Схема солнечной радиации. Воздействие солнечной радиации на человека

Слепящий солнечный диск во все времена будоражил умы людей, служил благодатной темой для легенд и мифов. Ещё с древности люди догадывались о его воздействии на Землю. Как близки были наши далёкие предки к истине. Именно лучистой энергии Солнца мы обязаны существованием жизни на Земле.

Что же представляет собой радиоактивное излучение нашего светила и как оно воздействует на земные процессы?

Что такое солнечная радиация

Солнечная радиация - это совокупность солнечной материи и энергии, поступающей на Землю. Энергия распространяется в виде электромагнитных волн со скоростью 300 тысяч километров в секунду, проходит через атмосферу и достигает Земли за 8 минут. Диапазон волн, участвующих в этом «марафоне», весьма широк - от радиоволн до рентгеновских лучей, включая видимую часть спектра. Земная поверхность находится под воздействием как прямых, так и рассеянных земной атмосферой, солнечных лучей. Именно рассеянием в атмосфере сине-голубых лучей объясняется голубизна неба в ясный день. Жёлто-оранжевый цвет солнечного диска обусловлен тем, что соответствующие ему волны проходят почти без рассеивания.

С запозданием на 2–3 суток земли достигает «солнечный ветер», представляющий собой продолжение солнечной короны и состоящий из ядер атомов лёгких элементов (водорода и гелия), а также электронов. Вполне естественно, что солнечная радиация оказывает сильнейшее влияние на организм человека.

Влияние солнечной радиации на организм человека

Электромагнитный спектр солнечной радиации состоит из инфракрасной, видимой и ультрафиолетовой частей. Поскольку их кванты обладают различной энергией, то они оказывают разнообразное действие на человека.

освещение в помещении

Чрезвычайно велико и гигиеническое значение солнечной радиации. Поскольку видимый свет является решающим фактором в получении информации о внешнем мире, в помещении необходимо обеспечивать достаточный уровень освещённости. Его регламентирование производится согласно СНиП, которые для солнечной радиации составляются с учётом свето-климатических особенностей различных географических зон и учитываются при проектировании и строительстве различных объектов.

Даже поверхностный анализ электромагнитного спектра солнечного излучения доказывает, как велико влияние этого вида радиации на организм человека.

Распределение солнечного излучения по территории Земли

Далеко не всё излучение, идущее от Солнца, достигает поверхности земли. И причин для этого немало. Земля стойко отражает атаку тех лучей, которые губительны для её биосферы. Эту функцию выполняет озоновый щит нашей планеты, не пропуская наиболее агрессивную часть ультрафиолетового излучения. Атмосферный фильтр в виде водяного пара, углекислого газа, взвешенных в воздухе пылевых частиц - в значительной степени отражает, рассеивает и поглощает солнечное излучение.

Та его часть, которая преодолела все эти преграды, падает на поверхность земли под разными углами, зависящими от широты местности. Живительное солнечное тепло распределяется по территории нашей планеты неравномерно. По мере изменения высоты стояния солнца в течение года над горизонтом изменяется масса воздуха, через которую пролегает путь солнечных лучей. Все это оказывает влияние на распределение интенсивности солнечного излучения по территории планеты. Общая тенденция такова - этот параметр увеличивается от полюса к экватору, так как чем больше угол падения лучей, тем больше тепла попадает на единицу площади.

Карты солнечной радиации позволяют иметь картину распределения интенсивности солнечного излучения по территории Земли.

Влияние солнечной радиации на климат Земли

Решающее влияние на климат Земли оказывает инфракрасная составляющая солнечной радиации.

Понятно, что это происходит лишь в то время, когда Солнце находится над горизонтом. Это влияние зависит от удалённости нашей планеты от Солнца, которое изменяется в течение года. Орбита Земли представляет собой эллипс, внутри которого и находится Солнце. Совершая свой годичный путь вокруг Солнца, Земля то удаляется от своего светила, то приближается к нему.

Кроме изменения расстояния, количество поступающей на землю радиации, определяется наклоном земной оси к плоскости орбиты (66,5°) и вызываемой ею сменой времён года. Летом она больше, чем зимой. На экваторе этого фактора нет, но по мере роста широты места наблюдения, разрыв между летом и зимой становится значительным.

В процессах, происходящих на Солнце, имеют место всевозможные катаклизмы. Их воздействие отчасти нивелировано огромными расстояниями, защитными свойствами земной атмосферы и магнитным полем Земли.

Как защититься от солнечной радиации

Инфракрасная составляющая солнечного излучения - это вожделенное тепло, которого жители средних и северных широт с нетерпением ожидают все остальные сезоны года. Солнечной радиацией как оздоровительным фактором, пользуются как здоровые, так и больные.

Однако, нельзя забывать, что тепло так же, как и ультрафиолет, относится к очень сильным раздражителям. Злоупотребление их действием может привести к ожогу, общему перегреву организма, и даже к обострению хронических заболеваний. Принимая солнечные ванны, следует придерживаться проверенных жизнью правил. Особенно осторожно следует загорать в ясные солнечные дни. Грудным детям и пожилым людям, больным с хронической формой туберкулёза и проблемами с сердечно-сосудистой системой, следует довольствоваться рассеянным солнечным излучением в тени. Этого ультрафиолета, вполне достаточно для удовлетворения нужд организма.

Даже молодым людям, не имеющих особых проблем со здоровьем, следует предусмотреть защиту от солнечной радиации.

Сейчас появилось движение, активисты которого выступают против загара. И не напрасно. Загорелая кожа, несомненно, красива. Но меланин, вырабатываемый организмом (то что мы называем загаром) - это его защитная реакция на воздействие солнечного излучения. Пользы от загара нет! Есть даже сведения, что загар укорачивает жизнь, так как радиация имеет кумулятивное свойство - она накапливается в течении всей жизни.

Если дело обстоит так серьёзно, следует скрупулёзно соблюдать правила, предписывающие как защититься от солнечной радиации:

  • строго ограничивать время для загара и делать это лишь в безопасные часы;
  • находясь на активном солнце, следует носить широкополую шляпу, закрытую одежду, солнцезащитные очки и зонт;
  • использовать только качественный солнцезащитный крем.

