Рентгеновские лучи их природа и свойства кратко. Природа рентгеновских лучей и их основные свойства

Однако надо иметь в виду и то, что, как и у других методов исследований, рентгенодиагностика имеет свои возможности и недостатки. Наряду с рентгеновской картиной, характерной для того или иного патологического процесса или даже патогномонистической, при исследовании встречается почти одинаковое рентгеновское изображение при различных заболеваниях. Так, например, опухоль легких, увеличение бифуркационных лимфатических узлов и закупорка в грудной части пищевода при совпадении по месту с областью бифуркации на экране или рентгенограмме трудно дифференцировать. То же самое получается при пневмонии и диафрагмальной грыже, если не видеть пациента и не обследовать его клинически.

Поэтому любому рентгенологическому исследованию всегда должно предшествовать внимательный сбор анамнестических данных и всестороннее тщательное клиническое исследование. Окончательный диагноз всегда требуется ставить при сопоставлении данных всех методов исследования.

Исходя из всего этого, рентгеновское исследование, как весьма важный метод, не следует ни недооценивать, ни переоценивать.

Настоящий раздел этой книги касается целого ряда общих вопросов рентгенодиагностики, характеризующих методы и возможности рентгенологических исследований, а также рентгеновских аппаратов небольшой мощности, пригодных для исследований собак.

Природа рентгеновских лучей

Лучи, которые сейчас называют рентгеновскими, были открыты 7 ноября 1895 г. физиком В. К. Рентгеном. Официальной те датой открытия этих лучей считается 28 декабря 1895 г., когда Рентген, после изучения открытых им Х-лучей, опубликовал первое сообщение об их свойствах.

Эти Х-лучи стали называть рентгеновскими с 23 января 1896 года, когда В. К. Рентген сделал публичный доклад об Х-лучах на заседании физико-медицинского общества. На этом заседании было единогласно принято решение назвать Х-лучи рентгеновскими.

Природа Рентгеновских лучей оставалась мало исследованной в течение 17 лет со дня их открытия В. К. Рентгеном, хотя вскоре после открытия этих лучей сам ученый и целый ряд других исследователей отмечали сходство их с видимыми лучами.

Сходство подтверждалось прямолинейностью распространения, отсутствием отклонения их в электрическом и магнитном полях. Но, с другой стороны, не удалось обнаружить ни явления преломления призмой, ни отражения от зеркал и целого ряда других свойств, характерных для видимого света, имеющего волновую природу.

И только в 1912 году первоначально нашему соотечественнику знаменитому русскому физику А. И. Лебедеву, а затем немецкому физику Лауэ удалось доказать, что рентгеновские лучи имеют ту же природу, что и лучи видимого света, т. е. являются электромагнитными волнами. Таким образом, рентгеновские лучи по своей природе одинаковы с радиоволнами, инфракрасными лучами, лучами видимого света и ультрафиолетовыми лучами.

Разница между этими лучами только в том, что они имеют разную длину волны электромагнитных колебаний. Среди перечисленных выше рентгеновы лучи имеют очень малую длину волны. Поэтому они требовали особых условий производства опыта для выявления преломления или отражения.

Длину волны рентгеновских лучей измеряют очень маленькой единицей, называемой «ангстрем» (1Å=10–8 см, то есть равен сто миллионной доле сантиметра). Практически в диагностических аппаратах получаются лучи с длиной волны 0,1–0,8 Å.

Свойства рентгеновских лучей

Рентгеновские лучи проходят через непрозрачные тела и предметы, такие как, например, бумага, материя, дерево, ткани человеческого и животного организма и даже через определенной толщины металлы. Причем, чем короче длина волны излучения, тем легче они проходят через перечисленные тела и предметы.

В свою очередь, при прохождении этих лучей через тела и предметы с различной плотностью они частично поглощаются. Плотные тела поглощают рентгеновские лучи более интенсивно, чем тела малой плотности.

Рентгеновские лучи обладают способностью возбуждать видимое свечение некоторых химических веществ. Например: кристаллы платино-цианистого бария при попадании на них рентгеновских лучей начинают светиться ярким зеленовато-желтоватым светом. Свечение продолжается только в момент воздействия рентгеновских лучей и сразу же прекращается с прекращением облучения. Платино-цианистый барий, таким образом, от действия рентгеновских лучей флюоресцирует. (Это явление послужило причиной открытия рентгеновских лучей.)

