОД ОСТАТКА

Таблица 8.3в. Остатки
Наблюдение Предсказанное Y Остатки Стандартные остатки
1 9,610909091 -0,610909091 -1,528044662
2 7,305454545 -0,305454545 -0,764022331
3 11,91636364 0,083636364 0,209196591
4 14,22181818 0,778181818 1,946437843
5 16,52727273 0,472727273 1,182415512
6 18,83272727 0,167272727 0,418393181
7 21,13818182 -0,138181818 -0,34562915
8 23,44363636 -0,043636364 -0,109146047
9 25,74909091 -0,149090909 -0,372915662
10 28,05454545 -0,254545455 -0,636685276

При помощи этой части отчета мы можем видеть отклонения каждой точки от построенной линии регрессии. Наибольшее абсолютное значение

В статистическом моделировании регрессионный анализ представляет собой исследования, применяемые с целью оценки взаимосвязи между переменными. Этот математический метод включает в себя множество других методов для моделирования и анализа нескольких переменных, когда основное внимание уделяется взаимосвязи между зависимой переменной и одной или несколькими независимыми. Говоря более конкретно, регрессионный анализ помогает понять, как меняется типичное значение зависимой переменной, если одна из независимых переменных изменяется, в то время как другие независимые переменные остаются фиксированными.

Во всех случаях целевая оценка является функцией независимых переменных и называется функцией регрессии. В регрессионном анализе также представляет интерес характеристика изменения зависимой переменной как функции регрессии, которая может быть описана с помощью распределения вероятностей.

Задачи регрессионного анализа

Данный статистический метод исследования широко используется для прогнозирования, где его использование имеет существенное преимущество, но иногда это может приводить к иллюзии или ложным отношениям, поэтому рекомендуется аккуратно его использовать в указанном вопросе, поскольку, например, корреляция не означает причинно-следственной связи.

Разработано большое число методов для проведения регрессионного анализа, такие как линейная и обычная регрессии по методу наименьших квадратов, которые являются параметрическими. Их суть в том, что функция регрессии определяется в терминах конечного числа неизвестных параметров, которые оцениваются из данных. Непараметрическая регрессия позволяет ее функции лежать в определенном наборе функций, которые могут быть бесконечномерными.

Как статистический метод исследования, регрессионный анализ на практике зависит от формы процесса генерации данных и от того, как он относится к регрессионному подходу. Так как истинная форма процесса данных, генерирующих, как правило, неизвестное число, регрессионный анализ данных часто зависит в некоторой степени от предположений об этом процессе. Эти предположения иногда проверяемы, если имеется достаточное количество доступных данных. Регрессионные модели часто бывают полезны даже тогда, когда предположения умеренно нарушены, хотя они не могут работать с максимальной эффективностью.

В более узком смысле регрессия может относиться конкретно к оценке непрерывных переменных отклика, в отличие от дискретных переменных отклика, используемых в классификации. Случай непрерывной выходной переменной также называют метрической регрессией, чтобы отличить его от связанных с этим проблем.

История

Самая ранняя форма регрессии - это всем известный метод наименьших квадратов. Он был опубликован Лежандром в 1805 году и Гауссом в 1809. Лежандр и Гаусс применили метод к задаче определения из астрономических наблюдений орбиты тел вокруг Солнца (в основном кометы, но позже и вновь открытые малые планеты). Гаусс опубликовал дальнейшее развитие теории наименьших квадратов в 1821 году, включая вариант теоремы Гаусса-Маркова.

Термин «регресс» придумал Фрэнсис Гальтон в XIX веке, чтобы описать биологическое явление. Суть была в том, что рост потомков от роста предков, как правило, регрессирует вниз к нормальному среднему. Для Гальтона регрессия имела только этот биологический смысл, но позже его работа была продолжена Удни Йолей и Карлом Пирсоном и выведена к более общему статистическому контексту. В работе Йоля и Пирсона совместное распределение переменных отклика и пояснительных считается гауссовым. Это предположение было отвергнуто Фишером в работах 1922 и 1925 годов. Фишер предположил, что условное распределение переменной отклика является гауссовым, но совместное распределение не должны быть таковым. В связи с этим предположение Фишера ближе к формулировке Гаусса 1821 года. До 1970 года иногда уходило до 24 часов, чтобы получить результат регрессионного анализа.

