Сценарный термин странный аттрактор. Странный аттрактор

Исчерпывающей теории возникновения турбулентности в различных типах гидродинамических течений в настоящее время еще не существует. Был выдвинут, однако, ряд возможных сценариев процесса хаотизации движения, основанных главным образом на компьютерном исследовании модельных систем дифференциальных уравнений, и частично подтвержденных реальными гидродинамическими экспериментами. Дальнейшее изложение в этом и следующем параграфах имеет своей целью лишь дать представление об этих идеях, не входя в обсуждение соответствующих компьютерных и экспериментальных результатов. Отметим лишь, что экспериментальные данные относятся к гидродинамическим движениям в ограниченных объемах; именно такие движения мы и будем иметь в виду ниже.

Прежде всего сделаем следующее общее важное замечание. При анализе устойчивости периодического движения интересны лишь те мультипликаторы, которые по модулю близки к 1 - именно они при небольшом изменении R могут пересечь единичную окружность. Для течения вязкой жидкости число таких «опасных» мультипликаторов всегда конечно по следующей причине. Допускаемые уравнениями движения различные типы (моды) возмущений обладают разными пространственными масштабами (т. е. длинами расстояний, на которых существенно меняется скорость ).

Чем меньше масштаб движения, тем больше градиенты скорости в нем и тем сильнее оно тормозится вязкостью. Если расположить допустимые моды в порядке убывания их масштабов, то опасным может оказаться только некоторое конечное число первых из них; достаточно далекие в этом ряду заведомо окажутся сильно затухающими, т. е. им будут отвечать малые по модулю мультипликаторы. Это обстоятельство позволяет считать, что выяснение возможных типов потери устойчивости периодическим движением вязкой жидкости может производиться по существу так же, как и анализ устойчивости периодического движения диссипативной дискретной механической системы, описываемой конечным числом переменных (в гидродинамическом аспекте этими переменными могут, например, быть амплитуды компонент разложения поля скоростей в ряд Фурье по координатам). Соответственно этому становится конечномерным и пространство состояний.

С математической точки зрения речь идет об исследовании эволюции системы, описываемой уравнениями вида

где - вектор в пространстве величин описывающих систему; функция F зависит от параметра, изменение которого может приводить к изменению характера движения. Для диссипативной системы дивергенция вектора в х-пространстве отрицательна, чем выражается сокращение объемов х-пространства при движении:

Вернемся к обсуждению возможных результатов взаимодействия разных периодических движений. Явление синхронизации упрощает движение. Но взаимодействие может разрушить квазипериодичность также и в направлении существенного усложнения картины. До сих пор молчаливо подразумевалось, что при потере устойчивости периодическим движением возникает в дополнение к нему другое периодическое движение. Логически же это вовсе не обязательно. Ограниченность амплитуд пульсаций скорости обеспечивает лишь ограниченность объема пространства состояний, внутри которого располагаются траектории, соответствующие установившемуся режиму течения вязкой жидкости, но как выглядит картина траекторий в этом объеме априори ничего сказать нельзя.

Траектории могут стремиться к предельному циклу или к незамкнутой намотке на торе (соответственно образам периодического или квазипериодического движений), но могут вести себя и совершенно по-иному - сложно и запутанно. Именно эта возможность чрезвычайно существенна для понимания математической природы и выяснения механизма возникновения турбулентности.

Представить себе сложное и запутанное поведение траекторий внутри ограниченного объема, куда траектории только входят, можно, если предположить, что все траектории в нем неустойчивы. Среди них могут быть не только неустойчивые циклы, но и незамкнутые траектории бесконечно блуждающие внутри ограниченной области, не выходя из нее. Неустойчивость означает, что две сколь угодно близкие точки пространства состояний, передвигаясь в дальнейшем по проходящим через них траекториям, далеко разойдутся; первоначально близкие точки могут относиться и к одной и той же траектории: ввиду ограниченности области незамкнутая траектория может подойти к самой себе сколь угодно близко. Именно такое сложное, нерегулярное поведение траекторий и ассоциируется с турбулентным движением жидкости.

Эта картина имеет еще и другой аспект - чувствительная зависимость течения от малого изменения начальных условий. Если движение устойчиво, то малая неточность в задании начальных условий приведет лишь к аналогичной неточности в определении конечного состояния. Если же движение неустойчиво, то исходная неточность со временем нарастает и дальнейшее состояние системы уже невозможно предвидеть (Н. С. Крылов, 1944; М. Вот, 1952).

Притягивающее множество неустойчивых траекторий в пространстве состояний диссипативной системы действительно может существовать (Е. Lorenz, 1963); его принято называть стохастическим, или странным аттрактором.

На первый взгляд, требование о неустойчивости всех траекторий, принадлежащих аттрактору, и требование о том, чтобы все соседние траектории при к нему стремились, кажутся несовместимыми, поскольку неустойчивость означает разбегание траекторий. Это кажущееся противоречие устраняется если учесть, что траектории могут быть неустойчивыми по одним направлениям в пространстве состояний и устойчивыми (т. е. притягивающими) по другим.

В -мерном пространстве состояний траектории, принадлежащие странному аттрактору, не могут быть неустойчивы по всем (-направлениям (одно направление отвечает движению вдоль траектории), так как это означало бы непрерывный рост начального объема в пространстве состояний, что для диссипативной системы невозможно. Следовательно, по одним направлениям соседние траектории к траекториям аттрактора стремятся, а по другим - неустойчивым - от них уходят (рис. 19).

Такие траектории называют седловыми, и именно множество таких траекторий составляет странный аттрактор.

Странный аттрактор может появиться уже после нескольких бифуркаций возникновения новых периодов: даже сколь угодно малая нелинейность может разрушить квазипериодический режим (незамкнутая обмотка на торе), создав на торе странный аттрактор (D. Ruelle, F. Takens, 1971). Это, однако, не может произойти на второй (начиная с разрушения стационарного режима) бифуркации. При этой бифуркации появляется незамкнутая обмотка на двумерном торе. Учет малой нелинейности не разрушает тора, так что странный аттрактор должен был бы быть расположен на нем. Но на двумерной поверхности невозможно существование притягивающего множества неустойчивых траекторий. Дело в том, что траектории в пространстве состояний не могут пересекаться друг с другом (или сами с собой); это противоречило бы причинности поведения классических систем: состояние системы в каждый момент времени однозначно определяет ее поведение в следующие моменты. На двумерной поверхности невозможность пересечений настолько упорядочивает поток траекторий, что его хаотизация невозможна.

Но уже на третьей бифуркации возникновение странного аттрактора становится возможным (хотя и не обязательным!). Такой аттрактор, приходящий на смену трехчастотному квазипериодическому режиму, расположен на трехмерном торе (S. Newhouse, D. Ruelle, F. Takens, 1978).

Принадлежащие странному аттрактору сложные, запутанные траектории расположены в ограниченном объеме пространства состояний. Классификация возможных типов странных аттракторов, которые могут встретиться в реальных гидродинамических задачах, в настоящее время неизвестна; неясны даже критерии, на которых должна была бы основываться такая классификация. Существующие знания о структуре странных аттракторов основаны в основном лишь на изучении примеров, возникающих при компьютерном решении модельных систем обыкновенных дифференциальных уравнений, довольно далеких от реальных гидродинамических уравнений.

О структуре странного аттрактора можно, однако, высказать некоторые общие суждения, следующие уже из неустойчивости (седлового типа) траекторий и диссипативности системы.

Для наглядности будем говорить о трехмерном пространстве состояний и представлять себе аттрактор расположенным внутри двумерного тора. Рассмотрим пучок траекторий на пути к аттрактору (ими описываются переходные режимы движения жидкости, ведущие к установлению «стационарной» турбулентности). В поперечном сечении пучка траектории (точнее - их следы) заполняют определенную площадь; проследим за изменением величины и формы этой площади вдоль пучка. Учтем, что элемент объема в окрестности седловой траектории в одном из (поперечных) направлений растягивается, а в другом - сжимается; ввиду диссипативности системы сжатие сильнее, чем растяжение - объемы должны уменьшаться. По ходу траекторий эти направления должны меняться - в противном случае траектории ушли бы слишком далеко (что означало бы слишком большое изменение скорости жидкости). Все это приведет к тому, что сечение пучка уменьшится по площади и приобретет сплющенную, и в то же время изогнутую форму. Но этот процесс должен происходить не только с сечением пучка в целом, но и с каждым элементом его площади. В результате сечение пучка разбивается на систему вложенных друг в друга полос, разделенных пустотами С течением времени (т. е. вдоль пучка траекторий) число полос быстро возрастает, а их ширины убывают. Возникающий в пределе аттрактор представляет собой несчетное множество бесконечного числа не касающихся друг друга слоев - поверхностей, на которых располагаются седловые траектории (своими притягивающими направлениями обращенные «наружу» аттрактора). Своими боковыми сторонами и своими концами эти слои сложным образом соединяются друг с другом; каждая из принадлежащих аттрактору траекторий блуждает по всем слоям и по прошествии достаточно большого времени пройдет достаточно близко к любой точке аттрактора (свойство эргодичности). Общий объем слоев и общая площадь их сечений равны нулю.

По математической терминологии, такие множества по одному из направлений относятся к категории канторовых. Именно канторовость структуры следует считать наиболее характерным свойством аттрактора и в более общем случае -мерного пространства состояний.

Объем странного аттрактора в своем пространстве состояний всегда равен нулю. Он может, однако, быть ненулевым в другом пространстве - меньшей размерности.