Во все ли времена года солнечная радиация опасна для человека? Количество поступающего на землю солнечного излучения связано со сменой времён года. На средних широтах летом оно на 25% больше чем зимой. На экваторе этой разницы нет, но по мере роста широты места наблюдения - это различие возрастает. Это происходит из-за того, что наша планета по отношению к солнцу наклонена под углом в 23,3 градуса. Зимой оно находится низко над горизонтом и освещает землю лишь скользящими лучами, которые меньше прогревают освещаемую поверхность. Такое положение лучей вызывает их распределение по большей поверхности, что снижает их интенсивность по сравнению с летним отвесным падением. Кроме того, наличие острого угла при прохождении лучей через атмосферу, «удлиняет» их путь, заставляя терять большее количество тепла. Это обстоятельство снижает воздействие солнечной радиации зимой.

Солнце - звезда, являющаяся для нашей планеты источником тепла и света. Она «управляет» климатом, сменой времён года и состоянием всей биосферы Земли. И только знание законов этого могучего воздействия, позволит использовать этот живительный дар на благо здоровья людей.

Энергия Солнца является источником жизни на нашей планете. Солнце нагревает атмосферу и поверхность Земли. Благодаря солнечной энергии дуют ветры, осуществляется круговорот воды в природе, нагреваются моря и океаны, развиваются растения, животные имеют корм (см. рис.1.1). Именно благодаря солнечному излучению на Земле существуют ископаемые виды топлива.

Рисунок 1.1 – Влияние солнечного излучения на Землю

Солнечная энергия может быть преобразована в теплоту или холод, движущую силу и электричество. Основным источником энергии практически всех природных процессов, происходящих на поверхности Земли и в атмосфере, является энергия, поступающая на Землю от Солнца в виде солнечной радиации.

На рисунке 1.2 представлена классификационная схема, которая отражает процессы, возникающие на поверхности Земли и в ее атмосфере под действием солнечного излучения.

Результатами прямой солнечной деятельности являются тепловой эффект и фотоэффект, вследствие чего Земля получает тепловую энергию и свет. Результатами косвенной деятельности Солнца являются соответствующие эффекты в атмосфере, гидросфере и геосфере, служащие причиной появления ветра, волн, обуславливающие течение рек, создающие условия для сохранения внутреннего тепла Земли.

Рисунок 1.2 - Классификация возобновляемых источников энергии

Солнце представляет собой газовый шар радиусом 695300 км, в 109 раз больше радиуса Земли, с температурой излучающей поверхности около 6000°С. Внутри Солнца температура достигает 40 млн °С.

На рисунке 1.3 приведена схема строения Солнца. Солнце - гигантский "термоядерный реактор", работающий на водороде и ежесекундно путем плавления перерабатывающий 564 млн. тонн водорода в 560 млн. тонн гелия. Потеря четырех миллионов тонн массы равна 9:1-10 9 ГВтч энергии (1 ГВт равен 1 млн. кВт). За одну секунду энергии производится больше, чем шесть миллиардов АЭС смогли бы произвести за год. Благодаря защитной оболочке атмосферы только часть этой энергии достигает поверхности Земли.

Расстояние между центрами Земли и Солнца равно в среднем 1,496*10 8 км.

Ежегодно Солнце посылает к Земле около 1,610 18 кВтч лучистой энергии или 1,3*10 24 кал тепла. Это в 20 тыс. раз больше современного мирового энергопотребления. Вклад Солнца в энергетический баланс земного шара в 5000 раз превышает суммарный вклад всех других источников.

Такого количества тепла хватило бы, чтобы растопить слой льда толщиной 35 м, покрывающий земную поверхность при 0°С.

В сравнении с солнечной радиацией все остальные источники энергии, поступающей на Землю, ничтожно малы. Так, энергия звезд составляет одну стомиллионную часть солнечной энергии; космическое излучение - две миллиардные доли. Внутреннее тепло, поступающее из глубины Земли на ее поверхность составляет одну десятитысячную часть солнечной энергии.

Рисунок 1.3 – Схема строения Солнца

Таким образом. Солнце является фактически единственным источником тепловой энергии на Земле.

В центре Солнца находится солнечное ядро (см. рис. 1.4). Фотосфера - это видимая поверхность Солнца, которая и является основным источником излучения. Солнце окружает солнечная корона, которая имеет очень высокую температуру, однако она крайне разрежена, поэтому видима невооружённым глазом только в периоды полного солнечного затмения.

Видимая поверхность Солнца, излучающая радиацию называется фотосферой (сфера света). Она состоит из раскаленных паров различных химических элементов, находящихся в ионизированном состоянии.

Над фотосферой находится светящаяся практически прозрачная атмосфера Солнца, состоящая из разряженных газов, которая называется хромосферой.

Над хромосферой располагается внешняя оболочка Солнца, называемая короной.

Газы, образующие Солнце, находятся в состоянии непрерывного бурного (интенсивного) движения, что обусловливает появление так называемых солнечных пятен, факелов и протуберанцев.

Солнечные пятна представляют собой большие воронки, образовавшиеся в результате вихревых движений масс газа, скорость которых достигает 1-2 км/с. Температура пятен на 1500°С ниже температуры Солнца и составляет около 4500°С. Количество солнечных пятен изменяется из года в год с периодом около 11 лет.

Рисунок 1.4 - Строение Солнца

Солнечные факелы это выбросы солнечной энергии, а протуберанцы - колоссальной силы взрывы в хромосфере Солнца, достигающие высоты до 2 млн. км.

Наблюдения показали, что с увеличением количества солнечных пятен увеличивается количество факелов и протуберанцев и соответственно увеличивается солнечная активность.

С увеличением солнечной активности на Земле происходят магнитные бури, которые оказывают отрицательное воздействие на телефонную, телеграфную и радиосвязь, а также на условия жизнедеятельности. С этим же явлением связано увеличение полярных сияний.

Следует отметить, что в период увеличения солнечных пятен, интенсивность солнечной радиации сначала увеличивается, что связано с общим увеличением солнечной активности в начальный период, а затем солнечное излучение уменьшается, так как увеличивается площадь солнечных пятен, имеющих температуру на 1500° ниже температуры фотосферы.