Методы регрессионного анализа продолжают оставаться областью активных исследований. В последние десятилетия новые методы были разработаны для надежной регрессии; регрессии с участием коррелирующих откликов; методы регрессии, вмещающие различные типы недостающих данных; непараметрической регрессии; байесовские методов регрессии; регрессии, в которых переменные прогнозирующих измеряются с ошибкой; регрессии с большей частью предикторов, чем наблюдений, а также причинно-следственных умозаключений с регрессией.

Регрессионные модели

Модели регрессионного анализа включают следующие переменные:

  • Неизвестные параметры, обозначенные как бета, которые могут представлять собой скаляр или вектор.
  • Независимые переменные, X.
  • Зависимые переменные, Y.

В различных областях науки, где осуществляется применение регрессионного анализа, используются различные термины вместо зависимых и независимых переменных, но во всех случаях регрессионная модель относит Y к функции X и β.

Приближение обычно оформляется в виде E (Y | X) = F (X, β). Для проведения регрессионного анализа должен быть определен вид функции f. Реже она основана на знаниях о взаимосвязи между Y и X, которые не полагаются на данные. Если такое знание недоступно, то выбрана гибкая или удобная форма F.

Зависимая переменная Y

Предположим теперь, что вектор неизвестных параметров β имеет длину k. Для выполнения регрессионного анализа пользователь должен предоставить информацию о зависимой переменной Y:

  • Если наблюдаются точки N данных вида (Y, X), где N < k, большинство классических подходов к регрессионному анализу не могут быть выполнены, так как система уравнений, определяющих модель регрессии в качестве недоопределенной, не имеет достаточного количества данных, чтобы восстановить β.
  • Если наблюдаются ровно N = K, а функция F является линейной, то уравнение Y = F (X, β) можно решить точно, а не приблизительно. Это сводится к решению набора N-уравнений с N-неизвестными (элементы β), который имеет единственное решение до тех пор, пока X линейно независим. Если F является нелинейным, решение может не существовать, или может существовать много решений.
  • Наиболее распространенной является ситуация, где наблюдается N > точки к данным. В этом случае имеется достаточно информации в данных, чтобы оценить уникальное значение для β, которое наилучшим образом соответствует данным, и модель регрессии, когда применение к данным можно рассматривать как переопределенную систему в β.

В последнем случае регрессионный анализ предоставляет инструменты для:

  • Поиска решения для неизвестных параметров β, которые будут, например, минимизировать расстояние между измеренным и предсказанным значением Y.
  • При определенных статистических предположениях, регрессионный анализ использует избыток информации для предоставления статистической информации о неизвестных параметрах β и предсказанные значения зависимой переменной Y.

Необходимое количество независимых измерений

Рассмотрим модель регрессии, которая имеет три неизвестных параметра: β 0 , β 1 и β 2 . Предположим, что экспериментатор выполняет 10 измерений в одном и том же значении независимой переменной вектора X. В этом случае регрессионный анализ не дает уникальный набор значений. Лучшее, что можно сделать, оценить среднее значение и стандартное отклонение зависимой переменной Y. Аналогичным образом измеряя два различных значениях X, можно получить достаточно данных для регрессии с двумя неизвестными, но не для трех и более неизвестных.

Если измерения экспериментатора проводились при трех различных значениях независимой переменной вектора X, то регрессионный анализ обеспечит уникальный набор оценок для трех неизвестных параметров в β.

В случае общей линейной регрессии приведенное выше утверждение эквивалентно требованию, что матрица X Т X обратима.

Статистические допущения

Когда число измерений N больше, чем число неизвестных параметров k и погрешности измерений ε i , то, как правило, распространяется затем избыток информации, содержащейся в измерениях, и используется для статистических прогнозов относительно неизвестных параметров. Этот избыток информации называется степенью свободы регрессии.

Основополагающие допущения

Классические предположения для регрессионного анализа включают в себя:

  • Выборка является представителем прогнозирования логического вывода.
  • Ошибка является случайной величиной со средним значением нуля, который является условным на объясняющих переменных.
  • Независимые переменные измеряются без ошибок.
  • В качестве независимых переменных (предикторов) они линейно независимы, то есть не представляется возможным выразить любой предсказатель в виде линейной комбинации остальных.
  • Ошибки являются некоррелированными, то есть ковариационная матрица ошибок диагоналей и каждый ненулевой элемент являются дисперсией ошибки.
  • Дисперсия ошибки постоянна по наблюдениям (гомоскедастичности). Если нет, то можно использовать метод взвешенных наименьших квадратов или другие методы.

