Схема Горнера. Примеры

Кубическое уравнение – уравнение вида \[{\large{ax^3+bx^2+cx+d=0}},\]

где \(a\ne 0,\ b,\ c,\ d\) – некоторые числа.

Кубическое уравнение всегда имеет как минимум один корень \(x_1\) .
Значит, всегда выполнено: \(ax^3+bx^2+cx+d=a(x-x_1)(x^2+mx+n)\) , где \(m, n\) – некоторые числа.

\({\color{red}{I.}}\) Кубические уравнения вида \

для любого числа \(a\) имеют единственный корень

Пример.

Решением уравнения \(x^3=-8\) является \(x=\sqrt{-8}=-2\) .

\({\color{red}{II.}}\) Кубические уравнения вида \(ax^3+bx^2+cx+d=0\) в некоторых случаях можно решить, разложив на множители левую часть.

Пример.

Решить уравнение \(5x^3-x^2-20x+4=0\) .

Сгруппируем слагаемые в левой части и разложим ее на множители: \[(5x^3-20x)-(x^2-4)=0 \quad \Leftrightarrow \quad 5x(x^2-4)-(x^2-4)=0 \quad \Leftrightarrow \quad (x^2-4)(5x-1)=0\]

Тогда корнями данного уравнения являются \(x_1=-2, x_2=2, x_3=\frac15\) .

В некоторых задачах полезными могут оказаться формулы сокращенного умножения:

\[\begin{aligned} &(x\pm y)^3=x^3\pm3x^2y+3xy^2\pm y^3\\ &x^3\pm y^3=(x\pm y)(x^2\mp xy+y^2) \end{aligned}\]

\({\color{red}{III.}}\) Кубические уравнения вида \(ax^3+bx^2+cx+d=0\) , в которых не удается разложить левую часть на множители, можно решить другим способом: подобрать рациональный корень, если таковой имеется.

Для этого можно использовать следующие утверждения:

\(\blacktriangleright\) Если сумма \(a+b+c+d=0\) , то корнем уравнения является число \(1\) .

\(\blacktriangleright\) Если \(b+d=a+c\) , то корнем уравнения является число \(-1\) .

\(\blacktriangleright\) Пусть \(a,b,c,d\) – \({\color{blue}{\text{целые}}}\) числа. Тогда если уравнение имеет рациональный корень \(\large{\dfrac{p}{q}}\) , то для него будет выполнено:

\(d\) делится нацело на \(p\) ; \(a\) делится нацело на \(q\) .

Пример.

1. У уравнения \(7x^3+3x^2-x-9=0\) сумма коэффициентов равна \(7+3-1-9=0\) , значит, \(x=1\) является корнем (не обязательно единственным) этого уравнения.

2. У уравнения \(4,5x^3-3x^2-0,5x+7=0\) выполнено: \(4,5-0,5=-3+7\) , значит, \(x=-1\) является корнем этого уравнения.

3. У уравнения \(2x^3+5x^2+3x-3=0\) коэффициенты - целые числа, поэтому можно подбирать корень: делители свободного члена \(-3\) : \(\pm 1, \pm 3\) ; делители старшего коэффициента \(2\) : \(\pm1, \pm2\) . Значит, возможные комбинации рациональных корней: \[\pm 1, \ \pm\dfrac12, \ \pm 3, \ \pm \dfrac32\]

Подставляя по очереди каждое число в уравнение, убеждаемся, что \(x=\frac12\) является корнем (т.к. после подстановки этого числа в уравнение оно превращается в верное равенство):

Заметим, что если у уравнения коэффициенты - рациональные числа, то домножением уравнения на их общих знаменатель можно получить равносильное ему уравнение с целыми коэффициентами. Например, уравнение \(\frac12x^3+\frac16x+2=0\) после умножения на \(6\) сводится к уравнению с целыми коэффициентами: \(3x^3+x+12=0\) .