Часть метеорологии, изучающая влияние солнечной радиациина Земле и в атмосфере, называется актинометрией.

При актинометрических работах необходимо знать положение Солнца на небесном своде. Это положение определяется высотой или азимутом Солнца.

Высотой Солнца he называется угловое расстояние от Солнца до горизонта, то есть угол между направлением на Солнце и плоскостью горизонта.

Угловое расстояние Солнца от зенита, то есть от его вертикального направления называется азимутом или зенитным расстоянием.

Между высотой и зенитным расстоянием существует соотношение

(1.1)

Азимут Солнца определяется редко, только для специальных paбот.

Высота Солнца над горизонтом определяется по формуле:

где - широта места наблюдений;

- склонение Солнца - это дуга круга склонений от экватора до Солнца, которая отсчитывается в зависимости от положения Солнца в обе стороны от экватора от 0 до ±90°;

t - часовой угол Солнца или истинное солнечное время в градусах.

Величина склонения Солнца на каждый день приводится в астрономических справочниках за многолетний период.

По формуле (1.2) можно вычислить для любого времени t высоту Солнца he или по заданной высоте hc определить время, когда Солнце бывает на данной высоте.

Максимальная высота Солнца в полдень для различных дней года вычисляется по формуле:

(1.3)

Источники тепла. В жизни атмосферы решающее значение имеет тепловая энергия. Главнейшим источником этой энергии является Солнце. Что же касается теплового излучения Луны, планет и звезд, то оно для Земли настолько ничтожно, что практически его нельзя принимать во внимание. Значительно больше тепловой энергии дает внутреннее тепло Земли. По вычислениям геофизиков, постоянный приток тепла из недр Земли повышает температуру земной поверхности на 0°,1. Но подобный приток тепла все же настолько мал, что принимать его в расчет также нет никакой необходимости. Таким образом, единственным источником тепловой энергии на поверхности Земли можно считать только Солнце.

Солнечная радиация. Солнце, имеющее температуру фотосферы (излучающей поверхности) около 6000°, излучает энергию в пространство во всех направлениях. Часть этой энергии в виде огромного пучка параллельных солнечных лучей попадает на Землю. Солнечная энергия, дошедшая до поверхности Земли в виде прямых лучей Солнца, носит название прямой солнечной радиации. Но не вся солнечная радиация, направленная на Землю, доходит до земной поверхности, так как солнечные лучи, проходя через мощный слой атмосферы, частично поглощаются ею, частично рассеиваются молекулами и взвешенными частичками воздуха, некоторая часть отражается облаками. Та часть солнечной энергии, которая рассеивается в атмосфере, называется рассеянной радиацией. Рассеянная солнечная радиация распространяется в атмосфере и попадает к поверхности Земли. Нами этот вид радиации воспринимается как равномерный дневной свет, когда Солнце полностью закрыто облаками или только что скрылось за горизонтом.

Прямая и рассеянная солнечная радиация, достигнув поверхности Земли, не полностью поглощается ею. Часть солнечной радиации отражается от земной поверхности обратно в атмосферу и находится там в виде потока лучей, так называемой отраженной солнечной радиации.

Состав солнечной радиации весьма сложный, что связано с очень высокой температурой излучающей поверхности Солнца. Условно по длине волн спектр солнечной радиации делят на три части: ультрафиолетовую (η<0,4<μ видимую глазом (η от 0,4μ до 0,76μ) и инфракрасную часть (η >0,76μ). Кроме температуры солнечной фотосферы, на состав солнечной радиации у земной поверхности влияет еще поглощение и рассеивание части солнечных лучей при их прохождении через воздушную оболочку Земли. В связи с этим состав солнечной радиации на верхней границе атмосферы и у поверхности Земли будет неодинаков. На основании теоретических расчетов и наблюдений установлено, что на границе атмосферы на долю ультрафиолетовой радиации приходится 5%, на видимые лучи - 52% и на инфракрасные - 43%. У земной же поверхности (при высоте Солнца 40°) ультрафиолетовые лучи составляют только 1%, видимые - 40%, а инфракрасные - 59%.

Интенсивность солнечной радиации. Под интенсивностью прямой солнечной радиации понимают количество тепла в калориях, получаемого в 1 мин. от лучистой энергии Солнца поверхностью в 1 см 2 , расположенной перпендикулярно к солнечным лучам.

Для измерения интенсивности прямой солнечной радиации применяются специальные приборы - актинометры и пиргелиометры; величина рассеянной радиации определяется пиранометром. Автоматическая регистрация продолжительности действия солнечной радиации производится актинографами и гелиографами. Спектральная интенсивность солнечной радиации определяется спектроболографом.

На границе атмосферы, где исключено поглощающее и рассеивающее воздействие воздушной оболочки Земли, интенсивность прямой солнечной радиации равна приблизительно 2 кал на 1 см 2 поверхности в 1 мин. Эта величина носит название солнечной постоянной. Интенсивность солнечной радиации в 2 кал на 1 см 2 в 1 мин. дает такое большое количество тепла в течение года, что его хватило бы, чтобы расплавить слой льда в 35 м толщиной, если бы такой слой покрывал всю земную поверхность.

Многочисленные измерения интенсивности солнечной радиации дают основание полагать, что количество солнечной энергии, приходящее к верхней границе атмосферы Земли, испытывает колебания в размере нескольких процентов. Колебания бывают периодические и непериодические, связанные, по-видимому, с процессами, происходящими на самом Солнце.

Кроме того, некоторое изменение в интенсивности солнечной радиации происходит в течение года благодаря тому, что Земля в годовом своем вращении движется не по окружности, а по эллипсу, в одном из фокусов которого находится Солнце. В связи с этим меняется расстояние от Земли до Солнца и, следовательно, происходит колебание интенсивности солнечной радиации. Наибольшая интенсивность наблюдается около 3 января, когда Земля находится ближе всего от Солнца, а наименьшая около 5 июля, когда Земля удалена от Солнца на максимальное расстояние.