Последнее определяется следующим образом. Разобьем все -мерное пространство на малые кубики с длиной ребра и объемом Пусть - минимальное число кубиков, совокупность которых полностью покрывает аттрактор. Определим размерность D аттрактора как предел

Существование этого предела означает конечность объема аттрактора в -мерном пространстве: при малом в имеем (где V - постоянная), откуда видно, что можно рассматривать как число -мерных кубиков, покрывающих в -мерном пространстве объем V. Определенная согласно (31,3) размерность не может, очевидно, превышать полную размерность пространства состояний, но может быть меньше его и, в отличие от привычной размерности, может быть дробной; именно такова она для канторовых множеств.

Обратим внимание на следующее важное обстоятельство. Если турбулентное движение уже установилось (течение «вышло на странный аттрактор»), то такое движение диссипативной системы (вязкой жидкости) в принципе не отличается от стохастического движения бездиссипативной системы с меньшей размерностью пространства состояний. Это связано с тем, что для установившегося движения вязкая диссипация энергии в среднем за большое время компенсируется энергией, поступающей от среднего течения (или от другого источника неравновесности). Следовательно, если следить за эволюцией во времени принадлежащего аттрактору элемента «объема» (в некотором пространстве, размерность которого определяется размерностью аттрактора), то этот объем в среднем будет сохраняться - его сжатие в одних направлениях будет в среднем компенсироваться растяжением за счет расходимости близких траекторий в других направлениях. Этим свойством можно воспользоваться, чтобы получить иным способом оценку размерности аттрактора.

Ввиду упомянутой уже эргодичности движения на странном аттракторе, его средние характеристики могут быть установлены путем анализа движения уже вдоль одной принадлежащей аттрактору неустойчивой траектории в пространстве состояний.

Другими словами, предполагаем, что индивидуальная траектория воспроизводит свойства аттрактора, если двигаться по ней бесконечно долгое время.

Пусть уравнение такой траектории, одно из решений уравнений (31,1). Рассмотрим деформацию «сферического» элемента объема при его перемещении вдоль этой траектории. Она определяется уравнениями (31,1), линеаризованными по разности отклонению траекторий, соседних с данной. Эти уравнения, написанные в компонентах, имеют вид

При сдвиге вдоль траектории элемент объема в одних направлениях сжимается, в других растягивается и сфера превращается в эллипсоид. По мере движения вдоль траектории как направления полуосей эллипсоида, так и их длины меняются; обозначим последние посредством где индекс s нумерует направления. Ляпуновскими характеристическими показателями называют предельные значения

Становится отрицательной. Дробная часть размерности находится из равенства

(F. Ledrappier, 1981). Поскольку при вычислении d учитываются лишь наименее устойчивые направления (отбрасываются наибольшие по абсолютной величине отрицательные показатели в конце их последовательности), то даваемая величиной DL оценка размерности есть, вообще говоря, оценка сверху. Эта оценка открывает, в принципе, путь для определения размерности аттрактора по экспериментальным измерениям временного хода пульсаций скорости в турбулентном потоке.

СТРАННЫЙ АТТРАКТОР

СТРАННЫЙ АТТРАКТОР

Притягивающее неустойчивых траекторийв фазовом пространстве диссипативной динамической системы. С. а.,в отличие от аттрактора, не является многообразием (т. е. не является кривойили поверхностью); его геом. устройство очень сложно, а его структура фрактальна(см. Фракталы). Поэтому он получил назв. «странный» [Д. Рюэль (D.Ruelle), Ф. Такенс (F. Takens)]. Тот факт, что все траектории, расположенныев окрестности С. а., притягиваются к нему при , принципиально связан с характером неустойчивостей составляющих его траекторий, Бифуркация, Предельный цикл). ТраекторииС. а. описывают стационарные стохастич. автоколебания, поддерживаемыев диссипативной системе за счёт энергии внеш. источника. С. а. характернылишь для автоколебат. систем, фазового пространства к-рых большедвух (рис. 1). Первая исследовавшаяся система со С. а.- Лоренца система- трёхмерна.

Рис. 1. Странный аттрактор в системе, описываемой уравнениями типа(1).

Системы с периодич. автоколебаниями, матем. образом к-рых является предельныйцикл, удаётся исследовать достаточно полно с помощью методов качественнойтеории дифференц. ур-ний. Построение же теории стохастических колебаний, заключающееся, в частности, в определении (предсказании) характеристики свойств С. а. по заданным параметрам системы, чрезвычайно затруднительнодаже для трёхмерных систем. Подобное построение удаётся провести, однако, Пример . Подобно тому, как генератор Ван-дер-Поля является простейшими канонич. примером системы, демонстрирующей периодич. , схема, 2а и определяющая несколько усложнённый генераторВан-дер-Поля, может служить одним из простейших примеров генераторов стохастич. б. Пока I в контуре и на сетке . малы, туннельный диод не оказывает существ. влияния на вконтуре, и они, как и в обычном ламповом генераторе, нарастают. При этомчерез туннельный диод течёт ток I , а напряжение на нём определяетсяветвью характеристики I(V). Когда же ток I достигает значения I т, происходит почти мгновенное переключение туннельного диода (быстротапереключения связана с малостью ёмкости С 1) - скачкомустанавливается напряжение V m . Затем ток через туннельныйдиод уменьшается и происходит его обратное переключение с участка на . Врезультате двух переключений туннельный диод почти полностью поглощаетпоступившую в контур энергию и колебания начинают снова нарастать. (Прирассмотрении работы схемы характеристику лампы можно считать линейной;это оправдано тем, что в интересующем нас режиме колебания ограничиваютсянелинейной характеристикой туннельного диода.) Т. о., генерируемый U(t )представляет собой последовательность цугов нарастающих колебаний;окончание каждого цуга характеризуется скачком напряжения V(t).

Рис. 2. Принципиальная схема (а) простого генератора шума- генератораВан-дер-Поля, в сеточный контур которого добавлен туннельный диод. Вольт-ампернаяхарактеристика (б) нелинейного элемента - туннельного диода.

Для количественного описания работы схемы исходные ур-ния

преобразуют к безразмерному виду:

где x = I/I m , z= V/V m ,

- нормированнаяхарактеристика диода. Здесь - малый параметр Поэтому все движения в фазовом пространстве (рис. 3)

Рис. 3. Поведение траекторий в фазовом пространстве системы (1) при

можно разбить на быстрые переключения диода (прямые х = const, у = const) и медленные, при к-рых напряжение на диоде «следит» затоком; соответствующие траектории лежат на поверхностях А и В[х = f(z ), f"(z) >0 ], отвечающих участкам и характеристикиДиода.

Система имеет одно неустойчивое [при ] состояние равновесия х = у = z = 0 типа седло. Траектории, лежащиена поверхности А, раскручиваются вокруг неустойчивого фокуса и вконце концов достигают края поверхности А. Здесь происходит срывточки, отображающей на фазовой траектории состояние системы (т. н. изображающейточки) по линии быстрых движений на В. Пройдя по В, изображающая точка срывается обратно на поверхность А и попадаетв окрестность равновесия - начинается новый цуг нарастающих колебаний. Отображение Пуанкаре, соответствующее ур-ниям (1), при кусочно можно описать непрерывной ф-цией, график к-рой приведён на рис.5. Линейный участок I с коэф. угла наклона, большим единицы, описываетраскручивание траектории на поверхности медленных движений А, соответствующейнарастанию колебаний в контуре. Участок II описывает этап возвращения траекторий, А на поверхность В, обратно на А (см. рис. 3). Все траектории, лежащие вне основания обозначенногопунктиром квадрата, входят в него при асимптотически больших значенияхвремени, т. е. область D - поглощающая и содержит аттрактор. Всетраектории внутри этой области неустойчивы, т. е. аттрактор является странным. свойства стохастичности движений (как показывают численные исследования)сохраняются.

Рис. 4. Спектр мощности сигнала, генерируемого схемой, представленнойна рис. 2а, и осциллограмма этого сигнала.

Рис. 5. График функции f(x), описывающей динамику схемы рис. 2 при .

Фрактальная размерность. Все разнообразие статистич. свойств случайногосигнала, порождаемого динамич. системой со С. а., может быть описано, еслиизвестно вероятности состояний системы. Однако получить (ииспользовать) это для конкретных систем со С. а., чрезвычайносложно (хотя бы потому, что распределения инвариантной вероятностноймеры всегда сингулярна). Это одна из причин, по к-рой для описания С. а.

где , нек-рый фиксированный параметр,- число n -мерных шаров диаметра ,покрывающих С. а. динамич. системы с n -мерным фазовым пространством.

Определённая согласно ур-нию (2) размерность с не может, очевидно, n, но может быть меньше п (n -мерные шарымогут оказаться почти пустыми). Для «обычных» множеств ур-ние (2) даёточевидные результаты. Так, для множества из k точек ,; дляотрезка длины L прямой лилии ,;для куска площади S двумерной поверхности ,и т. д. Неравенство размерности целому числу соответствует сложному геом. 2,6).

С физ. точки зрения, осн. «достоинство» фрактальной размерности С. а. и числом степеней свободы га имеет вид:

Бифуркации странных аттракторов. Пути рождения стохастич. предельный цикл, к-рый может родиться лишь несколькими типичнымиспособами, так и С. а. обладают сравнительно небольшим числом наиб. типичныхвозможностей возникновения .

Сценарий Фейгенбаума - цепочка бифуркаций удвоения периода устойчивогопредельного цикла. Если при изменении управляющего параметра периодич. n -мерном фазовом пространствеповедение траекторий отображения Пуанкаре в окрестности претерпевающегобифуркацию удвоения периода предельного цикла определяется ф-цией, напр.,f(x), график к-рой похож на параболу. Эта ф-ция описывает связьмежду координатами в направлении собств. подпространства оператора линеаризацииотображения Пуанкаре, отвечающего мультипликатору (-1) (j + 1)-гои j-го пересечений траекторией системы секущей Пуанкаре: x j+1 = f(x j). Возникшему устойчивому предельному циклуудвоенного периода отвечает двупериодич. отображения f .При дальнейшем изменении параметра бифуркации удвоения периода бесконечноповторяются, а бифуркац. значения, напр.,накапливаются к критич. точке , отвечающей возникновению С. а. В соответствии со сценарием Фейгенбаумаимеет место универсальный (не зависящий от конкретной системы) закон

где = 4,6692... - универсальная константа Фейгенбаума (см. Фейгенбаума универсальность).