Эти достаточные условия для оценки наименьших квадратов обладают требуемыми свойствами, в частности эти предположения означают, что оценки параметров будут объективными, последовательными и эффективными, в особенности при их учете в классе линейных оценок. Важно отметить, что фактические данные редко удовлетворяют условиям. То есть метод используется, даже если предположения не верны. Вариация из предположений иногда может быть использована в качестве меры, показывающей, насколько эта модель является полезной. Многие из этих допущений могут быть смягчены в более продвинутых методах. Отчеты статистического анализа, как правило, включают в себя анализ тестов по данным выборки и методологии для полезности модели.

Кроме того, переменные в некоторых случаях ссылаются на значения, измеренные в точечных местах. Там могут быть пространственные тенденции и пространственные автокорреляции в переменных, нарушающие статистические предположения. Географическая взвешенная регрессия - единственный метод, который имеет дело с такими данными.

В линейной регрессии особенностью является то, что зависимая переменная, которой является Y i , представляет собой линейную комбинацию параметров. Например, в простой линейной регрессии для моделирования n-точек используется одна независимая переменная, x i , и два параметра, β 0 и β 1 .

При множественной линейной регрессии существует несколько независимых переменных или их функций.

При случайной выборке из популяции ее параметры позволяют получить образец модели линейной регрессии.

В данном аспекте популярнейшим является метод наименьших квадратов. С помощью него получают оценки параметров, которые минимизируют сумму квадратов остатков. Такого рода минимизация (что характерно именно линейной регрессии) этой функции приводит к набору нормальных уравнений и набору линейных уравнений с параметрами, которые решаются с получением оценок параметров.

При дальнейшем предположении, что ошибка популяции обычно распространяется, исследователь может использовать эти оценки стандартных ошибок для создания доверительных интервалов и проведения проверки гипотез о ее параметрах.

Нелинейный регрессионный анализ

Пример, когда функция не является линейной относительно параметров, указывает на то, что сумма квадратов должна быть сведена к минимуму с помощью итерационной процедуры. Это вносит много осложнений, которые определяют различия между линейными и нелинейными методами наименьших квадратов. Следовательно, и результаты регрессионного анализа при использовании нелинейного метода порой непредсказуемы.

Расчет мощности и объема выборки

Здесь, как правило, нет согласованных методов, касающихся числа наблюдений по сравнению с числом независимых переменных в модели. Первое правило было предложено Доброй и Хардином и выглядит как N = t^n, где N является размер выборки, n - число независимых переменных, а t есть числом наблюдений, необходимых для достижения желаемой точности, если модель имела только одну независимую переменную. Например, исследователь строит модель линейной регрессии с использованием набора данных, который содержит 1000 пациентов (N). Если исследователь решает, что необходимо пять наблюдений, чтобы точно определить прямую (м), то максимальное число независимых переменных, которые модель может поддерживать, равно 4.

Другие методы

Несмотря на то что параметры регрессионной модели, как правило, оцениваются с использованием метода наименьших квадратов, существуют и другие методы, которые используются гораздо реже. К примеру, это следующие методы:

  • Байесовские методы (например, байесовский метод линейной регрессии).
  • Процентная регрессия, использующаяся для ситуаций, когда снижение процентных ошибок считается более целесообразным.
  • Наименьшие абсолютные отклонения, что является более устойчивым в присутствии выбросов, приводящих к квантильной регрессии.
  • Непараметрическая регрессия, требующая большого количества наблюдений и вычислений.
  • Расстояние метрики обучения, которая изучается в поисках значимого расстояния метрики в заданном входном пространстве.

Программное обеспечение

Все основные статистические пакеты программного обеспечения выполняются с помощью наименьших квадратов регрессионного анализа. Простая линейная регрессия и множественный регрессионный анализ могут быть использованы в некоторых приложениях электронных таблиц, а также на некоторых калькуляторах. Хотя многие статистические пакеты программного обеспечения могут выполнять различные типы непараметрической и надежной регрессии, эти методы менее стандартизированы; различные программные пакеты реализуют различные методы. Специализированное регрессионное программное обеспечение было разработано для использования в таких областях как анализ обследования и нейровизуализации.