Колебание интенсивности солнечной радиации по этой причине очень невелико и может представлять только теоретический интерес. (Количество энергии при максимальном расстоянии относится к количеству энергии при минимальном расстоянии, как 100: 107, т. е. разница совершенно ничтожна.)

Условия облучения поверхности земного шара. Уже одна только шарообразная форма Земли приводит к тому, что лучистая энергия Солнца распределяется на земной поверхности весьма неравномерно. Так, в дни весеннего и осеннего равноденствия (21 марта и 23 сентября) только на экваторе в полдень угол падения лучей будет 90° (рис. 30), а по мере приближения к полюсам он будет уменьшаться от 90 до 0°. Таким образом,

если на экваторе количество полученной радиации принять за 1, то на 60-й параллели она выразится в 0,5, а на полюсе будет равна 0.

Земной шар, кроме того, имеет суточное и годовое движение, причем земная ось наклонена к плоскости орбиты на 66°,5. В силу этого наклона между плоскостью экватора и плоскостью орбиты образуется угол в 23°30 г. Это обстоятельство приводит к тому, что углы падения солнечных лучей для одних и тех же широт будут меняться в пределах 47° (23,5+23,5).

В зависимости от времени года меняется не только угол падения лучей, но также продолжительность освещения. Если в тропических странах во все времена года продолжительность дня и ночи приблизительно одинакова, то в полярных странах, наоборот, она очень различна. Так, например, на 70° с. ш. летом Солнце не заходит 65 суток, на 80° с. ш.- 134, а на полюсе -186. В силу этого на Северном полюсе радиация в день летнего солнцестояния (22 июня) на 36% больше, чем на экваторе. Что же касается всего летнего полугодия, то общее количество тепла и света, получаемого полюсом, только на 17% меньше, чем на экваторе. Таким образом, в летнее время в полярных странах продолжительность освещения в значительной мере компенсирует тот недостаток радиации, который является следствием малого угла падения лучей. В зимнее полугодие картина совершенно другая: количество радиации на том же Северном полюсе будет равно 0. В результате за год среднее количество радиации на полюсе оказывается в 2,4 меньше, чем на экваторе. Из всего сказанного следует, что количество солнечной энергии, которое получает Земля путем радиации, определяется углом падения лучей и продолжительностью облучения.

Земная поверхность при отсутствии атмосферы на различных широтах за сутки получала бы следующее количество тепла, выраженное в калориях на 1 см 2 (см. таблицу на стр. 92).

Приведенное в таблице распределение радиации по земной поверхности принято называть солярным климатом. Повторяем, что такое распределение радиации мы имеем только у верхней границы атмосферы.


Ослабление солнечной радиации в атмосфере. До сих пор мы говорили об условиях распределения солнечного тепла по земной поверхности, не принимая во внимание атмосферы. Между тем атмосфера в данном случае имеет огромное значение. Солнечная радиация, проходя через атмосферу, испытывает рассеивание и, кроме того, поглощение. Оба эти процесса вместе ослабляют солнечную радиацию в значительной степени.

Солнечные лучи, проходя через атмосферу, прежде всего испытывают рассеивание (диффузию). Рассеивание создается тем, что лучи света, преломляясь и отражаясь от молекул воздуха и частичек твердых и жидких тел, находящихся в воздухе, отклоняются от прямого пути к действительно «рассеиваются».

Рассеивание сильно ослабляет солнечную радиацию. При увеличений количества водяных паров и особенно пылевых частиц рассеивание увеличивается и радиация ослабляется. В больших городах и пустынных областях, где запыленность воздуха наибольшая, рассеивание ослабляет силу радиации на 30-45%. Благодаря рассеиванию получается тот дневной свет, который освещает предметы, если даже на них непосредственно солнечные лучи не падают. Рассеивание обусловливает и самый цвет неба.

Остановимся теперь на способности атмосферы поглощать лучистую энергию Солнца. Основные газы, входящие в состав атмосферы, поглощают лучистую энергию сравнительно очень мало. Примеси же (водяной пар, озон, углекислый газ и пыль), наоборот, отличаются большой поглотительной способностью.

В тропосфере наиболее значительную примесь составляют водяные пары. Они особенно сильно поглощают инфракрасные (длинноволновые), т. е. преимущественно тепловые лучи. И чем больше водяных паров в атмосфере, тем естественно больше и. поглощение. Количество же водяных паров в атмосфере подвержено большим изменениям. В естественных условиях оно меняется от 0,01 до 4% (по объему).

Очень большой поглотительной способностью отличается озон. Значительная примесь озона, как уже говорилось, находится в нижних слоях стратосферы (над тропопаузой). Озон поглощает ультрафиолетовые (коротковолновые) лучи почти полностью.

Большой поглотительной способностью отличается также и углекислый газ. Он поглощает главным образом длинноволновые, т. е. преимущественно тепловые лучи.

Пыль, находящаяся в воздухе, также поглощает некоторое количество солнечной радиации. Нагреваясь под действием солнечных лучей, она может заметно повысить температуру воздуха.

Из общего количества солнечной энергии, приходящей к Земле, атмосфера поглощает всего около 15%.

Ослабление солнечной радиации путем рассеивания и поглощения атмосферой для различных широт Земли очень различно. Это различие зависит прежде всего от угла падения лучей. При зенитном положении Солнца лучи, падая вертикально, пересекают атмосферу кратчайшим путем. С уменьшением угла падения путь лучей удлиняется и ослабление солнечной радиации становится более значительным. Последнее хорошо видно по чертежу (рис. 31) и приложенной таблице (в таблице величина пути солнечного луча при зенитном положении Солнца принята за единицу).


В зависимости от угла падения лучей изменяется не только количество лучей, но также и их качество. В период, когда Солнце находится в зените (над головой), на ультрафиолетовые лучи приходится 4%, на

видимые - 44% и инфракрасные - 52%. При положении Солнца у горизонта ультрафиолетовых лучей совсем нет, видимых 28% и инфракрасных 72%.

