Серная кислота температура кипения. Эффективные способы переработки сероводорода на нефтеперерабатывающих заводах (производство серной кислоты, элементной серы и др.)

Каждый человек на уроках химии изучал кислоты. Она из них называется серной кислотой и обозначается НSO 4 . О том, какие есть свойства серной кислоты, расскажет наша статья.

Физические свойства серной кислоты

Чистая серная кислота или моногидрат - это бесцветная маслянистая жидкость, которая застывает в кристаллическую массу при температуре +10°С. Серная кислота, предназначенная для реакций, содержит 95 % H 2 SO 4 и имеет плотность 1,84г/см 3 . 1 литр такой кислоты весит 2кг. Затвердевает кислота при температуре -20°С. Теплоте плавления 10,5кДж/моль при температуре 10,37°С.

Свойства концентрированной серной кислоты разнообразны. Например, при растворении этой кислоты в воде будет выделено большое количество теплоты (19ккал/моль) вследствие образования гидратов. Эти гидраты можно выделить из раствора при низких температурах в твердом виде.

Серная кислота - это один из самых основных продуктов в химической промышленности. Она предназначена для производства минеральных удобрений (сульфат аммония, суперфосфат), разнообразных солей и кислот, моющих и лекарственных средств, искусственных волокон, красителей, взрывчатых веществ. Также серная кислота имеет применение в металлургии (например, разложение урановых руд), для очистки нефтепродуктов, для осушки газов и так далее.

Химические свойства серной кислоты

Химические свойства серной кислоты такие:

  1. Взаимодействие с металлами:
    • разбавленная кислота растворяет только те металлы, которые стоят левее водорода в ряду напряжений, например H 2 +1 SO 4 + Zn 0 = H 2 O + Zn +2 SO 4 ;
    • окислительные свойства серной кислоты велики. При взаимодействии с различными металлами (кроме Pt, Au) она может восстанавливаться до H 2 S -2 , S +4 O 2 или S 0 , например:
    • 2H 2 +6 SO 4 + 2Ag 0 = S +4 O 2 + Ag 2 +1 SO 4 + 2H 2 O;
    • 5H 2 +6 SO 4 +8Na 0 = H 2 S -2 + 4Na 2 +1 SO 4 + 4H 2 O;
  2. Концентрированная кислота H 2 S +6 O 4 также реагирует (при нагревании) с некоторыми неметаллами, превращаясь при этом в соединения серы с более низкой степенью окисления, например:
    • 2H 2 S +6 O 4 + С 0 = 2S +4 O 2 + C +4 O 2 + 2H 2 O;
    • 2H 2 S +6 O 4 + S 0 = 3S +4 O 2 + 2H 2 O;
    • 5H 2 S +6 O 4 + 2P 0 = 2H 3 P +5 O 4 + 5S +4 O 2 + 2H 2 O;
  3. С основными оксидами:
    • H 2 SO 4 + CuO = CuSO 4 + H 2 O;
  4. С гидроксидами:
    • Cu(OH) 2 + H 2 SO 4 = CuSO 4 + 2H 2 O;
    • 2NaOH + H 2 SO 4 = Na 2 SO 4 + 2H 2 O;
  5. Взаимодействие с солями при обменных реакциях:
    • H 2 SO 4 + BaCl 2 = 2HCl + BaSO 4 ;

Образование BaSO 4 (белого осадка, нерастворимого в кислотах) используется для определения этой кислоты и растворимых сульфатов.

Моногидрат - это ионизирующий растворитель, имеющий кислотный характер. В нём очень хорошо растворять сульфаты многих металлов, например:

  • 2H 2 SO 4 + HNO 3 = NO 2 + + H 3 O + + 2HSO 4 - ;
  • HClO 4 + H 2 SO 4 = ClO 4 - + H 3 SO 4 + .

Концентрированная кислота - это довольно сильный окислитель, особенно при нагревании, например 2H 2 SO 4 + Cu = SO 2 ­ + CuSO 4 + H 2 O.

Действуя как окислитель, серная кислота, как правило, восстанавливается до SO 2 . Но она может быть восстановлена и до S и даже до H 2 S, например H 2 S + H 2 SO 4 = SO 2 + 2H 2 O + S.

Моногидрат почти не может проводить электрический ток. И, наоборот, водные растворы кислоты - это хорошие проводники. Серная кислота сильно поглощает влагу, поэтому ее используют для осушки разных газов. Как осушитель, серная кислота действует до тех пор, пока над её раствором давление водяного пара меньше, чем его давление в газе, который осушают.

Если закипятить разбавленный раствор серной кислоты, то из него уберется вода, при этом температура кипения будет повышаться до 337°С, например, когда начинают перегонять серную кислоту в концентрации 98,3%. И наоборот, из растворов, которые более концентрированные, испаряется лишний серный ангидрид. Пар кипящей при температуре 337°С кислоты частично разложен на SO 3 и H 2 O, которые при охлаждении опять будут соединены. Высокая температура кипения этой кислоты подходит для использования её в выделении легколетучих кислот из их солей при нагревании.

Меры предосторожности при работе с кислотой

При обращении с серной кислотой необходимо быть предельно осторожными. При попадании этой кислоты на кожу, кожа становится белой, потом буроватой и появляется покраснение. Окружающие ткани при этом распухают. При попадании этой кислоты на любой участок тела, ее необходимо быстро смыть водой, а обожжённое место смазать раствором соды.

Теперь Вы знаете, что серная кислота, свойства которой хорошо изучены, просто незаменима для разнообразного производства и добычи ископаемых.

Серная кислота (H₂­SO₄) – это одна из сильнейших двухосновных кислот.

Если говорить о физических свойствах, то серная кислота выглядит как густоватая прозрачная маслянистая жидкость без запаха. В зависимости от концентрации, серная кислота имеет множество различных свойств и сфер применений:

  • обработка металлов;
  • обработка руд;
  • производство минеральных удобрений;
  • химический синтез.

История открытия серной кислоты

Контактная серная кислота имеет концентрацию от 92 до 94 процентов:

2SO₂ + O₂ = 2SO₂;

H₂O + SO₃ = H₂­SO₄.