Задание 15 #1176

Уровень задания: Сложнее ЕГЭ

Найдите корни уравнения \(x^3 + 5x^2 + 3x - 9 = 0\) . Если уравнение имеет несколько корней, в ответ запишите меньший из них.

\[\begin{array}{rr|l} x^3+5x^2+3x-9&&\negthickspace\underline{\qquad x-1 \qquad}\\ \underline{x^3-\ x^2\,} \phantom{00000000}&&\negthickspace \quad x^2 + 6x + 9\\[-3pt] 6x^2 + 3x\,\phantom{000}&&\\ \underline{6x^2 - 6x\,}\phantom{000}&&\\[-3pt] 9x - 9&&\\ \underline{9x - 9}&&\\[-3pt] 0&&\\ \end{array}\] тогда \

Произведение нескольких выражений равно нулю в том и только том случае, когда хотя бы одно из них равно нулю и все они не теряют смысл. Отсюда находим корни уравнения: \(x_1 = -3, \ x_2 = 1\) – подходят по ОДЗ. Меньший из них \(x = -3\) .

Ответ: -3

Задание 16 #1177

Уровень задания: Сложнее ЕГЭ

Найдите корни уравнения \(x^3 - 21x^2 + 111x - 91 = 0\) . Если уравнение имеет несколько корней, в ответ запишите больший из них.

ОДЗ: \(x\) – произвольное. Решим на ОДЗ:

Можно угадать один из корней \(x = 1\) . Знание этого корня позволяет вынести за скобку выражение \((x - 1)\) при помощи деления столбиком: \[\begin{array}{rr|l} x^3-21x^2+111x-91&&\negthickspace\underline{\qquad x-1 \qquad}\\ \underline{x^3\, -\ \ \ x^2} \phantom{00000000000}&&\negthickspace \ x^2 -20x + 91\\[-3pt] -20x^2 + 111x\,\phantom{0000}&&\\ \underline{-20x^2 +\ 20x\,}\phantom{0000}&&\\[-3pt] 91x - 91&&\\ \underline{91x - 91}&&\\[-3pt] 0&&\\ \end{array}\]

тогда \ Второй множитель также можно разложить в произведение линейных. Для этого находим корни уравнения \(x^2 - 20x + 91 = 0\) . Его корни \(x_1 = 7, \ x_2 = 13\) . Теперь разложение принимает окончательный вид:

Произведение нескольких выражений равно нулю в том и только том случае, когда хотя бы одно из них равно нулю и все они не теряют смысл. Отсюда находим корни исходного уравнения: \(x_1 = 13, \ x_2 = 7, \ x_3 = 1\) – подходят по ОДЗ. Больший из них \(x = 13\) .

Ответ: 13

Задание 17 #1178

Уровень задания: Сложнее ЕГЭ

Найдите корни уравнения \(x^3 + 9x^2 + 33x + 38 = 0\) . Если уравнение имеет несколько корней, в ответ запишите больший из них.

ОДЗ: \(x\) – произвольное. Решим на ОДЗ:

Можно угадать один из корней \(x = -2\) . Знание этого корня позволяет вынести за скобку выражение \((x - (-2)) = (x + 2)\) при помощи деления столбиком: \[\begin{array}{rr|l} x^3+9x^2+33x+38&&\negthickspace\underline{\qquad x+2 \qquad}\\ \underline{x^3 + 2x^2} \phantom{0000000000}&&\negthickspace \ x^2 +7x + 19\\[-3pt] 7x^2 + 33x\,\phantom{0000}&&\\ \underline{7x^2 + 14x\,}\phantom{0000}&&\\[-3pt] 19x + 38&&\\ \underline{19x + 38}&&\\[-3pt] 0&&\\ \end{array}\]

тогда \

Рассмотрим отдельно уравнение \ Его дискриминант \(D = 49 - 4~\cdot~19 < 0\) , значит у рассматриваемого уравнения нет корней. Произведение нескольких выражений равно нулю в том и только том случае, когда хотя бы одно из них равно нулю и все они не теряют смысл. Отсюда находим единственный корень исходного уравнения: \(x = -2\) – подходит по ОДЗ.

Ответ: -2

Задание 18 #1179

Уровень задания: Сложнее ЕГЭ

Найдите корни уравнения \(x^3 - 3x - 2 = 0\) . Если уравнение имеет несколько корней, в ответ запишите наибольший из них.