Сложность влияния атмосферы на солнечную радиацию усугубляется еще тем, что пропускная ее способность очень сильно меняется в зависимости от времени года и состояния погоды. Так, если бы небо все время оставалось безоблачным, то годовой ход притока солнечной радиации на различных широтах можно было бы графически выразить следующим образом (рис. ,32) Из чертежа ясно видно, что при безоблачном небе в Москве в мае, июне и июле тепла от солнечной радиации получалось бы больше, чем на экваторе. Точно так же во вторую половину мая, в июне и первой половине июля на Северном полюсе тепла получалось бы больше, чем на экваторе и в Москве. Повторяем, что так было бы при безоблачном небе. Но на самом деле этого не получается, потому что облачность в значительной мере ослабляет солнечную радиацию. Приведем пример, изображенный на графике (рис. 33). На графике видно, как много солнечной радиации не доходит до поверхности Земли: значительная часть ее задерживается атмосферой и облаками.

Однако нужно сказать, что тепло, поглощенное облаками, частью идет на нагревание атмосферы, а частью косвенным образом достигает и земной поверхности.

Суточный и годовой ход интенсивности сол нечной радиации. Интенсивность прямой солнечной радиации у поверхности Земли зависит от высоты Солнца над горизонтом и от состояния атмосферы (от ее запыленности). Если бы. прозрачность атмосферы в течение суток была постоянная, то максимальная интенсивность солнечной радиации наблюдалась бы в полдень, а минимальная - при восходе и заходе Солнца. В этом случае график хода суточной интенсивности солнечной радиации был бы симметричным относительно полдня.

Содержание пыли, водяного пара и других примесей в атмосфере непрерывно меняется. В связи с этим меняется прозрачность воздуха и нарушается симметричность графика хода интенсивности солнечной радиации. Нередко, особенно в летний период, в полуденное время, когда происходит усиленное нагревание земной поверхности, возникают мощные восходящие токи воздуха, увеличивается количество водяного пара и пыли в атмосфере. Это приводит к значительному ослаблению солнечной радиации в полдень; максимум интенсивности радиации в этом случае наблюдается в дополуденные или послеполуденные часы. Годовой ход интенсивности солнечной радиации также связан с изменениями высоты Солнца над горизонтом в течение года и с состоянием прозрачности атмосферы в различные сезоны. В странах северного полушария наибольшая высота Солнца над горизонтом бывает в июне месяце. Но в это же время наблюдается и наибольшая запыленность атмосферы. Поэтому максимальная интенсивность обычно приходится не на середину лета, а на весенние месяцы, когда Солнце довольно высоко* поднимается над горизонтом, а атмосфера после зимы остается еще сравнительно чистой. Для иллюстрации годового хода интенсивности солнечной радиации в северном полушарии приводим данные среднемесячных полуденных величин интенсивности радиации в Павловске.


Сумма тепла солнечной радиации. Поверхность Земли в течение дня непрерывно получает тепло от прямой и рассеянной солнечной радиации или только от рассеянной радиации (при пасмурной погоде). Определяют суточную величину тепла на основании актинометрических наблюдений: по учету количества прямой и рассеянной радиации, поступившей на земную поверхность. Определив сумму тепла за каждые сутки, вычисляют и количество тепла, получаемого земной поверхностью за месяц или за год.

Суточное количество тепла, получаемого земной поверхностью от солнечной радиации, зависит от интенсивности радиации и от продолжительности ее действия в течение суток. В связи с этим минимум притока тепла приходится на зиму, а максимум на лето. В географическом распределении суммарной радиации по земному шару наблюдается ее увеличение с уменьшением широты местности. Это положение подтверждается следующей таблицей.


Роль прямой и рассеянной радиации в годовом количестве тепла, получаемом земной поверхностью на разных широтах земного шара, неодинакова. В высоких широтах в годовой сумме тепла преобладает рассеянная радиация. С уменьшением широты преобладающее значение переходит к прямой солнечной радиации. Так, например, в бухте Тихой рассеянная солнечная радиация дает 70% годовой суммы тепла, а прямая радиация только 30%. В Ташкенте, наоборот, прямая солнечная радиация дает 70%, рассеянная только 30%.

Отражательная способность Земли. Альбедо. Как уже указывалось, поверхность Земли поглощает только часть солнечной энергии, поступающей к ней в виде прямой и рассеянной радиации. Другая часть отражается в атмосферу. Отношение величины солнечной радиации, отраженной данной поверхностью, к величине потока лучистой энергии, падающей на эту поверхность, называется альбедо. Альбедо выражается в процентах и характеризует отражательную способность данного участка поверхности.

Альбедо зависит от характера поверхности (свойства почвы, наличия снега, растительности, воды и т. д.) и от величины угла падения лучей Солнца на поверхность Земли. Так, например, если лучи падают на земную поверхность под углом в 45°, то:

Из приведенных примеров видно, что отражающая способность у различных предметов неодинакова. Она всего больше у снега и меньше всего у воды. Однако взятые нами примеры относятся лишь к тем случаям, когда высота Солнца над горизонтом равна 45°. При уменьшении же этого угла отражающая способность увеличивается. Так, например, пои высоте Солнца в 90° вода отражает только 2%, при 50° - 4%, при 20°-12%, при 5° - 35-70% (в зависимости от состояния водной поверхности).

В среднем при безоблачном небе поверхность земного шара отражает 8% солнечной радиации. Кроме того, 9% отражает атмосфера. Таким образом, земной шар в целом при безоблачном небе отражает 17% падающей на него лучистой энергии Солнца. Если же небо покрыто облаками, то от них отражается 78% радиации. Если взять естественные условия, исходя из того соотношения между безоблачным небом и небом, покрытым облаками, которое наблюдается в действительности, то отражательная способность Земли в целом равна 43%.

Земная и атмосферная радиация. Земля, получая солнечную энергию, нагревается и сама становится источником излучения тепла в мировое пространство. Однако лучи, испускаемые земной поверхностью, резко отличаются от солнечных лучей. Земля излучает лишь длинноволновые (λ 8-14 μ) невидимые инфракрасные (тепловые) лучи. Энергия, излучаемая земной поверхностью, называется земной радиацией. Излучение Земли происходит и. днем и ночью. Интенсивность излучения тем больше, чем выше температура излучающего тела. Земное излучение определяется в тех же единицах, что и солнечное, т. е. в калориях с 1 см 2 поверхности в 1 мин. Наблюдения показали, что величина земного излучения невелика. Обычно она достигает 15-18 сотых калории. Но, действуя непрерывно, она может дать значительный тепловой эффект.