Родившемуся С. а. при фиксированном отвечает неск. интервалов на оси х; участки между этими интерваламисодержат притягивающиеся к аттрактору траектории, а также 2 m -периодические(относительно отображения f ), неустойчивые предельные циклы, начинаяс нек-рого m 0 и меньше. При увеличении параметра скорость разбегания траекторий на С. а. увеличивается, и он «разбухает»,последовательно поглощая неустойчивые предельные циклы периодов 2 т+1 ,2 т , ... При этом число отрезков, отвечающих аттрактору,

Рис. 6. «Обратные бифуркации» удвоения периода, иллюстрирующие разбуханиеаттрактора, возникшего по сценарию Фейгенбаума.

Перемежаемость. Во мн. системах при прохождении управляющего параметра(скажем,)через бифуркац. значение переход к стохастич. автоколебаниям внешне осуществляется как редкое нарушениерегулярных колебаний «стохастич. всплесками». При этом длительность ламинарной(регулярной) фазы тем больше, чем меньше надкритичность С ростом же надкритичности длительность регулярной фазы сокращается. Этакартина интерпретируется следующей эволюцией осн. объектов в фазовом пространстве, время сохраняют характер своего поведения, т. движение, близкое к периодическому. С течением времени они «замечают», что старый аттрактор исчез, и, оставаясь рядом с сепаратрисой(также исчезнувшей) седлового предельного цикла, уходят в др. часть фазовогопространства. Если в докритич. области система была глобально устойчива(т. е. существовал только один притягивающий объект), то эти траекториичерез нек-рое время вновь попадают в окрестность исчезнувшего предельногоцикла. Если при этом в докритич. области значений параметров сепаратрисаседлового цикла была вложена в достаточно сложнымгеом. образом (образовывала бесконечное число складок - «гофрировалась»,содержала гетероклинич. траектории др. седловых циклов и т. п.), то естьпереходный процесс демонстрировал нерегулярное поведение, то время попаданияв окрестность исчезнувшего цикла уже будет являться случайной величиной. Далее повторяется ламинарная , Кроме этих основных способов возникновения С. а. достаточно часто встречаютсятакже переходы к хаотич. автоколебаниям через разрушение квазипериодических(в фазовом пространстве при изменении управляющих параметров теряет гладкостьи разрушается притягивающий двумерный тор) и комбинированные сценарии .

Многомерные странные аттракторы часто обнаруживаются всистемах с большим числом степеней свободы. Среди возможных механизмов, скорость разбегания траекторий вдоль этих направлений. Стохастич. вязкость).Такая диссипация лишает мелкомасштабные возбуждения среды самостоятельности, Турбулентность).

Лит.: 1) Рабинович М. И., Трубецков Д. И., Введение в теориюколебаний и волн, М., 1984; 2) Лихтенберг А., Либерман М., Регулярная истохастическая , пер. с англ., М., 1984; 3) Афраймович В. С., РейманА. М., Размерность и в многомерных системах, в кн.: Нелинейныеволны. Динамика и эволюция, под ред. А. В. Гапонова-Грехова, М. И. Рабиновича, хаос. Введение, пер. с англ.,М., 1988; 5) Ландау Л. Д., Лифшиц Е. М., Гидродинамика, 4 изд., М., 1988;6) Афраймович В. С., Внутренние бифуркации и кризисы аттракторов, в кн.:Нелинейные . Структуры и бифуркации, под ред. А. В. Гапонова-Грехова, В. С. Афраймович, М.

Физическая энциклопедия. В 5-ти томах. - М.: Советская энциклопедия . Главный редактор А. М. Прохоров . 1988 .

Аттракторы классифицируют по:

  1. Формализации понятия стремления: различают максимальный аттрактор, неблуждающее множество, аттрактор Милнора, центр Биркгофа, статистический и минимальный аттрактор.
  2. Регулярности самого аттрактора: аттракторы делят на регулярные (притягивающая неподвижная точка, притягивающая периодическая траектория, многообразие) и странные (нерегулярные - зачастую фрактальные и/или в каком-либо сечении устроенные как канторово множество ; динамика на них обычно хаотична).
  3. Локальности («притягивающее множество») и глобальности (здесь же - термин «минимальный» в значении «неделимый»).

Также, есть известные «именные» примеры аттракторов: Лоренца , Плыкина , соленоид Смейла-Вильямса , гетероклинический аттрактор (пример Боуэна).

Свойства и связанные определения

При всех определениях аттрактор полагается замкнутым и (полностью) инвариантным множеством.

С понятием аттрактора также тесно связано понятие меры Синая-Рюэлля-Боуэна : инвариантной меры на нём, к которой стремятся временные средние типичной (в смысле меры Лебега) начальной точки либо временные средние итераций меры Лебега. Впрочем, такая мера существует не всегда (что иллюстрирует, в частности, пример Боуэна).

Виды формализации определения

Поскольку всё фазовое пространство в любом случае сохраняется динамикой, формальное определение аттрактора можно давать, исходя из философии, что «аттрактор это наименьшее множество, к которому всё стремится» - иными словами, выкидывая из фазового пространства всё, что может быть выкинуто.

Максимальный аттрактор

Пусть для динамической системы задана область U, которая переводится строго внутрь себя динамикой:

\overline{f(U)}\subset U

Тогда максимальным аттрактором системы в ограничении на U называется пересечение всех его образов под действием динамики:

A_{max}=\bigcap_{n=1}^{\infty} f^n(U).

То же самое определение можно применить и для потоков: в этом случае, необходимо потребовать, чтобы векторное поле, задающее поток, на границе области было направлено строго внутрь неё.

Это определение часто применяется как для характеризации множества как «естественного» аттрактора («является максимальным аттрактором своей окрестности»). Также его применяют в уравнениях с частными производными .

У этого определения есть два недостатка. Во-первых, для его применения необходимо найти поглощающую область. Во-вторых, если такая область была выбрана неудачно - скажем, содержала отталкивающую неподвижную точку с её бассейном отталкивания - то в максимальном аттракторе будут «лишние» точки, около которых на самом деле несколько раз подряд оказаться нельзя, но текущий выбор области этого «не чувствует».

Аттрактор Милнора

По определению, аттрактором Милнора динамической системы называется наименьшее по включению замкнутое множество, содержащее ω-предельные множества почти всех начальных точек по мере Лебега. Иными словами - это наименьшее множество, к которому стремится траектория типичной начальной точки.

Неблуждающее множество

Точка x динамической системы называется блуждающей , если итерации некоторой её окрестности U никогда эту окрестность не пересекают:

\forall n>0 \quad f^n(U)\bigcap U =\emptyset. Иными словами, точка блуждающая, если у неё есть окрестность, которую любая траектория может пересечь только один раз. Множество всех точек, не являющихся блуждающими, называется неблуждающим множеством.

Статистический аттрактор

Статистический аттрактор A_{stat}, в окрестности которого почти все точки проводят почти всё время: для любой его окрестности U для почти любой (в смысле меры Лебега) точки x выполнено

\frac{1}{N}\# \{j\le N \mid f^j(x)\in U \} \to 1, \quad N\to\infty.

Минимальный аттрактор

Минимальный аттрактор определяется как наименьшее по включению замкнутое множество A_{min}, в окрестности которого почти вся мера Лебега проводит почти всё время: для любой его окрестности U выполнено

\frac{1}{N}\sum_{j=0}^{N-1} (f_*^j (Leb))(U) \to 1, \quad N\to\infty.

Примеры несовпадений

Локальность, минимальность и глобальность

Регулярные и странные аттракторы

Регулярные аттракторы

Притягивающая неподвижная точка

(пример: маятник с трением)

Предельный цикл

Странные аттракторы

(примеры: аттрактор Лоренца, аттрактор Рёсслера, соленоид Смейла-Вильямса; комментарий про эффект бабочки и про динамический хаос.)

Странный аттрактор - это притягивающее множество неустойчивых траекторий в фазовом пространстве диссипативной динамической системы . В отличие от аттрактора, не является многообразием , то есть не является кривой или поверхностью. Структура странного аттрактора фрактальна . Траектория такого аттрактора непериодическая (она не замыкается) и режим функционирования неустойчив (малые отклонения от режима нарастают). Основным критерием хаотичности аттрактора является экспоненциальное нарастание во времени малых возмущений. Следствием этого является «перемешивание» в системе, непериодичность во времени любой из координат системы, сплошной спектр мощности и убывающая во времени автокорреляционная функция .

Динамика на странных аттракторах часто бывает хаотической : прогнозирование траектории, попавшей в аттрактор, затруднено, поскольку малая неточность в начальных данных через некоторое время может привести к сильному расхождению прогноза с реальной траекторией. Непредсказуемость траектории в детерминированных динамических системах называют динамическим хаосом , отличая его от стохастического хаоса , возникающего в стохастических динамических системах . Это явление также называют эффектом бабочки , подразумевая возможность преобразования слабых турбулентных потоков воздуха, вызванных взмахом крыльев бабочки в одной точке планеты, в мощное торнадо на другой её стороне вследствие многократного их усиления в атмосфере за некоторое время. Но на самом деле взмах крыла бабочки не создает торнадо обыкновенно, так как на практике наблюдается такая тенденция, что такие маленькие колебания в среднем не меняют динамики таких сложных систем как атмосфера планеты, и сам Лоренц по этому поводу говорил: И это, пожалуй, важная и удивительная вещь, без которой было бы трудно, а то и вообще невозможно изучать хаотическую динамику (динамику, которая чувствительна к малейшим изменениям начальных условий системы).