Физические и физико-химические свойства серной кислоты

H₂­SO₄ смешивается с водой и SO₃ во всех соотношениях.

В водных растворах Н₂­SO₄ образует гидраты типа Н₂­SO₄·nH₂O

Температура кипения серной кислоты зависит от степени концентрации раствора и достигает максимума при концентрации больше 98 процентов.

Едкое соединение олеум представляет собой раствор SO₃ в серной кислоте.

При повышении концентрации триоксида серы в олеуме температура кипения понижается.

Химические свойства серной кислоты


При нагревании концентрированная серная кислота является сильнейшим окислителем, который способен окислять многие металлы. Исключение составляют лишь некоторые металлы:

  • золото (Au);
  • платина (Pt);
  • иридий (Ir);
  • родий (Rh);
  • тантал (Та).

Окисляя металлы, концентрированная серная кислота может восстанавливаться до H₂S, S и SO₂.

Активный металл:

8Al + 15H₂­SO₄(конц.) → 4Al₂(SO₄)₃ + 12H₂O + 3H₂S

Металл средней активности:

2Cr + 4 H₂­SO₄(конц.)→ Cr₂(SO₄)₃ + 4 H₂O + S

Малоактивный металл:

2Bi + 6H₂­SO₄(конц.) → Bi₂(SO₄)₃ + 6H₂O + 3SO₂

С холодной концентрированной серной кислотой железо и не реагируют, поскольку покрываются оксидной пленкой. Этот процесс называется пассивация .

Реакция серной кислоты и H₂O

При смешении H₂­SO₄ с водой происходит экзотермический процесс: выделяется такое большое количество тепла, что раствор может даже закипеть. Проводя химические опыты, нужно всегда понемногу добавлять серную кислоту в воду, а не наоборот.

Серная кислота является сильным дегидрирующим веществом. Концентрированная серная кислота вытесняет воду из различных соединений. Ее часто используют в качестве осушителя.

Реакция серной кислоты и сахара

Жадность серной кислоты к воде можно продемонстрировать в классическом опыте - смешении концентрированной H₂­SO₄ и , который является органическим соединением (углеводом). Чтобы извлекать воду из вещества, серная кислота разрушает молекулы.

Для проведения опыта в сахар добавляют несколько капель воды и перемешивают. Затем осторожно вливают серную кислоту. Через короткий промежуток времени можно наблюдать бурную реакцию с образованием угля и выделением сернистого и .

Серная кислота и кубик сахара:

Помните, что работать с серной кислотой очень опасно. Серная кислота - едкое вещество, которое моментально оставляет сильные ожоги на коже.

вы найдете безопасные эксперименты с сахаром, которые можно проводить дома.

Реакция серной кислоты и цинка

Эта реакция достаточно популярна и является одним из самых распространенных лабораторных методов получения водорода. Если в разбавленную серную кислоту добавить гранулы цинка, металл будет растворяться с выделением газа:

Zn + H₂­SO₄ → Zn­SO₄ + H₂.

Разбавленная серная кислота реагирует с металлами, которые в ряду активности стоят левее водорода:

Ме + H₂­SO₄(разб.) → соль + H₂

Реакция серной кислоты с ионами бария

Качественной реакцией на и ее соли является реакция с ионами бария. Она широко распространена в количественном анализе, в частности гравиметрии:

H₂­SO₄ + Ba­Cl₂ → Ba­SO₄ + 2HCl

Zn­SO₄ + Ba­Cl₂ → Ba­SO₄ + Zn­Cl₂

Внимание! Не пытайтесь повторить эти опыты самостоятельно!

серная кислота, серная кислота формула
Се́рная кислота́ H2SO4 - сильная двухосновная кислота, отвечающая высшей степени окисления серы (+6). При обычных условиях концентрированная серная кислота - тяжёлая маслянистая жидкость без цвета и запаха, с кислым «медным» вкусом. технике серной кислотой называют её смеси как с водой, так и с серным ангидридом SO3. Если молярное отношение SO3: H2O < 1, то это водный раствор серной кислоты, если > 1 - раствор SO3 в серной кислоте (олеум).

  • 1 Название
  • 2 Физические и физико-химические свойства
    • 2.1 Олеум
  • 3 Химические свойства
  • 4 Применение
  • 5 Токсическое действие
  • 6 Исторические сведения
  • 7 Дополнительные сведения
  • 8 Получение серной кислоты
    • 8.1 Первый способ
    • 8.2 Второй способ
  • 9 Стандарты
  • 10 Примечания
  • 11 Литература
  • 12 Ссылки

Название

В XVIII-XIX веках серу для пороха производили из серного колчедана (пирит) на купоросных заводах. Серную кислоту в то время называли «купоросным маслом» (как правило это был кристаллогидрат, по консистенции напоминающий масло), очевидно отсюда происхождение названия её солей (а точнее именно кристаллогидратов) - купоросы.

Физические и физико-химические свойства

Очень сильная кислота, при 18оС pKa (1) = −2,8, pKa (2) = 1,92 (К₂ 1,2 10−2); длины связей в молекуле S=O 0,143 нм, S-OH 0,154 нм, угол HOSOH 104°, OSO 119°; кипит, образуя азеотропную смесь (98,3 % H2SO4 и 1,7 % H2О с температурой кипения 338,8оС). Серная кислота, отвечающая 100%-ному содержанию H2SO4, имеет состав (%): H2SO4 99,5, HSO4− - 0,18, H3SO4+ - 0,14, H3O+ - 0,09, H2S2O7, - 0,04, HS2O7⁻ - 0,05. Смешивается с водой и SO3, во всех соотношениях. водных растворах серная кислота практически полностью диссоциирует на H3О+, HSO3+, и 2НSO₄−. Образует гидраты H2SO4·nH2O, где n = 1, 2, 3, 4 и 6,5.

Олеум

Основная статья: Олеум

Растворы серного ангидрида SO3 в серной кислоте называются олеумом, они образуют два соединения H2SO4·SO3 и H2SO4·2SO3.