Наиболее сильное земное излучение получается при безоблачном небе и хорошей прозрачности атмосферы. Облачность (особенно низкие облака) значительно уменьшает земное излучение и часто доводит его до нуля. Здесь можно сказать, что атмосфера вместе с облаками является хорошим «одеялом», предохраняющим Землю от чрезмерного остывания. Части атмосферы подобно участкам земной поверхности излучают энергию в соответствии с их температурой. Эта энергия носит название атмосферной радиации. Интенсивность атмосферной радиации зависит от температуры излучающего участка атмосферы, а также от количества водяных паров и углекислого газа, содержащихся в воздухе. Атмосферная радиация относится к труппе длинноволновой. Распространяется она в атмосфере во всех направлениях; некоторое количество ее достигает земной поверхности и поглощается ею, другая часть уходит в межпланетное пространство.

О приходе и расходе энергии Солнца на Земле. Земная поверхность, с одной стороны, получает солнечную энергию в виде прямой и рассеянной радиации, а с другой стороны, теряет часть этой энергии в виде земной радиации. В результате прихода и расхода солнечной" энергии получается какой-то результат. В одних случаях этот результат может быть положительным, в других отрицательным. Приведем примеры того и другого.

8 января. День безоблачный. На 1 см 2 земной поверхности поступило за сутки 20 кал прямой солнечной радиации и 12 кал рассеянной радиации; всего, таким образом, получено 32 кал. За это же время в силу излучения 1 см? земной поверхности потерял 202 кал. В результате, выражаясь языком бухгалтерии, в балансе имеется потеря 170 кал (отрицательный баланс).

6 июля. Небо почти безоблачно. От прямой солнечной радиации получено 630 кал, от рассеянной радиации 46 кал. Всего, следовательно, земная поверхность получила на 1 см 2 676 кал. Путем земного излучения потеряно 173 кал. В балансе прибыль на 503 кал (баланс положительный).

Из приведенных примеров, помимо всего прочего, совершенно ясно, почему в умеренных широтах зимой холодно, а летом тепло.

Использование солнечной радиации для технических и бытовых целей. Солнечная радиация является неисчерпаемым природным источником энергии. О величине солнечной энергии на Земле можно судить по такому примеру: если, например, использовать тепло солнечной радиации, падающей только на 1/10 часть площади СССР, то можно получить энергию, равную работе 30 тыс. Днепрогэсов.

Люди издавна стремились использовать даровую энергию солнечной радиации для своих нужд. К настоящему времени создано много различных гелиотехнических установок, работающих на использовании солнечной радиации и получивших большое применение в промышленности и для удовлетворения бытовых нужд населения. В южных районах СССР в промышленности и в коммунальном хозяйстве на основе широкого использования солнечной радиации работают солнечные водонагреватели, кипятильники, опреснители соленой воды, гелиосушилки (для сушки фруктов), кухни, бани, теплицы, аппараты для лечебных целей. Широко используется солнечная радиация на курортах для лечения и укрепления здоровья людей.

Дажьбог у славян, Апполон у древних греков, Митра у индоиранцев, Амон Ра у древних египтян, Тонатиу у ацтеков – этими именами в древнем пантеизме люди называли Бога-Солнце.

С древних времен люди понимали, какое большое значение для жизни на Земле имеет Солнце, и обожествляли его.

Светимость Солнца огромная и составляет 3,85х10 23 кВт. Солнечная энергия, воздействующая на площадь всего в 1 м 2 способна зарядить двигатель в 1,4 кВт.

Источником энергии является термоядерная реакция, проходящая в ядре звезды.

Образующийся при этом 4 He составляет, без малого (0,01%) весь гелий земли.

Звезда нашей системы испускает электромагнитное и корпускулярное излучение. С внешней стороны короны Солнца в космическое пространство «дует» солнечный ветер, состоящий из протонов, электронов и α-частиц. С солнечным ветром теряется ежегодно 2-3х10 -14 массы светила. С корпускулярным излучением связаны магнитные бури и полярное сияние.

Электромагнитное излучение (солнечная радиация) достигает поверхности нашей планеты в виде прямых и рассеянных лучей. Спектральный диапазон его составляют:

  • ультрафиолетовое излучение;
  • рентгеновские лучи;
  • γ-лучи.

На коротковолновую часть приходится всего 7% энергии. Видимый свет составляет 48% энергии радиации Солнца. В основном он составлен сине-зеленым спектром излучения, 45% составляет инфракрасное излучение и только незначительная часть представлена радиоизлучением.

Ультрафиолетовое излучение, в зависимости от длины волны, подразделяют на:

Большая часть ультрафиолетового излучения с большой длиной волны достигает поверхности земли. Количества дошедшей до поверхности планеты УФ-В энергии зависит от состояния озонового слоя. УФ-С почти полностью поглощается озоновым слоем и газами атмосферы. Еще в 1994 г. ВОЗ и ВМО предложили ввести индекс ультрафиолета (UV, Вт/м 2).

Видимая часть света и не поглощается атмосферой, но волны некоторого спектра рассеиваются. Инфракрасный цвет или тепловая энергия в средневолновом диапазоне, в основном, поглощается водяным паром и углекислым газом. Источником длинноволнового спектра является земная поверхность.

Все перечисленные выше диапазоны имеют огромное значение для жизни на Земле. Значительная часть солнечной радиации не попадает на поверхность Земли. У поверхности планеты регистрируется следующие виды излучения:

  • 1% ультрафиолетового;
  • 40% оптического;
  • 59% инфракрасного.

Виды излучений

Интенсивность солнечной радиации зависит от:

  • широты;
  • сезона;
  • времени суток;
  • состояния атмосферы;
  • особенностей и рельефа земной поверхности.

В разных точках Земли солнечная радиация по-разному влияет на живые организмы.