Среди странных аттракторов встречаются такие, хаусдорфова размерность которых отлична от топологической размерности и является дробной. Одним из наиболее известных среди подобных аттракторов является аттрактор Лоренца .

Именные примеры

Аттрактор Лоренца

Система дифференциальных уравнений, создающих аттрактор Лоренца, имеет вид:

\dot x = \sigma (y - x)

\dot y = x (r - z) - y

\dot z = x y - b z

Соленоид Смейла-Вильямса

Соленоид Смейла-Вильямса - пример обратимой динамической системы , аналогичной по поведению траекторий отображению удвоения на окружности. Более точно, эта динамическая система определена на полнотории , и за одну её итерацию угловая координата удваивается; откуда автоматически возникает экспоненциальное разбегание траекторий и хаотичность динамики. Также соленоидом называют и максимальный аттрактор этой системы (откуда, собственно, и происходит название): он устроен как (несчётное) объединение «нитей», наматывающихся вдоль полнотория.

Аттрактор Плыкина

Пример Боуэна, или гетероклинический аттрактор

Аттрактор Эно

www.ibiblio.org/e-notes/Chaos/ru/strange_r.htm

Гипотезы

Гипотеза Палиса

Гипотезы Рюэля

См. также

Напишите отзыв о статье "Аттрактор"

Примечания

Ссылки и литература

  • A. Gorodetski, Yu. Ilyashenko. Minimal and strange attractors, International Journal of Bifurcation and Chaos, vol. 6, no. 6 (1996), pp. 1177-1183.
  • А. С. Городецкий. Минимальные аттракторы и частично гиперболические множества динамических систем. Дисс. к. ф.-м. н., МГУ, 2001.
  • Статья Дж. Милнора , Scholarpedia.
  • . LENTA.RU. Проверено 28 марта 2013. .
  • Е. В. Никульчев. Геометрический метод реконструкции систем по экспериментальным данным // Письма в ЖТФ. 2007. Т. 33. Вып. 6. С. 83-89.
  • Е. В. Никульчев.

Отрывок, характеризующий Аттрактор

Вскоре после отъезда принца, так скоро, что он еще не мог доехать до Семеновского, адъютант принца вернулся от него и доложил светлейшему, что принц просит войск.
Кутузов поморщился и послал Дохтурову приказание принять командование первой армией, а принца, без которого, как он сказал, он не может обойтись в эти важные минуты, просил вернуться к себе. Когда привезено было известие о взятии в плен Мюрата и штабные поздравляли Кутузова, он улыбнулся.
– Подождите, господа, – сказал он. – Сражение выиграно, и в пленении Мюрата нет ничего необыкновенного. Но лучше подождать радоваться. – Однако он послал адъютанта проехать по войскам с этим известием.
Когда с левого фланга прискакал Щербинин с донесением о занятии французами флешей и Семеновского, Кутузов, по звукам поля сражения и по лицу Щербинина угадав, что известия были нехорошие, встал, как бы разминая ноги, и, взяв под руку Щербинина, отвел его в сторону.
– Съезди, голубчик, – сказал он Ермолову, – посмотри, нельзя ли что сделать.
Кутузов был в Горках, в центре позиции русского войска. Направленная Наполеоном атака на наш левый фланг была несколько раз отбиваема. В центре французы не подвинулись далее Бородина. С левого фланга кавалерия Уварова заставила бежать французов.
В третьем часу атаки французов прекратились. На всех лицах, приезжавших с поля сражения, и на тех, которые стояли вокруг него, Кутузов читал выражение напряженности, дошедшей до высшей степени. Кутузов был доволен успехом дня сверх ожидания. Но физические силы оставляли старика. Несколько раз голова его низко опускалась, как бы падая, и он задремывал. Ему подали обедать.
Флигель адъютант Вольцоген, тот самый, который, проезжая мимо князя Андрея, говорил, что войну надо im Raum verlegon [перенести в пространство (нем.) ], и которого так ненавидел Багратион, во время обеда подъехал к Кутузову. Вольцоген приехал от Барклая с донесением о ходе дел на левом фланге. Благоразумный Барклай де Толли, видя толпы отбегающих раненых и расстроенные зады армии, взвесив все обстоятельства дела, решил, что сражение было проиграно, и с этим известием прислал к главнокомандующему своего любимца.
Кутузов с трудом жевал жареную курицу и сузившимися, повеселевшими глазами взглянул на Вольцогена.
Вольцоген, небрежно разминая ноги, с полупрезрительной улыбкой на губах, подошел к Кутузову, слегка дотронувшись до козырька рукою.
Вольцоген обращался с светлейшим с некоторой аффектированной небрежностью, имеющей целью показать, что он, как высокообразованный военный, предоставляет русским делать кумира из этого старого, бесполезного человека, а сам знает, с кем он имеет дело. «Der alte Herr (как называли Кутузова в своем кругу немцы) macht sich ganz bequem, [Старый господин покойно устроился (нем.) ] – подумал Вольцоген и, строго взглянув на тарелки, стоявшие перед Кутузовым, начал докладывать старому господину положение дел на левом фланге так, как приказал ему Барклай и как он сам его видел и понял.
– Все пункты нашей позиции в руках неприятеля и отбить нечем, потому что войск нет; они бегут, и нет возможности остановить их, – докладывал он.
Кутузов, остановившись жевать, удивленно, как будто не понимая того, что ему говорили, уставился на Вольцогена. Вольцоген, заметив волнение des alten Herrn, [старого господина (нем.) ] с улыбкой сказал:
– Я не считал себя вправе скрыть от вашей светлости того, что я видел… Войска в полном расстройстве…
– Вы видели? Вы видели?.. – нахмурившись, закричал Кутузов, быстро вставая и наступая на Вольцогена. – Как вы… как вы смеете!.. – делая угрожающие жесты трясущимися руками и захлебываясь, закричал он. – Как смоете вы, милостивый государь, говорить это мне. Вы ничего не знаете. Передайте от меня генералу Барклаю, что его сведения неверны и что настоящий ход сражения известен мне, главнокомандующему, лучше, чем ему.
Вольцоген хотел возразить что то, но Кутузов перебил его.
– Неприятель отбит на левом и поражен на правом фланге. Ежели вы плохо видели, милостивый государь, то не позволяйте себе говорить того, чего вы не знаете. Извольте ехать к генералу Барклаю и передать ему назавтра мое непременное намерение атаковать неприятеля, – строго сказал Кутузов. Все молчали, и слышно было одно тяжелое дыхание запыхавшегося старого генерала. – Отбиты везде, за что я благодарю бога и наше храброе войско. Неприятель побежден, и завтра погоним его из священной земли русской, – сказал Кутузов, крестясь; и вдруг всхлипнул от наступивших слез. Вольцоген, пожав плечами и скривив губы, молча отошел к стороне, удивляясь uber diese Eingenommenheit des alten Herrn. [на это самодурство старого господина. (нем.) ]
– Да, вот он, мой герой, – сказал Кутузов к полному красивому черноволосому генералу, который в это время входил на курган. Это был Раевский, проведший весь день на главном пункте Бородинского поля.
Раевский доносил, что войска твердо стоят на своих местах и что французы не смеют атаковать более. Выслушав его, Кутузов по французски сказал:
– Vous ne pensez donc pas comme lesautres que nous sommes obliges de nous retirer? [Вы, стало быть, не думаете, как другие, что мы должны отступить?]
– Au contraire, votre altesse, dans les affaires indecises c"est loujours le plus opiniatre qui reste victorieux, – отвечал Раевский, – et mon opinion… [Напротив, ваша светлость, в нерешительных делах остается победителем тот, кто упрямее, и мое мнение…]
– Кайсаров! – крикнул Кутузов своего адъютанта. – Садись пиши приказ на завтрашний день. А ты, – обратился он к другому, – поезжай по линии и объяви, что завтра мы атакуем.
Пока шел разговор с Раевским и диктовался приказ, Вольцоген вернулся от Барклая и доложил, что генерал Барклай де Толли желал бы иметь письменное подтверждение того приказа, который отдавал фельдмаршал.
Кутузов, не глядя на Вольцогена, приказал написать этот приказ, который, весьма основательно, для избежания личной ответственности, желал иметь бывший главнокомандующий.
И по неопределимой, таинственной связи, поддерживающей во всей армии одно и то же настроение, называемое духом армии и составляющее главный нерв войны, слова Кутузова, его приказ к сражению на завтрашний день, передались одновременно во все концы войска.
Далеко не самые слова, не самый приказ передавались в последней цепи этой связи. Даже ничего не было похожего в тех рассказах, которые передавали друг другу на разных концах армии, на то, что сказал Кутузов; но смысл его слов сообщился повсюду, потому что то, что сказал Кутузов, вытекало не из хитрых соображений, а из чувства, которое лежало в душе главнокомандующего, так же как и в душе каждого русского человека.
И узнав то, что назавтра мы атакуем неприятеля, из высших сфер армии услыхав подтверждение того, чему они хотели верить, измученные, колеблющиеся люди утешались и ободрялись.