Олеум содержит также пиросерные кислоты, получающиеся по реакциям:

Температура кипения водных растворов серной кислоты повышается с ростом её концентрации и достигает максимума при содержании 98,3 % H2SO4.

Свойства водных растворов серной кислоты и олеума
Содержание % по массе Плотность при 20 ℃, г/см³ Температура плавления, ℃ Температура кипения, ℃
H2SO4 SO3 (свободный)
10 - 1,0661 −5,5 102,0
20 - 1,1394 −19,0 104,4
40 - 1,3028 −65,2 113,9
60 - 1,4983 −25,8 141,8
80 - 1,7272 −3,0 210,2
98 - 1,8365 0,1 332,4
100 - 1,8305 10,4 296,2
104,5 20 1,8968 −11,0 166,6
109 40 1,9611 33,3 100,6
113,5 60 2,0012 7,1 69,8
118,0 80 1,9947 16,9 55,0
122,5 100 1,9203 16,8 44,7

Температура кипения олеума с увеличением содержания SO3 понижается. При увеличении концентрации водных растворов серной кислоты общее давление пара над растворами понижается и при содержании 98,3 % H2SO4 достигает минимума. С увеличением концентрации SO3 в олеуме общее давление пара над ним повышается. Давление пара над водными растворами серной кислоты и олеума можно вычислить по уравнению:

величины коэффициентов А и зависят от концентрации серной кислоты. Пар над водными растворами серной кислоты состоит из смеси паров воды, H2SO4 и SO3, при этом состав пара отличается от состава жидкости при всех концентрациях серной кислоты, кроме соответствующей азеотропной смеси.

С повышением температуры усиливается диссоциация:

Уравнение температурной зависимости константы равновесия:

При нормальном давлении степень диссоциации: 10⁻⁵ (373 К), 2,5 (473 К), 27,1 (573 К), 69,1 (673 К).

Плотность 100%-ной серной кислоты можно определить по уравнению:

С повышением концентрации растворов серной кислоты их теплоемкость уменьшается и достигает минимума для 100%-ной серной кислоты, теплоемкость олеума с повышением содержания SO3 увеличивается.

При повышении концентрации и понижении температуры теплопроводность λ уменьшается:

где С - концентрация серной кислоты, в %.

Максимальную вязкость имеет олеум H2SO4·SO3, с повышением температуры η снижается. Электрическое сопротивление серной кислоты минимально при концентрации SO3 и 92 % H2SO4 и максимально при концентрации 84 и 99,8 % H2SO4. Для олеума минимальное ρ при концентрации 10 % SO3. С повышением температуры ρ серной кислоты увеличивается. Диэлектрическая проницаемость 100%-ной серной кислоты 101 (298,15 К), 122 (281,15 К); криоскопическая постоянная 6,12, эбулиоскопическая постоянная 5,33; коэффициент диффузии пара серной кислоты в воздухе изменяется в зависимости от температуры; D = 1,67·10⁻⁵T3/2 см²/с.

Химические свойства

Серная кислота в концентрированном виде при нагревании - довольно сильный окислитель; окисляет HI и частично HBr до свободных галогенов, углерод до CO2, серу - до SO2, окисляет многие металлы (Cu, Hg, исключение - золото и платина). При этом концентрированная серная кислота восстанавливается до SO2, например:

Наиболее сильными восстановителями концентрированная серная кислота восстанавливается до S и H2S. Концентрированная серная кислота поглощает водяные пары, поэтому она применяется для сушки газов, жидкостей и твёрдых тел, например, в эксикаторах. Однако концентрированная H2SO4 частично восстанавливается водородом, из-за чего не может применяться для его сушки. Отщепляя воду от органических соединений и оставляя при этом чёрный углерод (уголь), концентрированная серная кислота приводит к обугливанию древесины, сахара и других веществ.

Разбавленная H2SO4 взаимодействует со всеми металлами, находящимися в электрохимическом ряду напряжений левее водорода с его выделением, например:

Окислительные свойства для разбавленной H2SO4 нехарактерны. Серная кислота образует два ряда солей: средние - сульфаты и кислые - гидросульфаты, а также эфиры. Известны пероксомоносерная (или кислота Каро) H2SO5 и пероксодисерная H2S2O8 кислоты.

Серная кислота реагирует также с основными оксидами, образуя сульфат и воду:

На металлообрабатывающих заводах раствор серной кислоты применяют для удаления слоя оксида металла с поверхности металлических изделий, подвергающихся в процессе изготовления сильному нагреванию. Так, оксид железа удаляется с поверхности листового железа действием нагретого раствора серной кислоты:

Качественной реакцией на серную кислоту и её растворимые соли является их взаимодействие с растворимыми солями бария, при котором образуется белый осадок сульфата бария, нерастворимый в воде и кислотах, например:

Применение

Серную кислоту применяют:

  • в обработке руд, особенно при добыче редких элементов, в т.ч. урана, иридия, циркония, осмия и т.п.;
  • в производстве минеральных удобрений;
  • как электролит в свинцовых аккумуляторах;
  • для получения различных минеральных кислот и солей;
  • в производстве химических волокон, красителей, дымообразующих и взрывчатых веществ;
  • в нефтяной, металлообрабатывающей, текстильной, кожевенной и др. отраслях промышленности;
  • в пищевой промышленности - зарегистрирована в качестве пищевой добавки E513 (эмульгатор);
  • в промышленном органическом синтезе в реакциях:
    • дегидратации (получение диэтилового эфира, сложных эфиров);
    • гидратации (этанол из этилена);
    • сульфирования (синтетические моющие средства и промежуточные продукты в производстве красителей);
    • алкилирования (получение изооктана, полиэтиленгликоля, капролактама) и др.
    • Для восстановления смол в фильтрах на производстве дистилированной воды.