Фотобиологические процессы, протекающие под действием энергии света, в зависимости от их роли, можно подразделить на следующие группы:

  • синтез биологически активных веществ (фотосинтез);
  • фотобиологические процессы, помогающие ориентироваться в пространстве и помогающие получить информацию (фототаксис, зрение, фотопериодизм);
  • повреждающее воздействие (мутации, канцерогенные процессы, деструктивное воздействие на биоактивные вещества).

Расчет инсоляции

Световое излучение оказывает стимулирующий эффект на фотобиологические процессы в организме – синтез витаминов, пигментов, клеточная фотостимуляция. В настоящее время изучается сенсибилизирующее влияние солнечного света.

Ультрафиолетовое излучение, воздействуя на кожные покровы человеческого тела, стимулирует синтез витаминов D, В4 и белков, являющихся регуляторами многих физиологических процессов. Ультрафиолетовое излучение оказывает воздействие на:

  • обменные процессы;
  • иммунную систему;
  • нервную систему;
  • эндокринную систему.

Сенсибилизирующее влияние ультрафиолета зависит от длины волны:

Стимулирующее действие солнечных лучей выражается в повышении специфического и неспецифического иммунитета. Так, например, у детей, которые подвергаются умеренному природному УФ облучению, количество простудных заболеваний снижается на 1/3. При этом эффективность лечения повышается, отсутствуют осложнения, сокращается период заболевания.

Бактерицидные свойства коротковолнового спектра УФ излучения применяются в медицине, пищевой промышленности, фармацевтическом производстве для обеззараживания сред, воздуха и продукции. Ультрафиолетовое излучение уничтожает туберкулезную палочку в течение нескольких минут, стафилококк – за 25 минут, а возбудителя брюшного тифа – за 60 мин.

Неспецифический иммунитет, в ответ на ультрафиолетовое облучение, отвечает увеличением титров комплимента и агглютинации, повышением активности фагоцитов. Но повышенное УФ-облучение вызывает патологические изменения в организме:

  • рак кожи;
  • солнечную эритему;
  • повреждение иммунной системы, которое выражается в появлении веснушек, невусов, солнечных лентиго.

Видимая часть солнечного света:

  • дает возможность получения 80% информации с помощью зрительного анализатора;
  • ускоряет обменные процессы;
  • улучшает настроение и общее самочувствие;
  • согревает;
  • влияет на состояние ЦНС;
  • определяет суточные ритмы.

Степень воздействия инфракрасного излучения зависит от длины волны:

  • длинноволновое – обладает слабой проникающей способностью и в значительной степени поглощается поверхностью кожи, вызывая эритему;
  • коротковолновое – проникает вглубь организма, оказывая сосудорасширяющее действие, болеутоляющее, противовоспалительное.

Кроме воздействия на живые организмы, солнечная радиация имеет большое значение в формировании климата Земли.

Значение солнечной радиации для климата

Солнце является главным источником тепла, формирующим земной климат. На ранних этапах развития Земли Солнце излучало на 30% меньше тепла, чем сейчас. Но благодаря насыщению атмосферы газами и вулканической пылью климат на Земле был влажный и теплый.


В интенсивности инсоляции отмечается цикличность, которая обуславливает потепление и похолодание климата. Цикличностью объясняется малый ледниковый период, наступивший в XIV-XIX вв. и потепление климата, наблюдавшееся в период 1900-1950 гг.

В истории планеты отмечается периодичность изменения наклона оси и экстреситет орбиты, что изменяет перераспределение солнечной радиации на поверхности и влияет на климат. Так, например, эти изменения отражаются на увеличении и уменьшении площади пустыни Сахары.

Межледниковые периоды длятся около 10000 лет. Сейчас Земля находится в межледниковом периоде, который называется гелиоценом. Благодаря ранней сельскохозяйственной деятельности человека этот период длиться дольше, чем рассчитано.

Учеными описаны 35-45 летние циклы изменения климата, во время которых сухой и теплый климат меняется на прохладный и влажный. Они влияют на наполнение внутренних водоемов, уровень Мирового океана, изменение оледенения в Арктике.


Солнечная радиация по-разному распределяется. Так, например, в средних широтах в период с 1984 по 2008 год отмечалось увеличение суммарной и прямой солнечной радиации и уменьшение рассеянной. Изменение интенсивности отмечается и в течение года. Так, пик приходится на май-август, а минимум – на зимний период.

Так как высота Солнца и продолжительность светового дня в летнее время больше, то на этот период приходится до 50% суммарной годовой радиации. А в период с ноября по февраль – всего 5%.

Количество солнечной радиации, попадающей на определенную поверхность Земли, влияет на важные климатические показатели:

  • температуру;
  • влажность;
  • атмосферное давление;
  • облачность;
  • осадки;
  • скорость ветра.

Увеличение солнечной радиации увеличивает температуру и атмосферное давление, остальные характеристики находятся в обратном отношении. Ученые выяснили, что наибольшее влияние на климат оказывают уровни суммарной и прямой радиации Солнца.

Меры защиты от солнечного излучения

Сенсибилизирующее и повреждающее воздействие на человека солнечная радиация проявляет в виде теплового и солнечного удара, негативного воздействия излучения на кожу. Сейчас большое количество знаменитостей присоединились к движению против загара.

Анжелина Джоли, например, говорит, что ради двух недель загара она не хочет жертвовать несколькими годами жизни.

Чтобы защититься от солнечной радиации, необходимо:

  1. загорать в утренние и вечерние часы – самое безопасное время;
  2. пользоваться солнцезащитными очками;
  3. в период активного солнца:
  • покрывать голову и открытые участки тела;
  • использовать солнцезащитный крем с УФ-фильтром;
  • приобрести специальную одежду;
  • защищать себя с помощью широкополой шляпы или зонта от солнца;
  • соблюдать питьевой режим;
  • избегать интенсивных физических нагрузок.

При разумном использовании, солнечная радиация оказывает благотворное влияние на организм человека.

Важнейшим источником, от которого поверхность Земли и атмосфера получают тепловую энергию, является Солнце. Оно посылает в мировое пространство колоссальное количество лучистой энергии: тепловой, световой, ультрафиолетовой. Излучаемые Солнцем электромагнитные волны распространяются со скоростью 300 000 км/с.