Полк князя Андрея был в резервах, которые до второго часа стояли позади Семеновского в бездействии, под сильным огнем артиллерии. Во втором часу полк, потерявший уже более двухсот человек, был двинут вперед на стоптанное овсяное поле, на тот промежуток между Семеновским и курганной батареей, на котором в этот день были побиты тысячи людей и на который во втором часу дня был направлен усиленно сосредоточенный огонь из нескольких сот неприятельских орудий.
Не сходя с этого места и не выпустив ни одного заряда, полк потерял здесь еще третью часть своих людей. Спереди и в особенности с правой стороны, в нерасходившемся дыму, бубухали пушки и из таинственной области дыма, застилавшей всю местность впереди, не переставая, с шипящим быстрым свистом, вылетали ядра и медлительно свистевшие гранаты. Иногда, как бы давая отдых, проходило четверть часа, во время которых все ядра и гранаты перелетали, но иногда в продолжение минуты несколько человек вырывало из полка, и беспрестанно оттаскивали убитых и уносили раненых.
С каждым новым ударом все меньше и меньше случайностей жизни оставалось для тех, которые еще не были убиты. Полк стоял в батальонных колоннах на расстоянии трехсот шагов, но, несмотря на то, все люди полка находились под влиянием одного и того же настроения. Все люди полка одинаково были молчаливы и мрачны. Редко слышался между рядами говор, но говор этот замолкал всякий раз, как слышался попавший удар и крик: «Носилки!» Большую часть времени люди полка по приказанию начальства сидели на земле. Кто, сняв кивер, старательно распускал и опять собирал сборки; кто сухой глиной, распорошив ее в ладонях, начищал штык; кто разминал ремень и перетягивал пряжку перевязи; кто старательно расправлял и перегибал по новому подвертки и переобувался. Некоторые строили домики из калмыжек пашни или плели плетеночки из соломы жнивья. Все казались вполне погружены в эти занятия. Когда ранило и убивало людей, когда тянулись носилки, когда наши возвращались назад, когда виднелись сквозь дым большие массы неприятелей, никто не обращал никакого внимания на эти обстоятельства. Когда же вперед проезжала артиллерия, кавалерия, виднелись движения нашей пехоты, одобрительные замечания слышались со всех сторон. Но самое большое внимание заслуживали события совершенно посторонние, не имевшие никакого отношения к сражению. Как будто внимание этих нравственно измученных людей отдыхало на этих обычных, житейских событиях. Батарея артиллерии прошла пред фронтом полка. В одном из артиллерийских ящиков пристяжная заступила постромку. «Эй, пристяжную то!.. Выправь! Упадет… Эх, не видят!.. – по всему полку одинаково кричали из рядов. В другой раз общее внимание обратила небольшая коричневая собачонка с твердо поднятым хвостом, которая, бог знает откуда взявшись, озабоченной рысцой выбежала перед ряды и вдруг от близко ударившего ядра взвизгнула и, поджав хвост, бросилась в сторону. По всему полку раздалось гоготанье и взвизги. Но развлечения такого рода продолжались минуты, а люди уже более восьми часов стояли без еды и без дела под непроходящим ужасом смерти, и бледные и нахмуренные лица все более бледнели и хмурились.
Князь Андрей, точно так же как и все люди полка, нахмуренный и бледный, ходил взад и вперед по лугу подле овсяного поля от одной межи до другой, заложив назад руки и опустив голову. Делать и приказывать ему нечего было. Все делалось само собою. Убитых оттаскивали за фронт, раненых относили, ряды смыкались. Ежели отбегали солдаты, то они тотчас же поспешно возвращались. Сначала князь Андрей, считая своею обязанностью возбуждать мужество солдат и показывать им пример, прохаживался по рядам; но потом он убедился, что ему нечему и нечем учить их. Все силы его души, точно так же как и каждого солдата, были бессознательно направлены на то, чтобы удержаться только от созерцания ужаса того положения, в котором они были. Он ходил по лугу, волоча ноги, шаршавя траву и наблюдая пыль, которая покрывала его сапоги; то он шагал большими шагами, стараясь попадать в следы, оставленные косцами по лугу, то он, считая свои шаги, делал расчеты, сколько раз он должен пройти от межи до межи, чтобы сделать версту, то ошмурыгывал цветки полыни, растущие на меже, и растирал эти цветки в ладонях и принюхивался к душисто горькому, крепкому запаху. Изо всей вчерашней работы мысли не оставалось ничего. Он ни о чем не думал. Он прислушивался усталым слухом все к тем же звукам, различая свистенье полетов от гула выстрелов, посматривал на приглядевшиеся лица людей 1 го батальона и ждал. «Вот она… эта опять к нам! – думал он, прислушиваясь к приближавшемуся свисту чего то из закрытой области дыма. – Одна, другая! Еще! Попало… Он остановился и поглядел на ряды. „Нет, перенесло. А вот это попало“. И он опять принимался ходить, стараясь делать большие шаги, чтобы в шестнадцать шагов дойти до межи.

Странные аттракторы. Динамический хаос

1. Узел, фокус, предельный цикл – математические образы установившихся режимов

Аттракторы вида узел, фокус и предельный цикл являются математическими образами установившихся режимов в динамических системах.

Принадлежащие аттрактору траектории устойчивы .

Это свойство позволяет предсказывать поведение таких систем, даже если начальные условия x 0 известны с некоторой погрешностью .

Объекты, получившие название странных аттракторов , открыты в начале 60-х американским метеорологом Э. Лоренцем при исследовании упрощенной математической модели физики атмосферы. Они описывают непериодические хаотические режимы в динамических системах вида

dx / dt = F ( x ), x ( t 0 ) = x 0 (1)

Странные аттракторы не обладают свойством устойчивости :

пусть x 0 – любое малое отклонение в начале траектории, тогда

||x(t, x 0 ) – x(t, x 0 + x 0 )|| e t || x 0 ||, > 0 . (2)

Отсюда следует, что при t T будет теряться какая-либо информация о положении системы dx/dt = F(x) в фазовом пространстве . Такой вывод означает, что в классическом смысле задачи, связанные с изучением странных аттракторов, не корректны . В корректных задачах теоремы существования и единственности решений выполняются на конечном интервале 0 t T . Необходимо, чтобы существовала некоторая величина , которая гарантировала бы близость траекторий при 0 t . Это условие фигурирует в ляпуновской теории устойчивости решений .

Для странного аттрактора такого условия нет.

Это не связано с несовершенством формализма обыкновенных дифференциальных уравнений. Причиной является физическое явление динамического хаоса.

Странные аттракторы являются математическим образом установившегося хаотического поведения в динамических системах.

Странные аттракторы существуют даже в сравнительно простых системах трех дифференциальных уравнений, в правые части которых входят только линейные и квадратичные члены.

1.1. «Странность» странных аттракторов связана с их чувствительностью к начальным данным.

Две близкие точки x 10 иx 20 , лежащие на аттракторе, отстоят одна от другой на расстояние d 0 . Со временем это расстояние меняется d t = | x 1t – x 2 t |.

Если аттрактор – особая точка, то d t = 0 .

Если аттрактор – предельный цикл , то d t – периодическая функция времени.

Если аттрактор – странный , то d t = e t , > 0 .

Чтобы величина характеризовала аттрактор, надо рассматривать бесконечно близкие траектории и среднюю скорость их разбегания на большом интервале времени .

(x 10 , ) = lim lim [(1/t) ln (d t /d 0 )] , . (3)

t  , d 0 0

 - вектор от x 10 до x 20

Выбирая различные точки х 10 и x 20 , можно получать разные числа .

В 1968 г. В. Оселедец показал, что при весьма общих условиях почти все точки х 10 и x 20 в окрестности странного аттрактора в N -мерной динамической системе будут давать один и тот же набор ляпуновских показателей 1 , 2 ,… N .

 - характеризует изменение длины отрезка d t .= |x 1t – x 2 t |.

Изменение площади треугольника с вершинами х 1 t , х 2 t , х 3 t пропорционально

exp ( 1 + 2 ) t .

1 - характеризует изменение длины d 1 .= |x 1t – x 2 t | ,

2 - изменение длины d 2 .= |x 2t – x 3 t | .

Изменение N -мерного объема пропорционально

exp ( 1 + 2 + N ) t .

N -мерный объем малого элемента в фазовом пространстве N -мерной диссипативной системы для аттракторов сокращается

 i < 0 .

1 i N

Если аттрактор точка или цикл , то, наблюдая за системой достаточно долго, можно дать достоверный прогноз даже, если х t известен с некоторой ошибкой. Ведь d t не будет расти.

Положительные ляпуновские показатели и связанная с этим чувствительность к начальным данным заставляют по-иному смотреть на саму возможность предсказания явлений природы. У странного аттрактора через время 1/ две близкие вначале траектории с течением времени перестанут быть близкими .

Существуют фундаментальные ограничения на возможность прогнозов в нелинейных системах.

1.2. «Странность» хаотических аттракторов связана с их геометрическими свойствами. Часто эти объекты имеют сложную структуру, обладающую масштабной инвариантностью . В мелком масштабе они выглядят также, как в крупном.

Вычисление ляпуновских показателей в тех случаях, когда известна функция F (x ), достаточно просто осуществляется с помощью компьютера.

Система рассматривается в вариациях .

Пусть известна траектория x(t) . Рассмотрим близкую траекторию

x *( t ) = x ( t ) + t .

Матрица A ( x ) = D ( F ( x ))/ D ( x ) – матрица системы (якобиан ), линеаризованной в окрестности траекторииx(t).

Если траектории x ( t ) и x *( t ) бесконечно близки, то членами, квадратичными по (t) можно пренебречь. Отклонение x(t) от x*(t) определяется системой в вариациях для (t):

(t) = A(x(t)) (t), (4)

= lim , 0 = (t=0). (5)

t 

Определенный таким образом ляпуновский показатель эквивалентен заданному выражением (3). Использование формул (4), (5) в расчетах более предпочтительно.

Чтобы определить старший ляпуновский показатель, наряду с исходным уравнением (1) считают систему в вариациях (4).

Чтобы решение (t) не было слишком большим, через определенный интервал времени его перенормируют (делят на достаточно большое число). В соответствии с этим модифицируются формулы (4) и (5).