Мировое производство серной кислоты ок. 160 млн тонн в год. Самый крупный потребитель серной кислоты - производство минеральных удобрений. На P₂O₅ фосфорных удобрений расходуется в 2,2-3,4 раза больше по массе серной кислоты, а на (NH₄)₂SO₄ серной кислоты 75% от массы расходуемого (NH₄)₂SO₄. Поэтому сернокислотные заводы стремятся строить в комплексе с заводами по производству минеральных удобрений.

Токсическое действие

Серная кислота и олеум - очень едкие вещества. Они поражают кожу, слизистые оболочки, дыхательные пути (вызывают химические ожоги). При вдыхании паров этих веществ они вызывают затруднение дыхания, кашель, нередко - ларингит, трахеит, бронхит и т. д. Предельно допустимая концентрация аэрозоля серной кислоты в воздухе рабочей зоны 1,0 мг/м³, в атмосферном воздухе 0,3 мг/м³ (максимальная разовая) и 0,1 мг/м³ (среднесуточная). Поражающая концентрация паров серной кислоты 0,008 мг/л (экспозиция 60 мин), смертельная 0,18 мг/л (60 мин). Класс опасности II. Аэрозоль серной кислоты может образовываться в атмосфере в результате выбросов химических и металлургических производств, содержащих оксиды S, и выпадать в виде кислотных дождей.

Исторические сведения

Серная кислота известна с древности, встречаясь в природе в свободном виде, например, в виде озёр вблизи вулканов. Возможно, первое упоминание о кислых газах, получаемых при прокаливании квасцов или железного купороса «зеленого камня», встречается в сочинениях, приписываемых арабскому алхимику Джабир ибн Хайяну.

В IX веке персидский алхимик Ар-Рази, прокаливая смесь железного и медного купороса (FeSO4 7H2O и CuSO4 5H2O), также получил раствор серной кислоты. Этот способ усовершенствовал европейский алхимик Альберт Магнус, живший в XIII веке.

Схема получения серной кислоты из железного купороса - термическое разложение сульфата железа (II) с последующим охлаждением смеси

Молекула серной кислоты по Дальтону

  1. 2FeSO4+7H2O→Fe2O3+SO2+H2O+O2
  2. SO2+H2O+1/2O2 ⇆ H2SO4

В трудах алхимика Валентина (XIII в) описывается способ получения серной кислоты путем поглощения водой газа (серный ангидрид), выделяющегося при сжигании смеси порошков серы и селитры. Впоследствии этот способ лег в основу т. н. «камерного» способа, осуществляемого в небольших камерах, облицованных свинцом, который не растворяется в серной кислоте. СССР такой способ просуществовал вплоть до 1955 г.

Алхимикам XV в известен был также способ получения серной кислоты из пирита - серного колчедана, более дешевого и распространенного сырья, чем сера. Таким способом получали серную кислоту на протяжении 300 лет, небольшими количествами в стеклянных ретортах. Впоследствии, в связи с развитием катализа этот метод вытеснил камерный способ синтеза серной кислоты. настоящее время серную кислоту получают каталитическим окислением (на V2O5) оксида серы (IV) в оксид серы (VI), и последующим растворением оксида серы (VI) в 70 % серной кислоте с образованием олеума.

В России производство серной кислоты впервые было организовано в 1805 году под Москвой в Звенигородском уезде. 1913 году Россия по производству серной кислоты занимала 13 место в мире.

Дополнительные сведения

Мельчайшие капельки серной кислоты могут образовываться в средних и верхних слоях атмосферы в результате реакции водяного пара и вулканического пепла, содержащего большие количества серы. Получившаяся взвесь, из-за высокого альбедо облаков серной кислоты, затрудняет доступ солнечных лучей к поверхности планеты. Поэтому (а также в результате большого количества мельчайших частиц вулканического пепла в верхних слоях атмосферы, также затрудняющих доступ солнечному свету к планете) после особо сильных вулканических извержений могут произойти значительные изменения климата. Например, в результате извержения вулкана Ксудач (п-ов Камчатка, 1907 г.) повышенная концентрация пыли в атмосфере держалась около 2 лет, а характерные серебристые облака серной кислоты наблюдались даже в Париже. Взрыв вулкана Пинатубо в 1991 году, отправивший в атмосферу 3·107 тонн серы, привёл к тому, что 1992 и 1993 года были значительно холоднее, чем 1991 и 1994 .

Получение серной кислоты

Основная статья: Производство серной кислоты

Первый способ

Второй способ

В тех редких случаях, когда сероводород(H2S) вытесняет сульфат(SO4-) из соли (с металлами Cu,Ag,Pb,Hg) побочным продуктом является серная кислота

Сульфиды данных металлов обладают высочайшей прочностью, а также отличительным черным окрасом.

Стандарты

  • Кислота серная техническая ГОСТ 2184-77
  • Кислота серная аккумуляторная. Технические условия ГОСТ 667-73
  • Кислота серная особой чистоты. Технические условия ГОСТ 1422-78
  • Реактивы. Кислота серная. Технические условия ГОСТ 4204-77

Примечания

  1. Ушакова Н. Н., Фигурновский Н. А. Василий Михайлович Севергин: (1765-1826) / Ред. И. И. Шафрановский. М.: Наука, 1981. C. 59.
  2. 1 2 3 Ходаков Ю.В., Эпштейн Д.А., Глориозов П.А. § 91. Химические свойства серной кислоты // Неорганическая химия: Учебник для 7-8 классов средней школы. - 18-е изд. - М.: Просвещение, 1987. - С. 209-211. - 240 с. - 1 630 000 экз.
  3. Ходаков Ю.В., Эпштейн Д.А., Глориозов П.А. § 92. Качественная реакция на серную кислоту и её соли // Неорганическая химия: Учебник для 7-8 классов средней школы. - 18-е изд. - М.: Просвещение, 1987. - С. 212. - 240 с. - 1 630 000 экз.
  4. лицо худруку балета Большого театра Сергею Филину плеснули серной кислотой
  5. Эпштейн, 1979, с. 40
  6. Эпштейн, 1979, с. 41
  7. см. статью «Вулканы и климат» (рус.)
  8. Русский архипелаг - Виновато ли человечество в глобальном изменении климата? (рус.)