От величины угла падения солнечных лучей зависит нагревание земной поверхности. Все солнечные лучи приходят на поверхность Земли параллельно друг другу, но так как Земля имеет шарообразную форму, солнечные лучи падают на разные участки ее поверхности под разными углами. Когда Солнце в зените, его лучи падают отвесно и Земля нагревается сильнее.

Вся совокупность лучистой энергии, посылаемой Солнцем, называется солнечной радиацией, обычно она выражается в калориях на единицу поверхности в год.

Солнечная радиация определяет температурный режим воздушной тропосферы Земли.

Необходимо заметить, что общее количество солнечного излучения более чем в два миллиарда раз превышает количество энергии, получаемое Землей.

Радиация, достигающая земной поверхности, состоит из прямой и рассеянной.

Радиация, приходящая на Землю непосредственно от Солнца в виде прямых солнечных лучей при безоблачном небе, называется прямой. Она несет наибольшее количество тепла и света. Если бы у нашей планеты не было атмосферы, земная поверхность получала только прямую радиацию.

Однако, проходя через атмосферу, примерно четвертая часть солнечной радиации рассеивается молекулами газов и примесями, отклоняется от прямого пути. Некоторая их часть достигает поверхности Земли, образуя рассеянную солнечную радиацию. Благодаря рассеянной радиации свет проникает и в те места, куда прямые солнечные лучи (прямая радиация) не проникают. Эта радиация создает дневной свет и придает цвет небу.

Суммарная солнечная радиация

Все солнечные лучи, поступающие на Землю, составляют суммарную солнечную радиацию, т. е. совокупность прямой и рассеянной радиации (рис. 1).

Рис. 1. Суммарная солнечная радиация за год

Распределение солнечной радиации по земной поверхности

Солнечная радиация распределяется по земле неравномерно. Это зависит:

1. от плотности и влажности воздуха — чем они выше, тем меньше радиации получает земная поверхность;

2. от географической широты местности — количество радиации увеличивается от полюсов к экватору. Количество прямой солнечной радиации зависит от длины пути, который проходят солнечные лучи в атмосфере. Когда Солнце находится в зените (угол падения лучей 90°), его лучи попадают на Землю кратчайшим путем и интенсивно отдают свою энергию малой площади. На Земле это происходит в полосе между от 23° с. ш. и 23° ю. ш., т. е. между тропиками. По мере удаления от этой зоны на юг или на север длина пути солнечных лучей увеличивается, т. е. уменьшается угол их падения на земную поверхность. Лучи начинают падать на Землю под меньшим углом, как бы скользя, приближаясь в районе полюсов к касательной линии. В результате тот же поток энергии распределяется на большую площадь, поэтому увеличивается количество отраженной энергии. Таким образом, в районе экватора, где солнечные лучи падают на земную поверхность под углом 90°, количество получаемой земной поверхностью прямой солнечной радиации выше, а по мере передвижения к полюсам это количество резко сокращается. Кроме того, от широты местности зависит и продолжительность дня в разные времена года, что также определяет величину солнечной радиации, поступающей на земную поверхность;

3. от годового и суточного движения Земли — в средних и высоких широтах поступление солнечной радиации сильно изменяется по временам года, что связано с изменением полуденной высоты Солнца и продолжительности дня;

4. от характера земной поверхности — чем светлее поверхность, тем больше солнечных лучей она отражает. Способность поверхности отражать радиацию называется альбедо (от лат. белизна). Особенно сильно отражает радиацию снег (90 %), слабее песок (35 %), еше слабее чернозем (4 %).

Земная поверхность, поглощая солнечную радиацию (поглощенная радиация), нагревается и сама излучает тепло в атмосферу (отраженная радиация). Нижние слои атмосферы в значительной мерс задерживают земное излучение. Поглощенная земной поверхностью радиация расходуется на нагрев почвы, воздуха, воды.

Та часть суммарной радиации, которая остается после отражения и теплового излучения земной поверхности, называется радиационным балансом. Радиационный баланс земной поверхности меняется в течение суток и по сезонам года, однако в среднем за год имеет положительное значение всюду, за исключением ледяных пустынь Гренландии и Антарктиды. Максимальных значений радиационный баланс достигает в низких широтах (между 20° с. ш. и 20° ю. ш.) — свыше 42*10 2 Дж/м 2 , на широте около 60° обоих полушарий он снижается до 8*10 2 -13*10 2 Дж/м 2 .

Солнечные лучи отдают атмосфере до 20 % своей энергии, которая распределяется по всей толще воздуха, и потому вызываемое ими нагревание воздуха относительно невелико. Солнце нагревает поверхность Земли, которая передает тепло атмосферному воздуху за счет конвекции (от лат.convectio - доставка), т. е. вертикального перемещения нагретого у земной поверхности воздуха, на место которого опускается более холодный воздух. Именно так атмосфера получает большую часть тепла — в среднем в три раза больше, чем непосредственно от Солнца.

Присутствие в углекислого газа и водяного пара не позволяет теплу, отраженному от земной поверхности, беспрепятственно уходить в космическое пространство. Они создают парниковый эффект, благодаря которому перепад температуры на Земле в течение суток не превышает 15 °С. При отсутствии в атмосфере углекислого газа земная поверхность остывала бы за ночь на 40-50 °С.

В результате роста масштабов хозяйственной деятельности человека — сжигания угля и нефти на ТЭС, выбросов промышленными предприятиями, увеличения автомобильных выбросов — содержание углекислого газа в атмосфере повышается, что ведет к усилению парникового эффекта и грозит глобальным изменением климата.

Солнечные лучи, пройдя атмосферу, попадают на поверхность Земли и нагревают ее, а та, в свою очередь, отдает тепло атмосфере. Этим объясняется характерная особенность тропосферы: понижение температуры воздуха с высотой. Но бывают случаи, когда высшие слои атмосферы оказываются более теплыми, чем низшие. Такое явление носит название температурной инверсии (от лат. inversio — переворачивание).



Понравилась статья? Поделитесь с друзьями!