ОДЗ: \(x\) – произвольное. Решим на ОДЗ:

Можно угадать один из корней \(x = 2\) . Знание этого корня позволяет вынести за скобку выражение \((x - 2)\) при помощи деления столбиком: \[\begin{array}{rr|l} x^3+0\cdot x^2-3x-2&&\negthickspace\underline{\qquad x-2 \qquad}\\ \underline{x^3 -\ \, 2x^2\,} \phantom{00000000}&&\negthickspace \ \,x^2 +2x + 1\\[-3pt] 2x^2 - 3x\,\phantom{000}&&\\ \underline{2x^2 - 4x\,}\phantom{000}&&\\[-3pt] x - 2&&\\ \underline{x - 2}&&\\[-3pt] 0&&\\ \end{array}\]

тогда \

Произведение нескольких выражений равно нулю в том и только том случае, когда хотя бы одно из них равно нулю и все они не теряют смысл. Отсюда находим корни исходного уравнения: \(x_1 = 2, \ x_2 = -1\) – подходят по ОДЗ. Наибольший из них \(x = 2\) .

Ответ: 2

Задание 19 #1180

Уровень задания: Сложнее ЕГЭ

Найдите корни уравнения \(x^3 - 27x - 54 = 0\) . Если уравнение имеет несколько корней, в ответ запишите меньший из них.

ОДЗ: \(x\) – произвольное. Решим на ОДЗ:

Можно угадать один из корней \(x = -3\) . Знание этого корня позволяет вынести за скобку выражение \((x + 3)\) при помощи деления столбиком: \[\begin{array}{rr|l} x^3+0\cdot x^2-27x-54&&\negthickspace\underline{\qquad x+3 \qquad}\\ \underline{x^3 +\ \, 3x^2\,} \phantom{0000000000}&&\negthickspace \ \,x^2 -3x - 18\\[-3pt] -3x^2 - 27x\,\phantom{0000}&&\\ \underline{-3x^2 -\ 9x\,}\phantom{0000}&&\\[-3pt] -18x - 54&&\\ \underline{-18x - 54}&&\\[-3pt] 0&&\\ \end{array}\]

тогда \ Выражение \(x^2 - 3x - 18\) можно разложить на множители, найдя корни уравнения \(x^2 - 3x - 18 = 0\) . Корни \(x_1 = 6,\ x_2 = -3\) , тогда окончательно \

Произведение нескольких выражений равно нулю в том и только том случае, когда хотя бы одно из них равно нулю и все они не теряют смысл. Отсюда находим корни исходного уравнения: \(x_1 = 6, \ x_2 = -3\) – подходят по ОДЗ. Меньший из них \(x = -3\) .

Ответ: -3

Задание 20 #1181

Уравнения, содержащие переменную в знаменателе можно решать двумя способами:

    Приведя дроби к общему знаменателю

    Используя основное свойство пропорции

Вне зависимости от выбранного способа необходимо после нахождения корней уравнения выбрать из найденных допустимые значения, т.е те, которые не обращают знаменатель в $0$.

1 способ. Приведение дробей к общему знаменателю.

Пример 1

$\frac{2x+3}{2x-1}=\frac{x-5}{x+3}$

Решение:

1.Перенесем дробь из правой части уравнения в левую

\[\frac{2x+3}{2x-1}-\frac{x-5}{x+3}=0\]

Для того чтобы правильно это сделать, вспомним, что при перенесении элементов в другую часть уравнения меняется знак перед выражениями на противоположный. Значит, если в правой части перед дробью был знак «+», то в левой перед ней будет знак «-».Тогда в левой части получим разность дробей.

2.Теперь отметим что у дробей разные знаменатели, значит для того, чтобы составить разность необходимо привести дроби к общему знаменателю. Общим знаменателем будет произведение многочленов, стоящих в знаменателях исходных дробей: $(2x-1)(x+3)$

Для того чтобы получить тождественное выражение, числитель и знаменатель первой дроби необходимо умножить на многочлен $(x+3)$, а второй на многочлен $(2x-1)$.

\[\frac{(2x+3)(х+3)}{(2x-1)(х+3)}-\frac{(x-5)(2х-1)}{(x+3)(2х-1)}=0\]

Выполним преобразование в числителе первой дроби-произведем умножение многочленов. Вспомним, что для этого необходимо умножить первое слагаемое первого многочлена умножить на каждое слагаемое второго многочлена, затем второе слагаемое первого многочлена умножить на каждое слагаемое второго многочлена и результаты сложить

\[\left(2x+3\right)\left(х+3\right)=2х\cdot х+2х\cdot 3+3\cdot х+3\cdot 3={2х}^2+6х+3х+9\]