Литература

  • Справочник сернокислотчика, под ред. К. М. Малина, 2 изд., М., 1971
  • Эпштейн Д. А. Общая химическая технология. - М.: Химия, 1979. - 312 с.

Ссылки

  • Статья «Серная кислота» (Химическая энциклопедия)
  • Плотность и значение pH серной кислоты при t=20 °C

серная кислота, серная кислота википедия, серная кислота гидролиз, серная кислота ее воздействие 1, серная кислота класс опасности, серная кислота купить в украине, серная кислота применение, серная кислота разъедает, серная кислота с водой, серная кислота формула

Серная кислота Информацию О

Триоксид серы, как правило, имеет вид бесцветной жидкости. Он также может существовать в виде льда, волокнистых кристаллов или газа. Когда триоксид серы подвергается воздействию воздуха, начинает выделяться белый дым. Он является составным элементом такого химически активного вещества, как концентрированная серная кислота. Это прозрачная, бесцветная, маслянистая и весьма агрессивная жидкость. Она используется в производстве удобрений, взрывчатых веществ, других кислот, в нефтяной промышленности, в свинцово-кислотных аккумуляторных батареях в автомобилях.

Концентрированная серная кислота: свойства

Серная кислота хорошо растворяется в воде, обладает коррозионным воздействием на металлы и ткани, при контакте обугливает древесину и большинство других органических веществ. В результате длительного воздействия низкой концентрации вещества или краткосрочном воздействии высокой могут иметь место неблагоприятные последствия для здоровья от вдыхания.

Концентрированная серная кислота используется для изготовления удобрений и других химикатов, в переработке нефти, в производстве чугуна и стали и для многих других целей. Поскольку она имеет достаточно высокую температуру кипения, она может быть использована для выпуска более летучих кислот из их солей. Концентрированная серная кислота обладает сильным гигроскопичным свойством. Ее иногда используют в качестве сушильного агента для дегидратации (удаления воды химическим методом) многих соединений, например, углеводов.

Реакции серной кислоты

Концентрированная серная кислота необычным образом реагирует на сахар, оставляя за собой ломкую губчатую черную массу из углерода. Подобная реакция наблюдается при воздействии на кожу, целлюлозу и другие растительные и животные волокна. Когда концентрированная кислота смешивается с водой, выделяется большое количество тепла, достаточное для мгновенного кипячения. Для разбавления ее следует добавлять медленно в холодную воду при постоянном помешивании, чтобы ограничить накопление тепла. Серная кислота реагирует с жидкостью, образуя гидраты с резко выраженными свойствами.

Физические характеристики

Жидкость без цвета и запаха в разбавленном растворе имеет кислый вкус. Серная кислота является экстремально агрессивной при воздействии на кожу и все ткани организма, при непосредственном контакте вызывает сильные ожоги. В чистом виде H 2 SO4 не является проводником электричества, однако ситуация меняется в противоположную сторону с добавлением воды.

Некоторые свойства заключается в том, что молекулярная масса составляет 98.08. Температура кипения составляет 327 градусов Цельсия, плавления -2 градуса Цельсия. Серная кислота является сильной минеральной кислотой и одним из главных продуктов химической промышленности ввиду ее широкого коммерческого применения. Она образуется естественным образом в результате окисления сульфидных материалов, таких как сульфид железа.

Химические свойства серной кислоты (H 2 SO4) проявляются в различных химических реакциях :

  1. При взаимодействии со щелочами образуются два ряда солей, в том числе сульфаты.
  2. Реагирует с карбонатами и гидрокарбонатами с образованием солей и углекислого газа (СО 2).
  3. На металлы она воздействует по-разному, в зависимости от температуры и степени разбавления. Холодная и разбавленная дает выход водороду, горячая и концентрированная дает выбросы SO 2 .
  4. На триоксид серы (SO 3) и воду (Н 2 О) разлагается при кипячении раствор H 2 SO4 (концентрированная серная кислота). Химические свойства включают также роль сильного окислителя.


Пожарная опасность

Серная кислота обладает высокой реакционной способностью к воспламенению мелкодисперсных горючих материалов при контакте. При нагревании начинают выделяться высокотоксичные газы. Она является взрывоопасной и несовместимой с огромным количеством веществ. При повышенных температурах и давлении могут происходить достаточно агрессивные химические изменения и деформации. Может бурно реагировать с водой и другими жидкостями, приводя к разбрызгиванию.

Опасность для здоровья

Серная кислота разъедает все ткани организма. Вдыхание паров может привести к серьезным повреждениям легких. Поражение слизистой глаз может привести к полной потере зрения. Контакт с кожей может вызывать тяжелые некрозы. Даже несколько капель могут быть фатальными, если кислота получает доступ к трахее. Хроническое воздействие может вызвать трахеобронхит, стоматит, конъюнктивит, гастрит. Могут возникнуть перфорации желудка и перитонит, сопровождаемые циркуляторным коллапсом. Серная кислота является очень едким веществом, с которым следует обращаться с особой осторожностью. Признаки и симптомы при воздействии могут быть тяжелыми и включают слюнотечение, сильную жажду, затруднение глотания, боль, шок и ожоги. Рвотные массы, как правило, имеют цвет молотого кофе. Острое ингаляционное воздействие может привести к чиханию, осиплости голоса, удушью, ларингиту, одышке, раздражению дыхательных путей и боли в груди. Кровотечения из носа и десен, отек легких, хронический бронхит и пневмония также могут возникнуть. Воздействие на кожу может привести к серьезным болевым ожогам и дерматиту.