Вольфрамовокислый кальций при освещении рентгеновскими лучами также светится, но уже голубым светом, причем свечение этой соли продолжается некоторое время и после прекращения облучения, т. о. фосфоресцирует.

Свойство вызывать флюоресценцию используется для производства просвечивания при помощи рентгеновых лучей. Свойство же вызывать у некоторых веществ фосфоресценцию используется для производства рентгеновских снимков.

Рентгеновские лучи также обладают способностью действовать на светочувствительный слой фотопластинок и пленок подобно видимому свету, вызывая разложение бромистого серебра. Иными словами, эти лучи обладают фото-химическим действием. Это обстоятельство дает возможность производить при помощи рентгеновских лучей снимки с различных участков тела у человека и животных.

Рентгеновские лучи обладают биологическим действием на организм. Проходя через определенный участок тела, они производят в тканях и клетках соответствующие изменения в зависимости от вида ткани и количества поглощенных ими лучей, т. е. дозы.

Это свойство используется для лечения целого ряда заболеваний человека и животных. При воздействии больших доз рентгеновских лучей в организме получается целый ряд функциональных и морфологических изменений, и возникает специфическое заболевание - лучевая болезнь .

Рентгеновские лучи, кроме того, обладают способностью ионизировать воздух, т. е. расщеплять составные части воздуха на отдельные, электрически заряженные частицы.

В результате этого воздух становится электропроводником. Это свойство используется для определения количества рентгеновских лучей, излучаемых рентгеновской трубкой за единицу времени при помощи специальных приборов - дозиметров.

Знание дозы излучения рентгеновской трубкой важно, когда производится рентгенотерапия. Без знания дозы излучения трубки при соответствующей жесткости нельзя проводить лечение лучами рентгена, так как легко можно вместо улучшения ухудшить весь процесс болезни. Неправильное использование рентгеновских лучей для лечения может погубить здоровые ткани и даже вызвать серьезные нарушения во всем организме.

Способы рентгенологических исследований

а) Просвечивание (рентгеноскопия) . Рентгеновские лучи в ветеринарной практике применяют для изучения и распознавания разных болезней у сельскохозяйственных животных. Этот метод исследования больных животных является вспомогательным средством для установления или уточнения диагноза наряду с другими методами. Поэтому данные рентгенологического исследования всегда необходимо увязывать с данными клинических и других исследований. Только в этом случае мы можем придти к правильному заключению и точному диагнозу. Как указано было выше, существуют два способа рентгенологического исследования: первый способ - просвечивание или рентгеноскопия, второй способ - производство рентгеновских снимков или рентгенография.

Остановимся на вопросе обоснования просвечивания, возможностях этого метода, на достоинствах и недостатках его.

Для того чтобы производить просвечивание невидимыми рентгеновскими лучами и получить видимую теневую картину исследуемого участка тела используют определенные свойства рентгеновских лучей и тканей организма.

1. Способность рентгеновских лучей: а) проникать через ткани организма, и б) вызывать видимое свечение некоторых химических веществ.

2. Способность тканей поглощать рентгеновские лучи в той или иной мере в зависимости от плотности их.

Рентгенология - раздел радиологии, изучающий воздействие на организм животных и человека рентгеновского излучения, возникающие от этого заболевания, их лечение и профилактику, а также методы диагностики различных патологий при помощи рентгеновских лучей (рентгенодиагностика). В состав типового рентгенодиагностического аппарата входит питающее устройство (трансформаторы), высоковольтный выпрямитель, преобразующий переменный ток электрической сети в постоянный, пульт управления, штатив и рентгеновская трубка.

Рентгеновские лучи - это вид электромагнитных колебаний, которые образуются в рентгеновской трубке при резком торможении ускоренных электронов в момент их столкновения с атомами вещества анода. В настоящее время общепризнанной считается точка зрения, что рентгеновские лучи по своей физической природе являются одним из видов лучистой энергии, спектр которых включает также радиоволны, инфракрасные лучи, видимый свет, ультрафиолетовые лучи и гамма-лучи радиоактивных элементов. Рентгеновское излучение можно характеризовать как совокупность его наименьших частиц - квантов или фотонов.