Перенормировка нужна, чтобы повысить точность определения показателей. Взяв наугад (t=0) , обычно находят первый ляпуновский показатель 1 . Чтобы оценить k показателей 1 , 2 , k , считают k систем в вариациях . Вычисляют k -мерный объем и пользуются соотношениями, аналогичными формуле (5).

Через определенное время приходится выполнять не только перенормировку, но и ортогонализацию , поскольку 1 , 2 , …, k , с течением времени стремятся повернуться вдоль 1 , соответствующего наибольшему ляпуновскиму показателю.

В настоящее время ляпуновкие показатели являются наиболее эффективно и просто вычисляемыми характеристиками динамического хаоса.

    Показатели Ляпунова

Величины i являются решениями алгебраического уравнения

det |a ij - ij i | = 0 (6)

ij – символ Кронекера такой, что ij = 0 , если i j и ij = 1 , если i=j .

i – показатели Ляпунова.

Если ляпуновские показатели отрицательны, то все x i ( t ) убывают со временем, поэтому состояние устойчиво. Система после возмущающего воздействия стремится вернуться в стационарное состояние.

Если хотя бы одно из чисел Ляпунова положительно, состояние будет неустойчивым.

В общем случае числа Ляпунова могут быть комплексными. Устойчивость определяется знаком действительной части комплексного числа.

Если среди чисел Ляпунова имеются чисто мнимые или равные нулю, то стационарное состояние называется нейтральным. При отклонении от этого состояния не возникают ни отклоняющие, ни возвращающие силы.

2.1. Анализ неустойчивых движений. Определяется временная зависимость малых отклонений от заданной траектории. Числа Ляпунова при этом уже не постоянны , а зависят от времени.

Траектория неустойчива, если среди ляпуновских показателей имеются такие, вещественные части которых положительны в достаточно большом интервале времени t таком, что t ( t ) >> 1 .

Показатели Ляпунова играют большую роль в теории устойчивости движения. Они являются характеристическими или собственными числами системы .

Они не зависят от начальных условий . Устойчивость (или неустойчивость) является внутренним свойством исследуемой системы , а не результатом внешнего воздействия на систему.

Проявляется устойчивость (неустойчивость) только при малых внешних возмущениях .

Эта особенность привела к важным метологическим последствиям . Сейчас приходится пересматривать и подвергать ревизии некоторые, казалось бы установившиеся в физике понятия.

2. Хаотические непериодические режимы динамических систем. Странные аттракторы

Странный аттрактор

Слово «странный» оправдывают два свойства аттрактора:

Необычность его геометрической структуры :

Она не может быть представлена в виде геометрических элементов целой размерности. Размерность странного аттрактора – дробная.

Странный аттрактор – это притягивающая область для траекторий из окрестных областей, динамически неустойчивых внутри странного аттрактора .

Странный аттрактор существует только в диссипативных системах размерности n≥3 .

Синай Я.Г. (1996): Пять свойств, в некотором смысле усиливающих друг друга, следует называть статистическими:

Существование конечной инвариантной меры:

Эргодичность;

Перемешивание;

справедливость ЦПТ;

экспоненциальное убывание корреляций.

В случае конечного числа стационарных точек и конечного числа предельных циклов может иметь место лишь первое (или первое и второе) из указанных свойств.

Стохастические аттракторы (Синай Я.Г. (1976)): Предельная динамическая система обладает сильными стохастическим свойствами6 для нее имеют место, по крайней мере, три из указанных выше свойств.

Аттрактор А называется стохастическим, если для любого начального распределения P 0 с плотность p 0 на X, сконцентрированного в некоторой окрестности аттрактора А, его сдвиги при t  сходятся к некоторому инвариантному распределению P на А, не зависящему от P 0 ; п редельное распределение обладает перемешиванием, то есть автокорреляции стремятся к 0 при t  .

Еще более сильными статистическими свойствами обладает гиперболический аттрактор А. Движение на таком А и в его окрестности обладает экспоненциальной неустойчивостью, является странным, его размерность может быть дробной.

С точки зрения теории вероятностей динамическая система, возникающая на таком А , изоморфна цепи Маркова.

2.3. Абсолютно изолированные системы. Это понятие можно ввести (и то далеко не всегда) как предел неизолированной системы при стремлении к нулю величины внешнего воздействия .

Для устойчивых систем такой предел существует, и, следовательно, понятие изолированной системы остается в силе. Для неустойчивых систем такого предела, вообще говоря, нет.

Действительно, предел величины x(t) = e t (где > 0 ) при  0 и t  зависит от порядка стремления аргументов к своим пределам . Формально величину (она отражает меру внешних воздействий) и время t можно считать независимыми. При сравнительно небольших отрезках времени фактор e t возрастает столь сильно. что компенсировать его уменьшением - задача абсурдная. Экспоненциальная зависимость e t настолько сильна, что конкурировать с ней практически невозможно. Поэтому для неустойчивых систем понятие «абсолютно изолированная система» теряет смысл. Можно говорить только об относительно изолированной системе.

2.4. Бесконечно малое и бесконечно большое. В связи с явлением неустойчивости возникает необходимость пересмотреть такие понятия как «бесконечно малое» и «бесконечно большое».

При небольших отрезках времени, когда отклонения малы, а возмущением можно пренебречь, динамическим расчетам можно доверять даже в случае их неустойчивости .

Условиями доверия являются: t 1/ Re и x( t ) << 1 . Время t 1/ Re называется интервалом предсказуемости (или горизонтом прогнозирования) . При больших отрезках времени ( Re t = 100 1000) отклонение x( t ) станет большим при любых реальных возмущениях . Чтобы пренебречь возмущениями, необходимо изолировать систему с точностью до x 0 e –1000 , что невозможно. При этом неважно, в каких единицах измеряются значения x 0 и x( t ).

Любые физические величины (длины, массы, временные интервалы, числа частиц и т.д.) в нашем мире ограничены, т.е. выражаются числами в интервале от (10 -100 до10 +100 ) . Большие (или меньшие) числа могут появиться лишь в результате расчета, в котором фигурируют экспоненциальная или же более мощная функция. В связи с этим Эдваром Каснером было введено понятие «гугол» - столь большое число (более 10 +100 ) , которое не может соответствовать никакой физической величине.

Возмущение является физической величиной. Поэтому начальное отклонение не может быть меньше 10 -100 , тогда как Re t может стать более 100 .

Обратный “гугол”, формальнор являющийся конечной величиной, реально рассматривается как величина бесконечно малая .

Вопрос, как ведет себя функция внутри интервала порядка, соизмеримого с обратным «гуголом», лишен смысла . Функцию на таком интервале следует заменить числом (средним по интервалу), поскольку более детальное ее поведение принципиально не наблюдаемо. Это утверждение играет важную практическую роль.

2.5. Причина . В теории динамических систем под причиной обычно понимают начальные условия или импульсные внешние воздействия, которые приводят к определенному результату – следствию .

Словосочетание «вскрыть причинно-следственные связи» означает «понять динамику промежуточных процессов».

Предполагается, что причины и следствия соизмеримы . Для устойчивых или нейтральных процессов это всегда имеет место.

В неустойчивых системах ситуация принципиально иная: очень малая величина приводит к следствию, несоизмеримому по масштабам с причиной. В таких случаях говорят, что причиной явилась неустойчивость, а не малое начальное воздействие.

Хаотические системы характеризуются временным горизонтом , который определяется временем Ляпунова (1/ ) , выполняющего роль внутреннего масштаба времени хаотических систем .

В течение этого времени сохраняет смысл выражение «две одинаковые (одни и те же) системы» . Чтобы увеличить интервал времени, в течение которого можно предсказывать траекторию, необходимо увеличивать точность , с которой задано начальное состояние , то есть сузить класс систем, называемых «одними и теми же». Чтобы увеличить в 10 раз время Ляпунова, необходимо увеличить точность задания начального состояния в e 10 раз.

Временной горизонт хаотической системы порождает принципиальное различие между «теперь» и «потом» .

Эволюция за пределами ляпуновского времени не допускает индивидуального описания , выражается только в терминах вероятностного описания, одного и того же для всех систем, характеризуемых одним и тем же хаотическим аттрактором, каким бы ни было их начальное условие.

Это – определение хаоса через отрицание возможности предсказания индивидуального поведения при любом уровне нашего знания.

Для хаотических систем законы природы необходимо формулировать в терминах эволюции распределений вероятности, а не в терминах индивидуальных траекторий.

Современные странные аттракторы (фрактальные и не фрактальные) служат великолепной иллюстрацией разнообразнейшего поведения диссипативных систем. Благодаря им меняется наш подход к миру природы. Он становится менее обобщающим и более разведывающим.

2.6. Вероятность . В устойчивых динамических системах понятие «Вероятность» не употребляется и, более того, не имеет смысла . В неустойчивых системах, напротив, достоверные предсказания не имеют смысла и можно говорить лишь о вероятности того или иного результата .

2.7. Неустойчивость . Явление, которое возникает в рамках динамических уравнений, но приводит к тому, что они (уравнения) перестают быть полными. Неустойчивость можно установить (найти числа Ляпунова), но предсказать результат процесса при этом невозможно.

Понятие «Неустойчивость» существенно расширяет и изменяет аксиоматику динамических систем . Ярким следствием этого свойства является «динамический хаос» .

Существует класс динамических систем, в которых хаотический режим возникает в некоторых областях фазового пространства . Такие области называют странными аттракторами.

Фазовые траектории входят в эти области (отсюда и термин «аттрактор»), но не выходят из них, запутываются внутри (отсюда термин «странный»).

Странные аттракторы можно рассматривать как стационарные состояния, но не стянутые к одной точке, а размазанные по области фазового пространства. В природе такие системы распространены гораздо шире. Чем можно было бы предположить.

3. Фракталы

Объекты с дробной размерностью.