Приведем подобные слагаемые в полученном выражении

\[\left(2x+3\right)\left(х+3\right)=2х\cdot х+2х\cdot 3+3\cdot х+3\cdot 3={2х}^2+6х+3х+9=\] \[{=2х}^2+9х+9\]

Выполним аналогично преобразование в числителе второй дроби-произведем умножение многочленов

$\left(x-5\right)\left(2х-1\right)=х\cdot 2х-х\cdot 1-5\cdot 2х+5\cdot 1={2х}^2-х-10х+5={2х}^2-11х+5$

Тогда уравнение примет вид:

\[\frac{{2х}^2+9х+9}{(2x-1)(х+3)}-\frac{{2х}^2-11х+5}{(x+3)(2х-1)}=0\]

Теперь дроби с одинаковым знаменателем, значит можно производить вычитание. Вспомним, что при вычитании дробей с одинаковым знаменателем из числителя первой дроби необходимо вычесть числитель второй дроби, знаменатель оставить прежним

\[\frac{{2х}^2+9х+9-({2х}^2-11х+5)}{(2x-1)(х+3)}=0\]

Преобразуем выражение в числителе. Для того, чтобы раскрыть скобки, перед которыми стоит знак «-» надо изменить все знаки перед слагаемыми, стоящими в скобках на противоположные

\[{2х}^2+9х+9-\left({2х}^2-11х+5\right)={2х}^2+9х+9-{2х}^2+11х-5\]

Приведем подобные слагаемые

${2х}^2+9х+9-\left({2х}^2-11х+5\right)={2х}^2+9х+9-{2х}^2+11х-5=20х+4$

Тогда дробь примет вид

\[\frac{{\rm 20х+4}}{(2x-1)(х+3)}=0\]

3.Дробь равна $0$, если ее числитель равен 0. Поэтому мы приравниваем числитель дроби к $0$.

\[{\rm 20х+4=0}\]

Решим линейное уравнение:

4.Проведем выборку корней. Это значит, что необходимо проверить, не обращаются ли знаменатели исходных дробей в $0$ при найденных корнях.

Поставим условие, что знаменатели не равны $0$

х$\ne 0,5$ х$\ne -3$

Значит допустимы все значения переменных, кроме $-3$ и $0,5$.

Найденный нами корень является допустимым значением, значит его смело можно считать корнем уравнения. Если бы найденный корень был бы не допустимым значением, то такой корень был бы посторонним и,конечно, не был бы включен в ответ.

Ответ: $-0,2.$

Теперь можем составить алгоритм решения уравнения, которое содержит переменную в знаменателе

Алгоритм решения уравнения, которое содержит переменную в знаменателе

    Перенести все элементы из правой части уравнения в левую. Для получения тождественного уравнения необходимо изменить все знаки, стоящие перед выражениями в правой части на противоположные

    Если в левой части мы получим выражение с разными знаменателями, то приводим их к общему, используя основное свойство дроби. Выполнить преобразования, используя тождественные преобразования и получить итоговую дробь равную $0$.

    Приравнять числитель к $0$ и найти корни получившегося уравнения.

    Проведем выборку корней, т.е. найти допустимые значения переменных, которые не обращают знаменатель в $0$.

2 способ. Используем основное свойство пропорции

Основным свойством пропорции является то, что произведение крайних членов пропорции равно произведению средних членов.

Пример 2

Используем данное свойство для решения этого задания

\[\frac{2x+3}{2x-1}=\frac{x-5}{x+3}\]

1.Найдем и приравняем произведение крайних и средних членов пропорции.

$\left(2x+3\right)\cdot(\ x+3)=\left(x-5\right)\cdot(2x-1)$

\[{2х}^2+3х+6х+9={2х}^2-10х-х+5\]

Решив полученное уравнение, мы найдем корни исходного

2.Найдем допустимые значения переменной.

Из предыдущего решения (1 способ) мы уже нашли, что допустимы любые значения, кроме $-3$ и $0,5$.

Тогда, установив что найденный корень является допустимым значением, мы выяснили, что $-0,2$ будет являться корнем.