Рис. 1 - передвижной рентгеновский аппарат:

A - рентгеновская трубка;
Б - питающее устройство;
В - регулируемый штатив.


Рис. 2 - пульт управления рентгеновским аппаратом (механический - слева и электронный - справа):

A - панель для регулирования экспозиции и жёсткости;
Б - кнопка подачи высокого напряжения.


Рис. 3 - блок-схема типичного рентгенаппарата

1 - сеть;
2 - автотрансформатор;
3 - повышающий трансформатор;
4 - рентгеновская трубка;
5 - анод;
6 - катод;
7 - понижающий трансформатор.

Механизм образования рентгеновского излучения

Рентгеновские лучи образуются в момент столкновения потока ускоренных электронов с веществом анода. При взаимодействии электронов с мишенью 99% их кинетической энергии превращается в тепловую энергию и только 1% - в рентгеновское излучение.

Рентгеновская трубка состоит из стеклянного баллона, в который впаяны 2 электрода: катод и анод. Из стеклянного баллона выкачен воздух: движение электронов от катода к аноду возможно лишь в условиях относительного вакуума (10 -7 –10 -8 мм. рт. ст.). На катоде имеется нить накала, являющаяся плотно скрученной вольфрамовой спиралью. При подаче электрического тока на нить накала происходит электронная эмиссия, при которой электроны отделяются от спирали и образуют рядом с катодом электронное облачко. Это облачко концентрируется у фокусирующей чашечки катода, задающей направление движения электронов. Чашечка - небольшое углубление в катоде. Анод, в свою очередь, содержит вольфрамовую металлическую пластину, на которую фокусируются электроны, - это и есть место образования рентгеновских лучей.


Рис. 4 - устройство рентгеновской трубки:

А - катод;
Б - анод;
В - вольфрамовая нить накала;
Г - фокусирующая чашечка катода;
Д - поток ускоренных электронов;
Е - вольфрамовая мишень;
Ж - стеклянная колба;
З - окно из бериллия;
И - образованные рентгеновские лучи;
К - алюминиевый фильтр.

К электронной трубке подключены 2 трансформатора: понижающий и повышающий. Понижающий трансформатор раскаляет вольфрамовую спираль низким напряжением (5-15 вольт), в результате чего возникает электронная эмиссия. Повышающий, или высоковольтный, трансформатор подходит непосредственно к катоду и аноду, на которые подаётся напряжение 20–140 киловольт. Оба трансформатора помещаются в высоковольтный блок рентгеновского аппарата, который наполнен трансформаторным маслом, обеспечивающим охлаждение трансформаторов и их надёжную изоляцию.

После того как при помощи понижающего трансформатора образовалось электронное облачко, включается повышающий трансформатор, и на оба полюса электрической цепи подаётся высоковольтное напряжение: положительный импульс - на анод, и отрицательный - на катод. Отрицательно заряженные электроны отталкиваются от отрицательно заряженного катода и стремятся к положительно заряженному аноду - за счёт такой разности потенциалов достигается высокая скорость движения - 100 тыс. км/с. С этой скоростью электроны бомбардируют вольфрамовую пластину анода, замыкая электрическую цепь, в результате чего возникает рентгеновское излучение и тепловая энергия.

Рентгеновское излучение подразделяется на тормозное и характеристическое. Тормозное излучение возникает из-за резкого замедления скорости электронов, испускаемых вольфрамовой спиралью. Характеристическое излучение возникает в момент перестройки электронных оболочек атомов. Оба этих вида образуются в рентгеновской трубке в момент столкновения ускоренных электронов с атомами вещества анода. Спектр излучения рентгеновской трубки представляет собой наложение тормозного и характеристического рентгеновских излучений.


Рис. 5 - принцип образования тормозного рентгеновского излучения.
Рис. 6 - принцип образования характеристического рентгеновского излучения.