Странные аттракторы характеризуются не целыми, а дробными размерностями . Они являются фрактальными объектами 1 . Такие объекты не могут быть ни точками, ни линиями, ни поверхностями, ни вообще топологическими многообразиями.

Размерность характеризует геометрический объект числом переменных, которые необходимо задать, чтобы указать местоположение одной из точек объекта.

Точка на линии – одно число. Точка на плоскости – два. Точка в объеме – три и т. д. Существуют, более абстрактные, способы определения размерности.

Геометрический объект можно характеризовать минимальным числом «клеток», необходимых для покрытия объекта. Число d , определяющее размерность, появляется как показатель степени в соотношении, связывающем число N «клеток» и их размер u .

Рассмотрим пример «канторовского множества»:

Возьмем единичный отрезок. Разделим его на три равные части и удалим среднюю треть. Повторим ту же операцию с каждой оставшейся частью, и т д. бесконечно много раз. Возникнет бесконечное множество «микроотрезков» , которые уже невозможно охарактеризовать их длинами .

Изначально мы имели отрезок единичной длины. После первого шага – два отрезка длиной 1/3 . После второго шага – четыре отрезка длиной 1/9 , после третьего шага – восемь отрезков длиной 1/27 . После n - го шага – 2 n длиной 1/3 n . После счетного множества шагов из единичного отрезка будет удалено

1/3 + 2(1/9) + 4(1/27) + .. = 1 , то есть вся длина.

Размерность d канторовского множества при N  и u 0 определяется соотношением 2 n = (3 n ) d , откуда d = log2/log3 0,63 . Канторовскому множеству, которое уже невозможно мыслить как совокупность одномерных отрезков , соответствует дробная размерность, заключенная между 0 (размерность точки) и 1 (размерность линии).

Фрактальные объекты дают возможность по-новому взглянуть на удивительный мир форм, существующих в природе. Большинство этих форм не являются правильными геометрическими объектами, но могут быть охарактеризованы дробными размерностями.

Например, облако является не объемным телом или поверхностью, а некоторым промежуточным геометрическим объектом с размерностью, заключенной между 2 и 3.

Открытие аттракторов с фрактальными размерностями позволяет по-новому увидеть поведение объектов во времени .

Фрактальный аттрактор обладает необычайно тонкой структурой, которая выражает очень сложное поведение во времени.

Понятие аттрактора (особая точка, предельный цикл) - синоним устойчивости и воспроизводимости (выхода «на то же самое») при любых начальных условиях.

Какова размерность странных аттракторов?

«Аттрактор определяет режимы, «чувствительные к начальным условиям»». Объясните.

Аттракторы с фрактальными размерностями порождают типы поведения, которые невозможно ни предсказать, ни воспроизвести. В любой области странного аттрактора, сколь бы мала она ни была, обнаруживается одна и та же сложная структура. Малейшее различие в начальных условиях или малейшее возмущение не затухает, а усиливается аттрактором. Аттрактор определяет режимы, «чувствительные к начальным условиям» .

1 Термин «фрактал» введен Бенуа Мандельбротом (Mandelbrot B. The Fractal Geometry of Nature. – San francisco: W.H. Freeman, 1982.)

Эта глава имеет своей целью познакомить читателя с одной теорией, которая развивалась вне всякой связи с фрактальными множествами и все же оказалась буквально пронизана ими. Чаще всего ее называют «теорией странных аттракторов и хаотической (или стохастической) эволюции», однако в тексте главы вы, я надеюсь, найдете причины, побудившие меня дать этой теории новое имя (см. заголовок).

Для того чтобы попасть в настоящее эссе упомянутой теории, достаточно было всего лишь быть так или иначе связанной с фракталами; я же считаю оправданным посвятить ей целую главу. Первое оправдание (практическое): эта теория почти не требует какого бы то ни было особого представления, так как бóльшую часть ее основных положений можно рассматривать просто как новую интерпретацию выводов, полученных нами в главах 18 и 19.

Во-вторых, теория фрактальных аттракторов помогает – путем противопоставления – прояснить некоторые особенности фрактальной геометрии природы. В самом деле, моя работа связана, в основном, с формами, присутствующими в реальном пространстве, с формами, которые можно увидеть, пусть даже и в микроскоп; теория аттракторов же имеет дело исключительно с эволюцией во времени расположения неких точек в невидимом и абстрактном репрезентативном пространстве.

Особенно силен этот контраст оказывается в контексте турбулентности – моя первая большая тема (работу над ней я начал в 1964 г.), где я использовал ранние формы фрактальных методик и (вполне независимо от них) теорию странных аттракторов, которая вполне всерьез сочетается с изучением турбулентности в работе . До сих пор эти два подхода еще не пересеклись, но ждать осталось недолго.

Тем, кто интересуется социологией науки, несомненно, покажется занимательным следующий факт: в то время как мои прецедентные исследования, связывающие математических чудовищ с реальными физическими структурами, встречаются с ощутимым сопротивлением, чудовищные формы абстрактных аттракторов воспринимаются с завидной невозмутимостью.

Третий довод в пользу необходимости разговора о фрактальных аттракторах связан с тем, что соответствующие эволюции выглядят «хаотическими» или «стохастическими». Как станет ясно из глав 21 и 22, многие ученые сомневаются в уместности применения случайного в науке; теперь же появляется надежда на оправдание случайности с помощью фрактальных аттракторов.

И наконец, те читатели, кто несколько глав (или пару эссе) назад согласился с моим утверждением о том, что многие из природных проявлений могут быть описаны только с помощью неких множеств, считавшихся ранее патологическими, возможно, с нетерпением ожидают перехода от «как» к «почему». Думаю, приведенные ранее описания и демонстрации дают представление о том, как легко в некоторых случаях оказывается подсластить упомянутые в предыдущих главах геометрические пилюли, чтобы их легче было проглотить. Я же хочу привить читателю вкус именно к фракталам – независимо от того, насколько горьким кажется этот вкус большинству зрелых ученых. Кроме того, я искренне убежден (и еще вернусь к этому в главе 42), что псевдообъяснение посредством подслащивания просто-напросто неинтересно. Таким образом, важность объяснения, судя по всему, сильно преувеличена, и мы будем прибегать к нему лишь в тех случаях, когда имеющееся объяснение действительно интересно – как, например, в главе 11. Вдобавок ко всему, я подозреваю, что когда фрактальные аттракторы лягут в основу фрактальной геометрии видимых естественных форм, появится много новых более детальных и убедительных объяснений.

Так как преобразования с аттракторами нелинейны, наблюдаемые фракталы, скорее всего, окажутся не самоподобными. Это замечательно: мне кажется, что использование фрактального аналога прямой для описания феноменов, управляемых нелинейными уравнениями, выглядит несколько парадоксально. Масштабно-инвариантные фракталы, хорошо объясняющие естественные феномены, могут выступать лишь как локальные приближения нелинейных фракталов.

Понятие аттрактора

Настоящая глава опирается, по большей части, на одно давнее и весьма основательно позабытое наблюдение Анри Пуанкаре: «орбиты» нелинейных динамических систем имеют свойство притягиваться к странным множествам, которые я определяю как нелинейные фракталы.

Рассмотрим для начала простейший аттрактор – точку. «Орбита», определяемая движением маленького шарика после помещения его в воронку, начинает с некоторой спиралевидной траектории, точная форма которой зависит от исходных положения и скорости шарика, однако, в конце концов, сходится к горловине воронки; если диаметр шарика превышает диаметр отверстия воронки, то он там и останется. Для нашего шарика начало горловины воронки является устойчивой точкой равновесия, или устойчивой неподвижной точкой. В рамках достаточно удобной альтернативной описательной терминологии (которую, естественно, не следует интерпретировать с антропоцентрических позиций) горловину воронки можно назвать притягивающей точкой, или аттрактором.

В физической системе устойчивыми и притягивающими могут быть также окружность или эллипс. Например, мы все полагаем (и даже пламенно надеемся – хотя никто из нас не проживет достаточно долго для того, чтобы это имело хот какое-то значение), что солнечная система устойчива, подразумевая, что если орбите Земли и суждено претерпеть какие- либо возмущения, то она, в конце концов «притянется» назад на свою теперешнюю колею.

В более общем виде, динамическую систему принято определять следующим образом: состояние системы в момент времени представляется точкой на прямой, в плоскости, либо в некотором более многомерном евклидовом «фазовом пространстве» , а ее эволюция между моментами и определяется правилами, в которые величина явным образом не входит. Любую точку в фазовом пространстве можно принять за начальное состояние при , а за ней последует орбита, определяемая функцией для всех .

Основное различие между такими системами заключается в геометрическом распределении значений при больших значениях . Принято говорить, что динамическая система имеет аттрактор, если существует некое правильное подмножество фазового пространства , обладающее следующим свойством: при почти любой начальной точке и достаточно большом точка оказывается в малой окрестности какой-либо точки, принадлежащей .

Понятие репеллера

Мы можем также поместить наш шарик в положение неустойчивого равновесия – например, на кончике карандаша. Если начальное положение не совпадает в точности с точкой равновесия, то шарик словно отталкивается прочь и достигает состояния устойчивого равновесия где-то в другом месте.

Множество всех положений неустойчивого равновесия (вместе с их предельными точками) называется отталкивающим множеством, или репеллером.

Во многих случаях аттракторы и репеллеры меняются местами при смене знаков в уравнениях. Имея дело с силой тяжести, достаточно изменить направление ее действия. Рассмотрим, например, в основном горизонтальную поверхность с прогибами в обоих направлениях. Предположим, что сила тяжести направлена вниз, поместим шарик на верхней стороне поверхности и обозначим притягивающий прогиб буквой , а отталкивающий – буквой . Если теперь поместить шарик на нижней стороне поверхности и предположить, что сила тяжести направлена вверх, то прогибы и поменяются местами. В этой главе такие обмены играют центральную роль.