Первая помощь

  1. Поместить пострадавших на свежий воздух. Сотрудники экстренных служб должны избегать при этом воздействия серной кислоты.
  2. Оценить жизненные показатели, включая пульс и частоту дыхания. Если пульс не обнаруживается, провести реанимационные мероприятия в зависимости от полученных дополнительных травм. Если дыхание есть и затруднено, обеспечить респираторную поддержку.
  3. Снять запачканную одежду как можно скорее.
  4. В случае попадания в глаза промывать теплой водой по крайней мере 15 минут, на кожу - промыть водой с мылом.
  5. При вдыхании ядовитых паров нужно прополоскать рот большим количеством воды, пить и самостоятельно вызывать рвоту запрещается.
  6. Доставить пострадавших в лечебное учреждение.
Автор Химическая энциклопедия г.р. Н.С.Зефиров

СЕРНАЯ КИСЛОТА H 2 SO 4 , молекулярная масса 98,082; бесцв. маслянистая жидкость без запаха. Очень сильная двухосновная кислота, при 18°С pK a 1 - 2,8, K 2 1,2 10 -2 , pK a 2 l,92; длины связей в молекуле S=O 0,143 нм, S-ОН 0,154 нм, угол HOSOH 104°, OSO 119°; кипит с различные, образуя азеотропную смесь (98,3% H 2 SO 4 и 1,7% Н 2 О с температура кипения 338,8 °С; см. также табл. 1). СЕРНАЯ КИСЛОТА к., отвечающая 100%-ному содержанию H 2 SO 4 , имеет состав (%): H 2 SO 4 99,5, 0,18, 0,14, Н 3 О + 0,09, H 2 S 2 O 7 0,04, HS 2 O 7 0,05. Смешивается с водой и SO 3 во всех соотношениях. В водных растворах СЕРНАЯ КИСЛОТА к. практически полностью диссоциирует на Н + , и . Образует гидраты H 2 SO 4 nH 2 O, где n = 1, 2, 3, 4 и 6,5.

Растворы SO 3 в СЕРНАЯ КИСЛОТА к. называют олеумом, они образуют два соединение H 2 SO 4 SO 3 и H 2 SO 4 2SO 3 . Олеум содержит также пи-росерную кислоту, получающуюся по реакции: Н 2 SO 4 + + SO 3 : H 2 S 2 O 7 .

Температура кипения водных растворов СЕРНАЯ КИСЛОТА к. повышается с ростом ее концентрации и достигает максимума при содержании 98,3% H 2 SO 4 (табл. 2). Температура кипения олеума с увеличением содержания SO 3 понижается. При увеличении концентрации водных растворов СЕРНАЯ КИСЛОТА к. общее давление пара над растворами понижается и при содержании 98,3% H 2 SO 4 достигает минимума. С увеличением концентрации SO 3 в олеуме общее давление пара над ним повышается. Давление пара над водными растворами СЕРНАЯ КИСЛОТА к. и олеума можно вычислить по уравению: lgp(Пa) = А - В/Т+ 2,126, величины коэффициент А и В зависят от концентрации СЕРНАЯ КИСЛОТА к. Пар над водными растворами СЕРНАЯ КИСЛОТА к. состоит из смеси паров воды, Н 2 SO 4 и SO 3 , при этом состав пара отличается от состава жидкости при всех концентрациях СЕРНАЯ КИСЛОТА к., кроме соответствующей азеотропной смеси.

С повышением температуры усиливается диссоциация H 2 SO 4 H 2 О + SO 3 - Q, уравение температурной зависимости константы равновесия lnК p = 14,74965 - 6,71464ln(298/T) - 8, 10161 10 4 T 2 -9643,04/T-9,4577 10 -3 Т+2,19062 x 10 -6 T 2 . При нормальном давлении степень диссоциации: 10 -5 (373 К), 2,5 (473 К), 27,1 (573 К), 69,1 (673 К). Плотность 100%-ной СЕРНАЯ КИСЛОТА к. можно определить по уравению: d= 1,8517 - - 1,1 10 -3 t + 2 10 -6 t 2 г/см 3 . С повышением концентрации растворов СЕРНАЯ КИСЛОТА к. их теплоемкость уменьшается и достигает минимума для 100%-ной СЕРНАЯ КИСЛОТА к., теплоемкость олеума с повышением содержания SO 3 увеличивается.

При повышении концентрации и понижении температуры теплопроводность l уменьшается: l = 0,518 + 0,0016t - (0,25 + + t/1293) С/100, где С-концентрация СЕРНАЯ КИСЛОТА к., в %. Макс. вязкость имеет олеум H 2 SO 4 SO 3 , с повышением температуры h снижается. Электрич. сопротивление СЕРНАЯ КИСЛОТА к. минимально при концентрации 30 и 92% H 2 SO 4 и максимально при концентрации 84 и 99,8% H 2 SO 4 . Для олеума миним. r при концентрации 10% SO 3 . С повышением температуры r СЕРНАЯ КИСЛОТА к. увеличивается. Диэлектрич. проницаемость 100%-ной СЕРНАЯ КИСЛОТА к. 101 (298,15 К), 122 (281,15 К); криоскопич. постоянная 6,12, эбулиоскопич. постоянная 5,33; коэффициент диффузии пара СЕРНАЯ КИСЛОТА к. в воздухе изменяется с изменением температуры; D = 1,67 10 -5 T 3/2 см 2 /с.

СЕРНАЯ КИСЛОТА к.-довольно сильный окислитель, особенно при нагревании; окисляет HI и частично НВг до свободный галогенов, углерод-до СО 2 , S-до SO 2 , окисляет многие металлы (Си, Hg и др.). При этом СЕРНАЯ КИСЛОТА к. восстанавливается до SO 2 , а наиболее сильными восстановителями-до S и H 2 S. Конц. H 2 SO 4 частично восстанавливается Н 2 , из-за чего не может применяться для его сушки. Разб. H 2 SO 4 взаимодействие со всеми металлами, находящимися в электрохимический ряду напряжений левее водорода, с выделением Н 2 . Окислит. свойства для разбавленый H 2 SO 4 нехарактерны. СЕРНАЯ КИСЛОТА к. дает два ряда солей: средние-сульфаты и кислые-гидросульфаты (см. Сульфаты неорганические), а также эфиры (см. Сульфаты органические). Известны пероксомоносерная (кислота Каро) H 2 SO 5 и пероксоди-серная H 2 S 2 O 8 кислоты (см. Сера).