Понятия корреляции и регрессии непосредственно связаны меж­ду собой. В корреляционном и регрессионном анализе много общих вычислительных приемов. Они используются для выявления причин­но-следственных соотношений между явлениями и процессами. Одна­ко, если корреляционный анализ позволяет оценить силу и направ­ление стохастической связи, то регрессионный анализ - еще и фор­му зависимости.

Регрессия может быть:

а) в зависимости от числа явлений (переменных):

Простой (регрессия между двумя переменными);

Множественной (регрессия между зависимой переменной (y) и несколькими объясняющими ее переменными (х1, х2...хn);

б) в зависимости от формы:

Линейной (отображается линейной функцией, а между изучае­мыми переменными существуют линейные соотношения);

Нелинейной (отображается нелинейной функцией, между изу­чаемыми переменными связь носит нелинейный характер);

в) по характеру связи между включенными в рассмотрение пе­ременными:

Положительной (увеличение значения объясняющей переменной приводит к увеличению значения зависимой переменной и наоборот);

Отрицательной (с увеличением значения объясняющей переменной значение объясняемой переменной уменьшается);

г) по типу:

Непосредственной (в этом случае причина оказывает прямое воздействие на следствие, т.е. зависимая и объясняющая перемен­ные связаны непосредственно друг с другом);

Косвенной (объясняющая переменная оказывает опосредован­ное действие через третью или ряд других переменных на зависимую переменную);

Ложной (нонсенс регрессия) - может возникнуть при поверх­ностном и формальном подходе к исследуемым процессам и явлениям. Примером бессмысленных является регрессия, устанавливающая связь между уменьшением количества потребляемого алкоголя в нашей стране и уменьшением продажи стирального порошка.

При проведении регрессионного анализа решаются следующие основные задачи:

1. Определение формы зависимости.

2. Определение функции регрессии. Для этого используют ма­тематическое уравнение того или иного типа, позволяющее, во-пер­вых, установить общую тенденцию изменения зависимой перемен­ной, а, во-вторых, вычислить влияние объясняющей переменной (или нескольких переменных) на зависимую переменную.

3. Оценка неизвестных значений зависимой переменной. Полу­ченная математическая зависимость (уравнение регрессии) позволя­ет определять значение зависимой переменной как в пределах ин­тервала заданных значений объясняющих переменных, так и за его пределами. В последнем случае регрессионный анализ выступает в качестве полезного инструмента при прогнозировании изменений со­циально-экономических процессов и явлений (при условии сохране­ния существующих тенденций и взаимосвязей). Обычно длина вре­менного отрезка, на который осуществляется прогнозирование, выбирается не более половины интервала времени, на котором прове­дены наблюдения исходных показателей. Можно осуществить как пас­сивный прогноз, решая задачу экстраполяции, так и активный, ведя рассуждения по известной схеме "если..., то" и подставляя раз­личные значения в одну или несколько объясняющих переменных рег­рессии.



Для построения регрессии используется специальный метод, получивший название метода наименьших квадратов . Этот метод име­ет преимущества перед другими методами сглаживания: сравнительно простое математическое определение искомых параметров и хорошее теоретическое обоснование с вероятностной точки зрения.

При выборе модели регрессии одним из существенных требова­ний к ней является обеспечение наибольшей возможной простоты, позволяющей получить решение с достаточной точностью. Поэтому для установления статистических связей вначале, как правило, рассматривают модель из класса линейных функций (как наиболее простейшего из всех возможных классов функций):

где bi, b2...bj - коэффициенты, определяющие влияние независимых переменных хij на величину yi; аi - свободный член; ei - слу­чайное отклонение, которое отражает влияние неучтенных факторов на зависимую переменную; n - число независимых переменных; N ­число наблюдений, причем должно соблюдаться условие (N . n+1).