Фрактальные аттракторы. «хаос»

Бóльшая часть элементарной механики имеет дело с динамическими системами, аттракторами которых являются точки, почти окружности и другие фигуры евклидовой геометрии. Однако в действительности такие фигуры представляют собой редкие исключения, и поведение большинства динамических систем несравнимо более сложно: их аттракторы и репеллеры имеют явную тенденцию к фрактальности. В нескольких следующих разделах описываются примеры систем с дискретным временем, .

Аттрактор-пыль. Коэффициент Фейгенбаума . Простейший пример можно получить с помощью возведения в квадрат (см. главу 19). В качестве вступления рассмотрим еще одно представление канторовой пыли : , , охватываемый интервал . Такое множество является пределом множества , определяемого как множество точек вида . При , каждая точка множества разделяется на две, а множество представляет собой результат бесконечного количества таких бифуркаций.

Согласно П. Грассбергеру (источник – препринт статьи), аттрактор отображения при вещественных аналогичен множеству , но с двумя различными коэффициентами подобия, одним из которых является коэффициент Фейгенбаума (см. ). После бесконечного количества бифуркаций этот аттрактор превращается во фрактальную пыль с размерностью .

«Хаос». Ни одна точка множества за конечный промежуток времени не посещается дважды. Многие авторы описывают эволюции на фрактальных аттракторах как «хаотические».

Самоаффинные деревья. Расположив множество в плоскости , получим дерево. Поскольку , это дерево асимптотически самоаффинно с остатком.

Комментарий. В идеале теории следовало бы сосредоточиться на интересных по своей сути и реалистичных (но простых) динамических системах, аттракторами которых являются подробно изученные фрактальные множества. Имеющаяся же литература по странным аттракторам – пусть даже она чрезвычайно значима – весьма далека от этого идеала. Рассматриваемые в ней фракталы, как правило, недостаточно хорошо изучены, очень немногие из них действительно интересны, а большинство никак нельзя считать решениями сколь бы то ни было мотивированных задач.

Поэтому я был вынужден самостоятельно изобретать «динамические системы», которые бы поставили новые вопросы – для того, чтобы получить на них давно известные и удобные ответы. Я придумывал задачи таким образом, чтобы их решениями стали знакомые фракталы. Больше всего меня удивляет то, что эти системы оказались еще и интересными.

Самоинверсные аттракторы

Согласно главе 18, множества в цепях Пуанкаре является как наименьшими самоинверсными, так и предельными множествами. Переформулируем последнее свойство: при произвольно выбранной начальной точке ее преобразования под действием последовательности инверсий подходят произвольно близко к каждой точке множества . Предположим теперь, что эта последовательность инверсий выбирается посредством отдельного процесса, независимого от настоящего и предыдущего положений точки . При довольно широком разбросе начальных условий всегда можно ожидать (и часто эти ожидания оправдываются), что результирующие последовательности положений будут притягиваться множеством . Таким образом, огромное количество публикаций по группам, порождаемым инверсиями, можно интерпретировать в терминах динамических систем.

Обращение «времени»

Дальнейшие поиски систем с интересными фрактальными аттракторами привели меня к системам, аттракторы которых геометрически стандартны, а вот репеллеры оказываются весьма занятными. Эти два множества легко можно поменять местами, тем самым пустив время вспять, при условии, что операции динамической системы допускают существование обратных операций (орбиты не сливаются и не пересекаются), так что, зная положение точки , можно определить все при . Однако данные конкретной системы, которые мы хотим обратить во времени, представляют собой особый случай. Их орбиты похожи на реки: в направлении вниз по склону их путь однозначно определен, вверх же по склону – каждая развилка требует особого решения.

Попытаемся, например, обратить - преобразование , с помощью которого мы получили канторову пыль в главе 19. При определены две различные обратные функции, и можно, пожалуй, условиться преобразовывать все в . Аналогичным образом, две различные обратные функции имеет отображение . В обоих случаях осмысленная инверсия предполагает выбор между двумя функциями. В других примерах возможных вариантов больше. Напомню: нам нужно, чтобы выбор между ними осуществлялся посредством отдельного процесса. Эти соображения приводят нас к обобщенным динамическим системам, которые и будут описаны в следующем разделе.

Разложимые динамические системы

Потребуем, чтобы одна из координат состояния (назовем ее определяющим индексом и обозначим через ) эволюционировала независимо от состояния остальных координат (обозначим это состояние через ), при условии, что преобразование из состояния в состояние будет определяться как состояние , так и индексом . В тех примерах, которые я изучил наиболее подробно, конкретное преобразование выбирается из конечного набора, включающего в себя различных возможностей , причем выбирается в соответствие со значением некоторой целочисленной функции . Иными словами, я рассматривал динамику произведения - пространства на некоторое конечное индексное множество.

Вообще говоря, в примерах, стимулировавших это обобщение, последовательность либо действительно случайна, либо ведет себя так, словно является случайной. К рассмотрению случайности мы с вами приступим только в следующей главе, однако я не думаю, что это обстоятельство может нам помешать. Гораздо серьезнее другое: динамические системы представляет собой воплощенный образчик полностью детерминированного поведения, и поэтому просто не вправе допускать какую бы то ни было случайность! Мы, однако, можем ввести воздействие случайности, не постулируя ее явно – нам нужно лишь присвоить функции значение какого-нибудь в достаточной степени перемешивающего эргодического процесса. Возьмем, например, иррациональное число и сопоставим функции целую часть числа . Здесь стоило бы сделать еще несколько заявлений, принципиально не сложных, но весьма громоздких, так что я, пожалуй, от этого воздержусь.

Роль «странных» аттракторов

Сторонники «странных» аттракторов выдвигают в свою защиту следующие два соображения. . Поскольку динамические системы со стандартными аттракторами не в состоянии объяснить турбулентность, то, может быть, ее удастся объяснить с помощью систем с аттракторами, топологически более «странными». (это напоминает мое собственное рассуждение (см. главу 11) – высказанное, кстати, совершенно независимо от приведенного – о том, что если дифференциальное уравнение не имеет стандартных особенностей, следует попытать счастья с особенностями фрактальными. . Аттракторы до смешного простых систем – таких, как при вещественных и в интервале - действительно странны и во многих отношениях характерны для более сложных и более реалистичных систем. Таким образом, топологически странные аттракторы, вне всяких сомнений, являются, скорее, правилом, нежели исключением.

«Фрактальные» или «странные»?

Все известные «странные» аттракторы представляют собой фрактальные множества. Для многих «странных» аттракторов существуют оценки размерности . Во всех случаях . Следовательно, эти аттракторы суть не что иное, как фрактальные множества. Во многих случаях размерность «странно – аттракторных» фракталов служит мерой не иррегулярности, а того, как накладываются друг на друга гладкие кривые или поверхности – своего рода фрагментации (см. главу 13).

С. Смейл представлял свой знаменитый аттрактор, называемый соленоидом, дважды. Оригинальное определение было чисто топологическим (размерность при этом оставалась неопределенной), пересмотренный же вариант имеет метрический характер (см. , с. 57). Я, в свою очередь, предложил ввести в теорию странных аттракторов понятие размерности и оценил в значение отображения Энона , которая оказалась равной 1,26. Ожидается появление многих других статей в том же духе.

Обратное утверждение. Являются ли все фрактальные аттракторы странными – вопрос семантики. Все больше авторов согласны со мной в том, что аттрактор, как правило, можно считать странным, если он фрактален. Мне такое отношение представляется вполне здравым, если учесть, что слово «странный» выступает как синоним слов «чудовищный», «патологический» и других подобных эпитетов, которыми некогда награждали отдельные фрактальные множества.

Однако прилагательному «странный» иногда придается некий особый терминологический смысл настолько, надо сказать, особый, что аттрактор Зальцмана – Лоренца характеризуется не просто как «странный», но как «странно – странный». В этом свете «странность» аттрактора связывается главным образом с нестандартными топологическими свойствами, в то время как нестандартные фрактальные свойства просто сопутствуют им в качестве «нагрузки». Замкнутая кривая с двойными точками не является в этом смысле «странной», какой бы смятой она ни была: это значит, что большинство из исследованных мною фрактальных аттракторов нельзя считать странными.

При таком определении термина «странный» рассуждения в предыдущем разделе теряют всякую привлекательность. Однако если модифицировать понятие странности с тем, чтобы оно из топологического стало фрактальным, то эту привлекательность можно вернуть. Вот почему я считаю, что победы в споре достойны те, кто определяет «странное» как «фрактальное». А поскольку они и в самом деле побеждают, я не вижу большого смысла в сохранении термина, необходимость в котором исчезла в тот момент, когда я показал, что фракталы не более странны, чем, скажем, горы или береговые линии. Кроме того, не стану скрывать: к термину «странный» я испытываю какую-то личную неприязнь.

Рис. 282 и 283. Притяжение к фракталам

Приведенные здесь фигуры иллюстрируют длинные орбиты последовательных состояний двух разложимых динамических систем. Нагрудник фараона на рис. 283 представляет собой самоинверсное (см. главу 18) множество, основанное на четырех инверсиях, подобранных таким образом, чтобы предельное множество являлось совокупностью окружностей. Дракон Сан-Марко на рис. 282 – самоквадрируемое (см. главу 19) множество и основан на двух инверсиях отображения .

Определяющий индекс в этих случаях выбирается из четырех (или, соответственно, двух) возможностей с помощью псевдослучайного алгоритма, примененного 64 000 раз. Несколько первых точек на рисунке опущены.

Области в окрестностях точек заострения и самопересечения заполняются чрезвычайно медленно.



Понравилась статья? Поделитесь с друзьями!