Получение. Сырьем для получения СЕРНАЯ КИСЛОТА к. служат: S, сульфи-ды металлов, H 2 S, отходящие газы теплоэлектростанций, сульфаты Fe, Ca и др. Осн. стадии получения СЕРНАЯ КИСЛОТА к.: 1) обжиг сырья с получением SO 2 ; 2) окисление SO 2 до SO 3 (конверсия); 3) абсорбция SO 3 . В промышленности применяют два метода получения СЕРНАЯ КИСЛОТАк., отличающихся способом окисления SO 2 ,-контактный с использованием твердых катализаторов (контактов) и нитрозный-с оксидами азота. Для получения СЕРНАЯ КИСЛОТА к. контактным способом на современной заводах применяют ванадиевые катализаторы, вытеснившие Pt и оксиды Fe. Чистый V 2 O 5 обладает слабой каталитических активностью, резко возрастающей в присутствии солей щелочных металлов, причем наиболее влияние оказывают соли К. Промотирующая роль щелочных металлов обусловлена образованием низкоплавких пиросульфованадатов (3К 2 S 2 О 7 V 2 О 5 , 2К 2 S 2 O 7 V 2 O 5 и K 2 S 2 O 7 V 2 O 5 , разлагающихся соответственно при 315-330, 365-380 и 400-405 °С). Активный компонент в условиях катализа находится в расплавленном состоянии.

Схему окисления SO 2 в SO 3 можно представить следующей образом:

На первой стадии достигается равновесие, вторая стадия медленная и определяет скорость процесса.

Произ-во СЕРНАЯ КИСЛОТА к. из серы по методу двойного контактирования и двойной абсорбции (рис. 1) состоит из следующей стадий. Воздух после очистки от пыли подается газодувкой в сушильную башню, где он осушается 93-98%-ной СЕРНАЯ КИСЛОТА к. до содержания влаги 0,01% по объему. Осушенный воздух поступает в серную печь после предварит. подогрева в одном из теплообменников контактного узла. В печи сжигается сера, подаваемая форсунками: S + О 2 : SO 2 + + 297,028 кДж. Газ, содержащий 10-14% по объему SO 2 , охлаждается в котле и после разбавления воздухом до содержания SO 2 9-10% по объему при 420 °С поступает в контактный аппарат на первую стадию конверсии, которая протекает на трех слоях катализатора (SO 2 + V 2 O 2 : : SO 3 + 96,296 кДж), после чего газ охлаждается в теплообменниках. Затем газ, содержащий 8,5-9,5% SO 3 , при 200 °С поступает на первую стадию абсорбции в абсорбер, орошаемый олеумом и 98%-ной СЕРНАЯ КИСЛОТА к.: SO 3 + Н 2 О : Н 2 SO 4 + + 130,56 кДж. Далее газ проходит очистку от брызг СЕРНАЯ КИСЛОТА к., нагревается до 420 °С и поступает на вторую стадию конверсии, протекающую на двух слоях катализатора. Перед второй стадией абсорбции газ охлаждается в экономайзере и подается в абсорбер второй ступени, орошаемый 98%-ной СЕРНАЯ КИСЛОТА к., и затем после очистки от брызг выбрасывается в атмосферу.

Рис. 1. Схема производства серной кислоты из серы: 1-серная печь; 2-котел-утилизатор; 3 - экономайзер; 4-пусковая топка; 5, 6-теплообменники пусковой топки; 7-контактный аппарат; 8-теплообменники; 9-олеумный абсорбер; 10-сушильная башня; 11 и 12-соответственно первый и второй моногидратные абсорберы; 13-сборники кислоты.

Рис.2. Схема производства серной кислоты из колчедана: 1-тарельчатый питатель; 2-печь; 3-котел-утилизатор; 4-циклоны; 5-электрофильтры; 6-промывные башни; 7-мокрые электрофильтры; 8-отдувочная башня; 9-сушильная башня; 10-брызгоуловитель; 11-первый моногидратный абсорбер; 12-теплообмен-вики; 13 - контактный аппарат; 14-олеумный абсорбер; 15-второй моногидратный абсорбер; 16-холодильники; 17-сборники.

Рис. 3. Схема производства серной кислоты нитроз-ным методом: 1 - денитрац. башня; 2, 3-первая и вторая продукц. башни; 4-окислит. башня; 5, 6, 7-абсорбц. башни; 8 - электрофильтры.

Произ-во СЕРНАЯ КИСЛОТА к. из сульфидов металлов (рис. 2) существенно сложнее и состоит из следующей операций. Обжиг FeS 2 производят в печи кипящего слоя на воздушном дутье: 4FeS 2 + 11О 2 : 2Fe 2 O 3 + 8SO 2 + 13476 кДж. Обжиговый газ с содержанием SO 2 13-14%, имеющий температуру 900 °С, поступает в котел, где охлаждается до 450 °С. Очистку от пыли осуществляют в циклоне и электрофильтре. Далее газ проходит через две промывные башни, орошаемые 40%-ной и 10%-ной СЕРНАЯ КИСЛОТА к. При этом газ окончательно очищается от пыли, фтора и мышьяка. Для очистки газа от аэрозоля СЕРНАЯ КИСЛОТА к., образующегося в промывных башнях, предусмотрены две ступени мокрых электрофильтров. После осушки в сушильной башне, перед которой газ разбавляется до содержания 9% SO 2 , его газодувкой подают на первую стадию конверсии (3 слоя катализатора). В теплообменниках газ подогревается до 420 °С благодаря теплу газа, поступающего с первой стадии конверсии. SO 2 , окисленный на 92-95% в SO 3 , идет на первую стадию абсорбции в олеумный и моногидратный абсорберы, где освобождается от SO 3 . Далее газ с содержанием SO 2 ~ 0,5% поступает на вторую стадию конверсии, которая протекает на одном или двух слоях катализатора. Предварительно газ нагревается в др. группе теплообменников до 420 °С благодаря теплу газов, идущих со второй стадии катализа. После отделения SO 3 на второй стадии абсорбции газ выбрасывается в атмосферу.