Линейная модель может описывать весьма широкий класс различных задач. Однако на практике, в частности в социально-эконо­мических системах, подчас затруднительно применение линейных мо­делей из-за больших ошибок аппроксимации. Поэтому нередко ис­пользуются функции нелинейной множественной регрессии, допускающие линеаризацию. К их числу, например, относится производст­венная функция (степенная функция Кобба-Дугласа), нашедшая при­менение в различных социально-экономических исследованиях. Она имеет вид:

где b 0 - нормировочный множитель, b 1 ...b j - неизвестные коэффи­циенты, e i - случайное отклонение.

Используя натуральные логарифмы, можно преобразовать это уравнение в линейную форму:

Полученная модель позволяет использовать стандартные проце­дуры линейной регрессии, описанные выше. Построив модели двух видов (аддитивные и мультипликативные), можно выбрать наилучшие и провести дальнейшие исследования с меньшими ошибками аппрокси­мации.

Существует хорошо развитая система подбора аппроксимирующих функций - методика группового учета аргументов (МГУА) .

О правильности подобранной модели можно судить по результа­там исследования остатков, являющихся разностями между наблю­даемыми величинами y i и соответствующими прогнозируемыми с по­мощью регрессионного уравнения величинами y i . В этом случае для проверки адекватности модели рассчитывается средняя ошибка ап­проксимации:

Модель считается адекватной, если e находится в пределах не более 15%.

Особо подчеркнем, что применительно к социально-экономичес­ким системам далеко не всегда выполняются основные условия адек­ватности классической регрессионной модели.

Не останавливаясь на всех причинах возникающей неадекват­ности, назовем лишь мультиколлинеарность - самую сложную пробле­му эффективного применения процедур регрессионного анализа при изучении статистических зависимостей. Под мультиколлинеарностью понимается наличие линейной связи между объясняющими переменны­ми.

Это явление:

а) искажает смысл коэффициентов регрессии при их содержа­тельной интерпретации;

б) снижает точность оценивания (возрастает дисперсия оце­нок);

в) усиливает чувствительность оценок коэффициентов к выбо­рочным данным (увеличение объема выборки может сильно повлиять на значения оценок).

Существуют различные приемы снижения мультиколлинеарности. Наиболее доступный способ - устранение одной из двух переменных, если коэффициент корреляции между ними превышает значение, рав­ное по абсолютной величине 0,8. Какую из переменных оставить ре­шают, исходя из содержательных соображений. Затем вновь прово­дится расчет коэффициентов регрессии.

Использование алгоритма пошаговой регрессии позволяет пос­ледовательно включать в модель по одной независимой переменной и анализировать значимость коэффициентов регрессии и мультиколли­неарность переменных. Окончательно в исследуемой зависимости ос­таются только те переменные, которые обеспечивают необходимую значимость коэффициентов регрессии и минимальное влияние мульти­коллинеарности.

Регрессионный анализ -- метод моделирования измеряемых данных и исследования их свойств. Данные состоят из пар значений зависимой переменной (переменной отклика) и независимой переменной (объясняющей переменной). Регрессионная модель есть функция независимой переменной и параметров с добавленной случайной переменной.

Корреляционный анализ и регрессионный анализ являются смежными разделами математической статистики, и предназначаются для изучения по выборочным данным статистической зависимости ряда величин; некоторые из которых являются случайными. При статистической зависимости величины не связаны функционально, но как случайные величины заданы совместным распределением вероятностей.

Исследование зависимости случайных величин приводит к моделям регрессии и регрессионному анализу на базе выборочных данных. Теория вероятностей и математическая статистика представляют лишь инструмент для изучения статистической зависимости, но не ставят своей целью установление причинной связи. Представления и гипотезы о причинной связи должны быть привнесены из некоторой другой теории, которая позволяет содержательно объяснить изучаемое явление.

Числовые данные обычно имеют между собой явные (известные) или неявные (скрытые) связи.

Явно связаны показатели, которые получены методами прямого счета, т. е. вычислены по заранее известным формулам. Например, проценты выполнения плана, уровни, удельные веса, отклонения в сумме, отклонения в процентах, темпы роста, темпы прироста, индексы и т. д.

Связи же второго типа (неявные) заранее неизвестны. Однако необходимо уметь объяснять и предсказывать (прогнозировать) сложные явления для того, чтобы управлять ими. Поэтому специалисты с помощью наблюдений стремятся выявить скрытые зависимости и выразить их в виде формул, т. е. математически смоделировать явления или процессы. Одну из таких возможностей предоставляет корреляционно-регрессионный анализ.