Основные свойства рентгеновского излучения

  1. Рентгеновские лучи невидимы для визуального восприятия.
  2. Рентгеновское излучение обладает большой проникающей способностью сквозь органы и ткани живого организма, а также плотные структуры неживой природы, не пропускающие лучи видимого света.
  3. Рентгеновские лучи вызывают свечение некоторых химических соединений, называемое флюоресценцией.
  • Сульфиды цинка и кадмия флюоресцируют жёлто-зелёным цветом,
  • Кристаллы вольфрамата кальция - фиолетово-голубым.
  • Рентгеновские лучи обладают фотохимическим действием: разлагают соединения серебра с галогенами и вызывают почернение фотографических слоёв, формируя изображение на рентгеновском снимке.
  • Рентгеновские лучи передают свою энергию атомам и молекулам окружающей среды, через которую они проходят, проявляя ионизирующее действие.
  • Рентгеновское излучение оказывает выраженное биологическое действие в облучённых органах и тканях: в небольших дозах стимулирует обмен веществ, в больших - может привести к развитию лучевых поражений, а также острой лучевой болезни. Биологическое свойство позволяет примененять рентгеновское излучение для лечения опухолевых и некоторых неопухолевых заболеваний.
  • Шкала электромагнитных колебаний

    Рентгеновские лучи имеют определённую длину волны и частоту колебаний. Длина волны (λ) и частота колебаний (ν) связаны соотношением: λ ν = c, где c - скорость света, округлённо равная 300 000 км в секунду. Энергия рентгеновских лучей определяется формулой E = h ν, где h - постоянная Планка, универсальная постоянная, равная 6,626 10 -34 Дж⋅с. Длина волны лучей (λ) связана с их энергией (E) соотношением: λ = 12,4 / E.

    Рентгеновское излучение отличается от других видов электромагнитных колебаний длиной волны (см. таблицу) и энергией кванта. Чем короче длина волны, тем выше её частота, энергия и проникающая способность. Длина волны рентгеновского излучения находится в интервале

    . Изменяя длину волны рентгеновского излучения, можно регулировать его проникающую способность. Рентгеновские лучи имеют очень малую длину волны, но большую частоту колебаний, поэтому невидимы человеческим глазом. Благодаря огромной энергии кванты обладают большой проникающей способностью, что является одним из главных свойств, обеспечивающих использование рентгеновского излучения в медицине и других науках.

    Характеристики рентгеновского излучения

    Интенсивность - количественная характеристика рентгеновского излучения, которая выражается количеством лучей, испускаемых трубкой в единицу времени. Интенсивность рентгеновского излучения измеряется в миллиамперах. Сравнивая её с интенсивностью видимого света от обычной лампы накаливания, можно провести аналогию: так, лампа на 20 Ватт будет светить с одной интенсивностью, или силой, а лампа на 200 Ватт - с другой, при этом качество самого света (его спектр) является одинаковым. Интенсивность рентгеновского излучения, по сути, это его количество. Каждый электрон создаёт на аноде один или несколько квантов излучения, следовательно, количество рентгеновских лучей при экспонировании объекта регулируется путём изменения количества электронов, стремящихся к аноду, и количества взаимодействий электронов с атомами вольфрамовой мишени, что можно осуществить двумя путями:

    1. Изменяя степень накала спирали катода при помощи понижающего трансформатора (количество электронов, образующихся при эмиссии, будет зависеть от того, насколько сильно раскалена вольфрамовая спираль, а количество квантов излучения будет зависеть от количества электронов);
    2. Изменяя величину высокого напряжения, подводимого повышающим трансформатором к полюсам трубки - кадоду и аноду (чем выше напряжение подаётся на полюса трубки, тем большую кинетическую энергию получают электроны, которые за счёт своей энергии могут взаимодействовать с несколькими атомами вещества анода поочерёдно - см. рис. 5 ; электроны с низкой энергией смогут вступить в меньшее число взаимодействий).

    Интенсивность рентгеновского излучения (анодный ток), помноженная на выдержку (время работы трубки), соответствует экспозиции рентгеновского излучения, которая измеряется в мАс (миллиамперах в секунду). Экспозиция - это параметр, который, также как и интенсивность, характеризует количество лучей, испускаемых рентгеновской трубкой. Разница состоит лишь в том, что экспозиция учитывает ещё и время работы трубки (так, например, если трубка работает 0,01 сек., то количество лучей будет одним, а если 0,02 сек, то количество лучей будет другим - в два раза больше). Экспозиция излучения устанавливается рентгенологом на контрольной панели рентгеновского аппарата в зависимости от вида исследования, размеров исследуемого объекта и диагностической задачи.