Степень превращения SO 2 в SO 3 при контактном способе 99,7%, степень абсорбции SO 3 99,97%. Произ-во СЕРНАЯ КИСЛОТА к. осуществляют и в одну стадию катализа, при этом степень превращения SO 2 в SO 3 не превышает 98,5%. Перед выбросом в атмосферу газ очищают от оставшегося SO 2 (см. Газов очистка). Производительность современной установок 1500-3100 т/сут.

Сущность нитрозного метода (рис. 3) состоит в том, что обжиговый газ после охлаждения и очистки от пыли обрабатывают так называемой нитрозой-С. к., в которой раств. оксиды азота. SO 2 поглощается нитрозой, а затем окисляется: SO 2 + N 2 O 3 + Н 2 О : Н 2 SO 4 + NO. Образующийся NO плохо растворим в нитрозе и выделяется из нее, а затем частично окисляется кислородом в газовой фазе до NO 2 . Смесь NO и NO 2 вновь поглощается СЕРНАЯ КИСЛОТАк. и т.д. Оксиды азота не расходуются в нитрозном процессе и возвращаются в производств. цикл, вследствие неполного поглощения их СЕРНАЯ КИСЛОТА к. они частично уносятся отходящими газами. Достоинства нитрозного метода: простота аппаратурного оформления, более низкая себестоимость (на 10-15% ниже контактной), возможность 100%-ной переработки SO 2 .

Аппаратурное оформление башенного нитрозного процесса несложно: SO 2 перерабатывается в 7-8 футерованных башнях с керамич. насадкой, одна из башен (полая) является регулируемым окислит. объемом. Башни имеют сборники кислоты, холодильники, насосы, подающие кислоту в напорные баки над башнями. Перед двумя последними башнями устанавливается хвостовой вентилятор. Для очистки газа от аэрозоля СЕРНАЯ КИСЛОТА к. служит электрофильтр. Оксиды азота, необходимые для процесса, получают из HNO 3 . Для сокращения выброса оксидов азота в атмосферу и 100%-ной переработки SO 2 между продукционной и абсорбционной зонами устанавливается безнитрозный цикл переработки SO 2 в комбинации с водно-кислотным методом глубокого улавливания оксидов азота. Недостаток нитрозного метода-низкое качество продукции: концентрация СЕРНАЯ КИСЛОТА к. 75%, наличие оксидов азота, Fe и др. примесей.

Для уменьшения возможности кристаллизации СЕРНАЯ КИСЛОТА к. при перевозке и хранении установлены стандарты на товарные сорта СЕРНАЯ КИСЛОТА к., концентрация которых соответствует наиболее низким температурам кристаллизации. Содержание СЕРНАЯ КИСЛОТА к. в техн. сортах (%): башенная (нитрозная) 75, контактная 92,5-98,0, олеум 104,5, высокопроцентный олеум 114,6, аккумуляторная 92-94. СЕРНАЯ КИСЛОТА к. хранят в стальных резервуарах объемом до 5000 м 3 , их общая емкость на складе рассчитана на десятисуточньш выпуск продукции. Олеум и СЕРНАЯ КИСЛОТА к. перевозят в стальных железнодорожных цистернах. Конц. и аккумуляторную СЕРНАЯ КИСЛОТА к. перевозят в цистернах из кислотостойкой стали. Цистерны для перевозки олеума покрывают теплоизоляцией и перед заливкой олеум подогревают.

Определяют СЕРНАЯ КИСЛОТА к. колориметрически и фотометрически, в виде взвеси BaSO 4 - фототурбидиметрически, а также ку-лонометрич. методом.

Применение. СЕРНАЯ КИСЛОТА к. применяют в производстве минеральных удобрений, как электролит в свинцовых аккумуляторах, для получения различные минеральных кислот и солей, химический волокон, красителей, дымообразующих веществ и ВВ, в нефтяной, металлообрабатывающей, текстильной, кожевенной и др. отраслях промышленности. Ее используют в пром. органическое синтезе в реакциях дегидратации (получение диэтилового эфира, сложных эфиров), гидратации (этанол из этилена), сульфирования (синтетич. моющие средства и промежуточные продукты в производстве красителей), алкили-рования (получение изооктана, полиэтиленгликоля, капро-лактама) и др. Самый крупный потребитель СЕРНАЯ КИСЛОТАк.-производство минеральных удобрений. На 1 т Р 2 О 5 фосфорных удобрений расходуется 2,2-3,4 т СЕРНАЯ КИСЛОТА к., а на 1 т (NH 4) 2 SO 4 -0,75 т СЕРНАЯ КИСЛОТА к. Поэтому сернокислотные заводы стремятся строить в комплексе с заводами по производству минеральных удобрений. Мировое производство СЕРНАЯ КИСЛОТА к. в 1987 достигло 152 млн. т.

СЕРНАЯ КИСЛОТА к. и олеум - чрезвычайно агрессивные вещества, поражают дыхательные пути, кожу, слизистые оболочки, вызывают затруднение дыхания, кашель, нередко-ларингит, трахеит, бронхит и т. д. ПДК аэрозоля СЕРНАЯ КИСЛОТА к. в воздухе рабочей зоны 1,0 мг/м 3 , в атм. воздухе 0,3 мг/м 3 (макс. разовая) и 0,1 мг/м 3 (среднесуточная). Поражающая концентрация паров СЕРНАЯ КИСЛОТА к. 0,008 мг/л (экспозиция 60 мин), смертельная 0,18 мг/л (60 мин). Класс опасности 2. Аэрозоль СЕРНАЯ КИСЛОТА к. может образовываться в атмосфере в результате выбросов химический и металлургич. производств, содержащих оксиды S, и выпадать в виде кислотных дождей.

Литература: Справочник сернокислотчика, под ред. К. М. Малина, 2 изд., М., 1971; Амелин А. Г., Технология серной кислоты, 2 изд., М., 1983; Васильев Б. Т., Отвагина М. И., Технология серной кислоты, М., 1985. Ю.В. Филатов.

Химическая энциклопедия. Том 4 >>



Понравилась статья? Поделитесь с друзьями!