Математические модели строятся и используются для трех обобщенных целей:

  • * для объяснения;
  • * для предсказания;
  • * для управления.

Пользуясь методами корреляционно-регрессионного анализа, аналитики измеряют тесноту связей показателей с помощью коэффициента корреляции. При этом обнаруживаются связи, различные по силе (сильные, слабые, умеренные и др.) и различные по направлению (прямые, обратные). Если связи окажутся существенными, то целесообразно будет найти их математическое выражение в виде регрессионной модели и оценить статистическую значимость модели.

Регрессионный анализ называют основным методом современной математической статистики для выявления неявных и завуалированных связей между данными наблюдений.

Постановка задачи регрессионного анализа формулируется следующим образом.

Имеется совокупность результатов наблюдений. В этой совокупности один столбец соответствует показателю, для которого необходимо установить функциональную зависимость с параметрами объекта и среды, представленными остальными столбцами. Требуется: установить количественную взаимосвязь между показателем и факторами. В таком случае задача регрессионного анализа понимается как задача выявления такой функциональной зависимости y = f (x2, x3, …, xт), которая наилучшим образом описывает имеющиеся экспериментальные данные.

Допущения:

количество наблюдений достаточно для проявления статистических закономерностей относительно факторов и их взаимосвязей;

обрабатываемые данные содержат некоторые ошибки (помехи), обусловленные погрешностями измерений, воздействием неучтенных случайных факторов;

матрица результатов наблюдений является единственной информацией об изучаемом объекте, имеющейся в распоряжении перед началом исследования.

Функция f (x2, x3, …, xт), описывающая зависимость показателя от параметров, называется уравнением (функцией) регрессии. Термин "регрессия" (regression (лат.) - отступление, возврат к чему-либо) связан со спецификой одной из конкретных задач, решенных на стадии становления метода.

Решение задачи регрессионного анализа целесообразно разбить на несколько этапов:

предварительная обработка данных;

выбор вида уравнений регрессии;

вычисление коэффициентов уравнения регрессии;

проверка адекватности построенной функции результатам наблюдений.

Предварительная обработка включает стандартизацию матрицы данных, расчет коэффициентов корреляции, проверку их значимости и исключение из рассмотрения незначимых параметров.

Выбор вида уравнения регрессии Задача определения функциональной зависимости, наилучшим образом описывающей данные, связана с преодолением ряда принципиальных трудностей. В общем случае для стандартизованных данных функциональную зависимость показателя от параметров можно представить в виде

y = f (x1, x2, …, xm) + e

где f - заранее не известная функция, подлежащая определению;

e - ошибка аппроксимации данных.

Указанное уравнение принято называть выборочным уравнением регрессии. Это уравнение характеризует зависимость между вариацией показателя и вариациями факторов. А мера корреляции измеряет долю вариации показателя, которая связана с вариацией факторов. Иначе говоря, корреляцию показателя и факторов нельзя трактовать как связь их уровней, а регрессионный анализ не объясняет роли факторов в создании показателя.

Еще одна особенность касается оценки степени влияния каждого фактора на показатель. Регрессионное уравнение не обеспечивает оценку раздельного влияния каждого фактора на показатель, такая оценка возможна лишь в случае, когда все другие факторы не связаны с изучаемым. Если изучаемый фактор связан с другими, влияющими на показатель, то будет получена смешанная характеристика влияния фактора. Эта характеристика содержит как непосредственное влияние фактора, так и опосредованное влияние, оказанное через связь с другими факторами и их влиянием на показатель.

В регрессионное уравнение не рекомендуется включать факторы, слабо связанные с показателем, но тесно связанные с другими факторами. Не включают в уравнение и факторы, функционально связанные друг с другом (для них коэффициент корреляции равен 1). Включение таких факторов приводит к вырождению системы уравнений для оценок коэффициентов регрессии и к неопределенности решения.

Функция f должна подбираться так, чтобы ошибка e в некотором смысле была минимальна. В целях выбора функциональной связи заранее выдвигают гипотезу о том, к какому классу может принадлежать функция f, а затем подбирают "лучшую" функцию в этом классе. Выбранный класс функций должен обладать некоторой "гладкостью", т.е. "небольшие" изменения значений аргументов должны вызывать "небольшие" изменения значений функции.