    Жёсткость - качественная характеристика рентгеновского излучения. Измеряется величиной высокого напряжения на трубке - в киловольтах. Определяет проникающую способность рентгеновских лучей. Регулируется величиной высокого напряжения, подводимого к рентгеновской трубке повышающим трансформатором. Чем выше разность потенциалов создаётся на электродах трубки, тем с большей силой электроны отталкиваются от катода и устремляются к аноду и тем сильнее их столкновение с анодом. Чем сильнее их столкновение, тем короче длина волны у возникающего рентгеновского излучения и выше проникающая способность данной волны (или жёсткость излучения, которая, так же как и интенсивность, регулируется на контрольной панели параметром напряжением на трубке - киловольтажем).

    Рис. 7 - Зависимость длины волны от энергии волны:

    λ - длина волны;
    E - энергия волны

    • Чем выше кинетическая энергия движущихся электронов, тем сильнее их удар об анод и меньше длина волны образующегося рентгеновского излучения. Рентгеновское излучение с большой длиной волны и малой проникающей способностью называется «мягким», с малой длиной волны и высокой проникающей способностью - «жёстким».
    Рис. 8 - Соотношение напряжения на рентгеновской трубке и длины волны образующегося рентгеновского излучения:
    • Чем выше напряжение подаётся на полюса трубки, тем сильнее на них возникает разность потенциалов, следовательно, кинетическая энергия движущихся электронов будет выше. Напряжение на трубке определяет скорость движения электронов и силу их столкновения с веществом анода, следовательно, напряжение определяет длину волны возникающего рентгеновского излучения.

    Классификация рентгеновских трубок

    1. По назначению
      1. Диагностические
      2. Терапевтические
      3. Для структурного анализа
      4. Для просвечивания
    2. По конструкции
      1. По фокусности
    • Однофокусные (на катоде одна спираль, а на аноде одно фокусное пятно)
    • Двухфокусные (на катоде две спирали разного размера, а на аноде два фокусных пятна)
    1. По типу анода
    • Стационарный (неподвижный)
    • Вращающийся

    Рентгеновские лучи применяются не только в рентгенодиагностических целях, но также и в терапевтических. Как было отмечено выше, способноcть рентгеновского излучения подавлять рост опухолевых клеток позволяет использовать его в лучевой терапии онкологических заболеваний. Помимо медицинской области применения, рентгеновское излучение нашло широкое применение в инженерно-технической сфере, материаловедении, кристаллографии, химии и биохимии: так, например, возможно выявление структурных дефектов в различных изделиях (рельсах, сварочных швах и пр.) с помощью рентгеновского излучения. Вид такого исследования называется дефектоскопией. А в аэропортах, на вокзалах и других местах массового скопления людей активно применяются рентгенотелевизионные интроскопы для просвечивания ручной клади и багажа в целях безопасности.

    В зависимости от типа анода, рентгеновские трубки различаются по конструкции. В силу того, что 99% кинетической энергии электронов переходит в тепловую энергию, во время работы трубки происходит значительное нагревание анода - чувствительная вольфрамовая мишень часто сгорает. Охлаждение анода осуществляется в современных рентгеновских трубках при помощи его вращения. Вращающийся анод имеет форму диска, который распределяет тепло по всей своей поверхности равномерно, препятствуя локальному перегреву вольфрамовой мишени.

    Конструкция рентгеновских трубок различается также по фокусности. Фокусное пятно - участок анода, на котором происходит генерирование рабочего пучка рентгеновского излучения. Подразделяется на реальное фокусное пятно и эффективное фокусное пятно (рис. 12 ). Из-за того, что анод расположен под углом, эффективное фокусное пятно меньше, чем реальное. Различные размеры фокусного пятна используются в зависимости от величины области снимка. Чем больше область снимка, тем шире должно быть фокусное пятно, чтобы покрыть всю площадь снимка. Однако меньшее фокусное пятно формирует лучшую чёткость изображения. Поэтому при производстве небольших снимков используется короткая нить накала и электроны направляются на небольшую область мишени анода, создавая меньшее фокусное пятно.