2x 4 + 5x 3 - 11x 2 - 20x + 12 = 0

Для начала нужно методом подбора найти один корень. Обычно он является делителем свободного члена. В данном случае делителями числа 12 являются ±1, ±2, ±3, ±4, ±6, ±12. Начнем их подставлять по-очереди:

1: 2 + 5 - 11 - 20 + 12 = -12 ⇒ число 1

-1: 2 - 5 - 11 + 20 + 12 = 18 ⇒ число -1 не является корнем многочлена

2: 2 ∙ 16 + 5 ∙ 8 - 11 ∙ 4 - 20 ∙ 2 + 12 = 0 ⇒ число 2 является корнем многочлена

Мы нашли 1 из корней многочлена. Корнем многочлена является 2, а значит исходный многочлен должен делиться на x - 2 . Для того, чтобы выполнить деление многочленов, воспользуемся схемой Горнера:

2 5 -11 -20 12
2

В верхней строке выставляются коэффициенты исходного многочлена. В первой ячейке второй строки ставится найденный нами корень 2. Во второй строке пишутся коэффициенты многочлена, который получится в результате деления. Они считаются так:

2 5 -11 -20 12
2 2
Во вторую ячейку второй строки запишем число 2, просто перенеся его из соответствующей ячейки первой строки.
2 5 -11 -20 12
2 2 9
2 ∙ 2 + 5 = 9
2 5 -11 -20 12
2 2 9 7
2 ∙ 9 - 11 = 7
2 5 -11 -20 12
2 2 9 7 -6
2 ∙ 7 - 20 = -6
2 5 -11 -20 12
2 2 9 7 -6 0
2 ∙ (-6) + 12 = 0

Последнее число - это остаток от деления. Если он равен 0, значит мы все верно посчитали.

2x 4 + 5x 3 - 11x 2 - 20x + 12 = (x - 2)(2x 3 + 9x 2 + 7x - 6)

Но это еще не конец. Можно попробовать разложить таким же способом многочлен 2x 3 + 9x 2 + 7x - 6.

Опять ищем корень среди делителей свободного члена. Делителями числа -6 являются ±1, ±2, ±3, ±6.

1: 2 + 9 + 7 - 6 = 12 ⇒ число 1 не является корнем многочлена

-1: -2 + 9 - 7 - 6 = -6 ⇒ число -1 не является корнем многочлена

2: 2 ∙ 8 + 9 ∙ 4 + 7 ∙ 2 - 6 = 60 ⇒ число 2 не является корнем многочлена

-2: 2 ∙ (-8) + 9 ∙ 4 + 7 ∙ (-2) - 6 = 0 ⇒ число -2 является корнем многочлена

Напишем найденный корень в нашу схему Горнера и начнем заполнять пустые ячейки:

2 5 -11 -20 12
2 2 9 7 -6 0
-2 2
Во вторую ячейку третьей строки запишем число 2, просто перенеся его из соответствующей ячейки второй строки.
2 5 -11 -20 12
2 2 9 7 -6 0
-2 2 5
-2 ∙ 2 + 9 = 5
2 5 -11 -20 12
2 2 9 7 -6 0
-2 2 5 -3
-2 ∙ 5 + 7 = -3
2 5 -11 -20 12
2 2 9 7 -6 0
-2 2 5 -3 0
-2 ∙ (-3) - 6 = 0

Таким образом мы исходный многочлен разложили на множители:

2x 4 + 5x 3 - 11x 2 - 20x + 12 = (x - 2)(x + 2)(2x 2 + 5x - 3)

Многочлен 2x 2 + 5x - 3 тоже можно разложить на множители. Для этого можно решить квадратное уравнение через дискриминант , а можно поискать корень среди делителей числа -3. Так или иначе, мы придем к выводу, что корнем этого многочлена является число -3

2 5 -11 -20 12
2 2 9 7 -6 0
-2 2 5 -3 0
-3 2
Во вторую ячейку четвертой строки запишем число 2, просто перенеся его из соответствующей ячейки третьей строки.
2 5 -11 -20 12
2 2 9 7 -6 0
-2 2 5 -3 0
-3 2 -1
-3 ∙ 2 + 5 = -1
2 5 -11 -20 12
2 2 9 7 -6 0
-2 2 5 -3 0
-3 2 -1 0
-3 ∙ (-1) - 3 = 0

Таким образом мы исходный многочлен разложили на линейные множители:

2x 4 + 5x 3 - 11x 2 - 20x + 12 = (x - 2)(x + 2)(x + 3)(2x - 1)

А корнями уравнения являются.



Понравилась статья? Поделитесь с друзьями!