Частным случаем, широко применяемым на практике, является полином первой степени или уравнение линейной регрессии

Для выбора вида функциональной зависимости можно рекомендовать следующий подход:

в пространстве параметров графически отображают точки со значениями показателя. При большом количестве параметров можно строить точки применительно к каждому из них, получая двумерные распределения значений;

по расположению точек и на основе анализа сущности взаимосвязи показателя и параметров объекта делают заключение о примерном виде регрессии или ее возможных вариантах;

после расчета параметров оценивают качество аппроксимации, т.е. оценивают степень близости расчетных и фактических значений;

если расчетные и фактические значения близки во всей области задания, то задачу регрессионного анализа можно считать решенной. В противном случае можно попытаться выбрать другой вид полинома или другую аналитическую функцию, например периодическую.

Вычисление коэффициентов уравнения регрессии

Систему уравнений на основе имеющихся данных однозначно решить невозможно, так как количество неизвестных всегда больше количества уравнений. Для преодоления этой проблемы нужны дополнительные допущения. Здравый смысл подсказывает: желательно выбрать коэффициенты полинома так, чтобы обеспечить минимум ошибки аппроксимации данных. Могут применяться различные меры для оценки ошибок аппроксимации. В качестве такой меры нашла широкое применение среднеквадратическая ошибка. На ее основе разработан специальный метод оценки коэффициентов уравнений регрессии - метод наименьших квадратов (МНК). Этот метод позволяет получить оценки максимального правдоподобия неизвестных коэффициентов уравнения регрессии при нормальном распределения вариант, но его можно применять и при любом другом распределении факторов.

В основе МНК лежат следующие положения:

значения величин ошибок и факторов независимы, а значит, и некоррелированы, т.е. предполагается, что механизмы порождения помехи не связаны с механизмом формирования значений факторов;

математическое ожидание ошибки e должно быть равно нулю (постоянная составляющая входит в коэффициент a0), иначе говоря, ошибка является центрированной величиной;

выборочная оценка дисперсии ошибки должна быть минимальна.

Если же линейная модель неточна или параметры измеряются неточно, то и в этом случае МНК позволяет найти такие значения коэффициентов, при которых линейная модель наилучшим образом описывает реальный объект в смысле выбранного критерия среднеквадратического отклонения.

Качество полученного уравнения регрессии оценивают по степени близости между результатами наблюдений за показателем и предсказанными по уравнению регрессии значениями в заданных точках пространства параметров. Если результаты близки, то задачу регрессионного анализа можно считать решенной. В противном случае следует изменить уравнение регрессии и повторить расчеты по оценке параметров.

При наличии нескольких показателей задача регрессионного анализа решается независимо для каждого из них.

Анализируя сущность уравнения регрессии, следует отметить следующие положения. Рассмотренный подход не обеспечивает раздельной (независимой) оценки коэффициентов - изменение значения одного коэффициента влечет изменение значений других. Полученные коэффициенты не следует рассматривать как вклад соответствующего параметра в значение показателя. Уравнение регрессии является всего лишь хорошим аналитическим описанием имеющихся данных, а не законом, описывающим взаимосвязи параметров и показателя. Это уравнение применяют для расчета значений показателя в заданном диапазоне изменения параметров. Оно ограниченно пригодно для расчета вне этого диапазона, т.е. его можно применять для решения задач интерполяции и в ограниченной степени для экстраполяции.

Главной причиной неточности прогноза является не столько неопределенность экстраполяции линии регрессии, сколько значительная вариация показателя за счет неучтенных в модели факторов. Ограничением возможности прогнозирования служит условие стабильности неучтенных в модели параметров и характера влияния учтенных факторов модели. Если резко меняется внешняя среда, то составленное уравнение регрессии потеряет свой смысл.

Прогноз, полученный подстановкой в уравнение регрессии ожидаемого значения параметра, является точечным. Вероятность реализации такого прогноза ничтожна мала. Целесообразно определить доверительный интервал прогноза. Для индивидуальных значений показателя интервал должен учитывать ошибки в положении линии регрессии и отклонения индивидуальных значений от этой линии .



Понравилась статья? Поделитесь с друзьями!