    Рис. 9 - рентгеновская трубка со стационарным анодом.
    Рис. 10 - рентгеновская трубка с вращающимся анодом.
    Рис. 11 - устройство рентгеновской трубки с вращающимся анодом.
    Рис. 12 - схема образования реального и эффективного фокусного пятна.

    Рентгеновы лучи — это разновидность электромагнитных волн, к числу которых относятся также световые лучи, гамма-лучи радия и лучи, испускаемые радиоантеннами. Электромагнитные волны группируют по их длинам. В длинноволновом конце спектра их длина колеблется от 10 см до нескольких километров. С уменьшением начинается область инфракрасных или тепловых волн. Область видимого света включает длины волн (в зависимости от цвета) от 800 до 400 мм к. К ультрафиолетовой области относятся волны от 180 до 10 мм к.

    Волны от 15А до 0.03А характерны для рентгеновых лучей. Меньшие длины волн, порядка 0,001 А, имеют гамма-лучи радиоактивного распада. Единица длины ангстрем (А) равна одной стомиллионной доле сантиметра.

    Все эти типы излучений отличаются один от другого по природе возникновения и характеру взаимодействия с окружающей средой. Различные свойства лучей обусловлены неодинаковой длиной волны.

    Электромагнитные колебания характеризуются также величиной энергии квантов (квант — отдельная порция энергии излучения). Чем меньше длина волны излучения, тем больше величина энергии квантов.

    Законы распространения рентгеновых лучей подобны законам распространения света. Как световое излучение, рентгеновы лучи при взаимодействии со средой частично поглощаются, частично отражаются и рассеиваются. Но так как длина волны рентгеновых лучей мала, а энергия квантов велика, то они обладают еще другими свойствами: 1) проникают через среды различной плотности — картон, дерево, ткани организма животного и т. д. Проникающая способность рентгеновых лучей тем больше, чем короче длина волны и, следовательно, больше энергия квантов. Глубина проникновения рентгеновых лучей в ту или иную среду, или степень ослабления интенсивности рентгеновского излучения при прохождении через слой того или другого материала, зависит не только от коротковолновости или энергии квантов, но и от свойств материала: чем плотнее среда, тем больше в ней поглощаются рентгеновы лучи. Например, слой воды толщиной 35 см ослабляет интенсивность потока рентгеновых лучей, генерированных при напряжении 200 кв, в такой же степени, как слой железа 4,75 см или бетона толщиной 17,23 см;

    2)вызывают свечение — люминесценцию некоторых химических соединений. Одни вещества светятся вмомент действия рентгеновых лучей, такое свечение называется флуоресценцией. Другие веществапродолжают светиться некоторое время после того,как рентгеновы лучи прекратили действие, это свечение называется фосфоресценцией;

    3)подобно видимомусвету,вызывают изменения в галоидных соединениях серебра, входящих в состав фотоэмульсий.Иначеговоря,вызываютфотохимические реакции;

    4)вызывают ионизацию нейтральныхатомов и молекул. В результате ионизации образуются положительно и отрицательно заряженные частицы — ионы. Ионизированная среда становитсяпроводникомэлектрического тока. Это свойство используют для измерения интенсивности лучей с помощью так называемой ионизационной камеры.

    В основе биологического действия рентгеновых лучей лежит явление ионизации.

    Лучи, которые сейчас называют рентгеновскими, были открыты 7 ноября 1895 г. физиком В. К. Рентгеном. Официальной те датой открытия этих лучей считается 28 декабря 1895 г., когда Рентген, после изучения открытых им Х-лучей, опубликовал первое сообщение об их свойствах.

    Эти Х-лучи стали называть рентгеновскими с 23 января 1896 года, когда В. К. Рентген сделал публичный доклад об Х-лучах на заседании физико-медицинского общества. На этом заседании было единогласно принято решение назвать Х-лучи рентгеновскими.

    Природа Рентгеновских лучей оставалась мало исследованной в течение 17 лет со дня их открытия В. К. Рентгеном, хотя вскоре после открытия этих лучей сам ученый и целый ряд других исследователей отмечали сходство их с видимыми лучами.

    Сходство подтверждалось прямолинейностью распространения, отсутствием отклонения их в электрическом и магнитном полях. Но, с другой стороны, не удалось обнаружить ни явления преломления призмой, ни отражения от зеркал и целого ряда других свойств, характерных для видимого света, имеющего волновую природу.

    И только в 1912 году первоначально нашему соотечественнику знаменитому русскому физику А. И. Лебедеву, а затем немецкому физику Лауэ удалось доказать, что рентгеновские лучи имеют ту же природу, что и лучи видимого света, т. е. являются электромагнитными волнами. Таким образом, рентгеновские лучи по своей природе одинаковы с радиоволнами, инфракрасными лучами, лучами видимого света и ультрафиолетовыми лучами.

    Разница между этими лучами только в том, что они имеют разную длину волны электромагнитных колебаний. Среди перечисленных выше рентгеновы лучи имеют очень малую длину волны. Поэтому они требовали особых условий производства опыта для выявления преломления или отражения.

    Длину волны рентгеновских лучей измеряют очень маленькой единицей, называемой «ангстрем» (1Å=10–8 см, то есть равен сто миллионной доле сантиметра). Практически в диагностических аппаратах получаются лучи с длиной волны 0,1–0,8 Å.

    Свойства рентгеновских лучей

    Рентгеновские лучи проходят через непрозрачные тела и предметы, такие как, например, бумага, материя, дерево, ткани человеческого и животного организма и даже через определенной толщины металлы. Причем, чем короче длина волны излучения, тем легче они проходят через перечисленные тела и предметы.

    В свою очередь, при прохождении этих лучей через тела и предметы с различной плотностью они частично поглощаются. Плотные тела поглощают рентгеновские лучи более интенсивно, чем тела малой плотности.

    Рентгеновские лучи обладают способностью возбуждать видимое свечение некоторых химических веществ. Например: кристаллы платино-цианистого бария при попадании на них рентгеновских лучей начинают светиться ярким зеленовато-желтоватым светом. Свечение продолжается только в момент воздействия рентгеновских лучей и сразу же прекращается с прекращением облучения. Платино-цианистый барий, таким образом, от действия рентгеновских лучей флюоресцирует. (Это явление послужило причиной открытия рентгеновских лучей.)

    Вольфрамовокислый кальций при освещении рентгеновскими лучами также светится, но уже голубым светом, причем свечение этой соли продолжается некоторое время и после прекращения облучения, т. о. фосфоресцирует.

    Свойство вызывать флюоресценцию используется для производства просвечивания при помощи рентгеновых лучей. Свойство же вызывать у некоторых веществ фосфоресценцию используется для производства рентгеновских снимков.

    Рентгеновские лучи также обладают способностью действовать на светочувствительный слой фотопластинок и пленок подобно видимому свету, вызывая разложение бромистого серебра. Иными словами, эти лучи обладают фото-химическим действием. Это обстоятельство дает возможность производить при помощи рентгеновских лучей снимки с различных участков тела у человека и животных.

    Рентгеновские лучи обладают биологическим действием на организм. Проходя через определенный участок тела, они производят в тканях и клетках соответствующие изменения в зависимости от вида ткани и количества поглощенных ими лучей, т. е. дозы.

    Это свойство используется для лечения целого ряда заболеваний человека и животных. При воздействии больших доз рентгеновских лучей в организме получается целый ряд функциональных и морфологических изменений, и возникает специфическое заболевание - лучевая болезнь .

    Рентгеновские лучи, кроме того, обладают способностью ионизировать воздух, т. е. расщеплять составные части воздуха на отдельные, электрически заряженные частицы.

    В результате этого воздух становится электропроводником. Это свойство используется для определения количества рентгеновских лучей, излучаемых рентгеновской трубкой за единицу времени при помощи специальных приборов - дозиметров.

    Знание дозы излучения рентгеновской трубкой важно, когда производится рентгенотерапия. Без знания дозы излучения трубки при соответствующей жесткости нельзя проводить лечение лучами рентгена, так как легко можно вместо улучшения ухудшить весь процесс болезни. Неправильное использование рентгеновских лучей для лечения может погубить здоровые ткани и даже вызвать серьезные нарушения во всем организме.



    Понравилась статья? Поделитесь с друзьями!