Сила тяготения. Почему облака не падают на землю

Все знают, что облака состоят из мелких капелек воды или кристалликов льда. Водяные капли в облаке имеют различный диаметр - от долей микрометра до нескольких миллиметров. Как бы ни была мала ледяная капля, она все же тяжелее воздуха. Поэтому возникает естественный вопрос: каким образом водяные капли (а вместе с тем и облако в целом) удерживаются в воздухе и не падают на землю? Одновременно возникает и другой вопрос: при каких условиях водяные капли перестают удерживаться в воздухе и падают на землю в виде дождя?

Начнем с наиболее мелких капелек, радиус которых составляет доли микрометра. Таким капелькам не дают падать вниз беспорядочные удары со стороны молекул воздуха, находящихся в хаотичном тепловом движении. Такое движение называют броуновским - по имени английского ботаника Р. Броуна, открывшего его в 1828 г. Удары молекул воздуха вынуждают капельку отскакивать в самых различных направлениях; в итоге она движется по причудливо изломанной траектории.

Чем тяжелее капля, тем труднее молекулам воздуха сдвинуть ее с места, и, следовательно, тем меньше роль броуновского движения. Но при этом возрастает влияние земного притяжения. Когда радиус капли становится больше микрометра, ее движение перестает быть броуновским. Капля начинает падать под действием силы тяжести, постепенно ускоряясь. И тогда начинает играть большую роль новый фактор, препятствующий падению капли вниз, - сопротивление воздушной среды. Одновременно с ускорением капли возникает и начинает расти действующая на каплю сила сопротивления воздуха. Она направлена противоположно силе тяжести и пропорциональна скорости капли.

По мере возрастания силы сопротивления скорость падающей капли нарастает все медленнее. Когда сила сопротивления воздуха выравнивается по модулю с силой тяжести, дальнейшее увеличение скорости капли прекращается, и далее капля падает равномерно. Такую равномерно движущуюся капельку может затормозить и даже подбросить вверх восходящий поток теплого воздуха. А земля, которую нагревает солнце, является постоянным источником таких восходящих воздушных потоков.

Кроме того, в процессе падения капля может просто-напросто испариться. Или раздробиться на более мелкие капельки.

Но капля может и, наоборот, укрупниться: слиться с другими или сконденсировать на своей поверхности дополнительный пар и тогда она все-таки упадет на землю. Так и выпадают осадки. В каком-то смысле можно даже сказать, что осадки (дождь или снег) - это падение облаков на землю, только на самом деле капельки дождя или снежинки слишком велики и тяжелы, чтобы они могли быть составляющими облаков.

Абсолютно на все тела во Вселенной действует волшебная сила, каким-то образом притягивающая их к Земле (точнее к ее ядру). Никуда не сбежать, нигде не укрыться от всеобъемлющего магического тяготения: планеты нашей Солнечной системы притягиваются не только к огромному Солнцу, но и друг к другу, все предметы, молекулы и мельчайшие атомы также взаимно притягиваются. известный даже маленьким детям, посвятив жизнь изучению этого явления, установил один из величайших законов — закон всемирного тяготения.

Что такое сила тяжести?

Определение и формула давно и многим известны. Напомним, сила тяжести — это определенная величина, одно из естественных проявлений всемирного тяготения, а именно: сила, с которой всякое тело неизменно притягивается к Земле.

Сила тяжести обозначается латинской буквой F тяж.

Сила тяжести: формула

Как вычислить направленную на определенное тело? Какие другие величины необходимо знать для того? Формула расчета силы тяжести довольно проста, ее изучают в 7-м классе общеобразовательной школы, в начале курса физики. Чтобы ее не просто выучить, но и понять, следует исходить из того, что сила тяжести, неизменно действующая на тело, прямо пропорциональна его количественной величине (массе).

Единица силы тяжести названа по имени великого ученого— Ньютон.

Сила тяжести (гравитация) всегда направлена строго вниз, к центру земного ядра, благодаря ее воздействию все тела равноускоренно падают вниз. Явления тяготения в повседневной жизни мы наблюдаем повсеместно и постоянно:

  • предметы, случайно или специально выпущенные из рук, обязательно падают вниз на Землю (или на любую препятствующую свободному падению поверхность);
  • запущенный в космос спутник не улетает от нашей планеты на неопределенное расстояние перпендикулярно вверх, а остается вращаться на орбите;
  • все реки текут с гор и не могут быть обращены вспять;
  • бывает, человек падает и травмируется;
  • на все поверхности садятся мельчайшие пылинки;
  • воздух сосредоточен у поверхности земли;
  • тяжело носить сумки;
  • из облаков и туч капает дождь, падает снег, град.

Наряду с понятием "сила тяжести" используется термин "вес тела". Если тело расположить на ровной горизонтальной поверхности, то его вес и сила тяжести численно равны, таким образом, эти два понятия часто подменяют, что совсем не правильно.

Ускорение свободного падения

Понятие "ускорение свободного падения" (иначе говоря, связано с термином "сила тяжести". Формула показывает: для того чтобы вычислить силу тяжести, нужно массу умножить на g (ускорение св. п.).

"g" = 9,8 Н/кг, это постоянная величина. Однако более точные измерения показывают, что из-за вращения Земли значение ускорения св. п. неодинаково и зависит от широты: на Северном полюсе оно = 9,832 Н/кг, а на знойном экваторе = 9,78 Н/кг. Получается, в разных местах планеты на тела, обладающие равной массой, направлена разная сила тяжести (формула же mg все равно остается неизменной). Для практических расчетов было принято решение на незначительные погрешности этой величины и пользоваться усредненным значением 9,8 Н/кг.

Пропорциональность такой величины, как сила тяжести (формула доказывает это), позволяет измерять вес предмета динамометром (похож на обычный бытовой бизмен). Обратите внимание, что прибор показывает только силу, так как для определения точной массы тела необходимо знать региональное значение "g".

Действует ли сила тяжести на любом (и близком, и далеком) расстоянии от земного центра? Ньютон выдвинул гипотезу, что она действует на тело даже при значительном удалении от Земли, но ее значение снижается обратно пропорционально квадрату расстояния от предмета до ядра Земли.

Гравитация в Солнечной системе

Есть ли Определение и формула относительно других планет сохраняют свою актуальность. С одной лишь разницей в значении "g":

  • на Луне = 1,62 Н/кг (в шесть раз меньше земного);
  • на Нептуне = 13,5 Н/кг (почти в полтора раза выше, чем на Земле);
  • на Марсе = 3,73 Н/кг (более чем в два с половиной раза меньше, чем на нашей планете);
  • на Сатурне = 10,44 Н/кг;
  • на Меркурии = 3,7 Н/кг;
  • на Венере = 8,8 Н/кг;
  • на Уране = 9,8 Н/кг (практически такое же, как у нас);
  • на Юпитере = 24 Н/кг (почти в два с половиной раза выше).

Все знают, что облака состоят из мелких капелек воды или кристалликов льда. Водяные капли в облаке имеют различный диаметр - от долей микрометра до нескольких миллиметров. Как бы ни была мала ледяная капля, она все же тяжелее воздуха. Поэтому возникает естественный вопрос: каким образом водяные капли (а вместе с тем и облако в целом) удерживаются в воздухе и не падают на землю? Одновременно возникает и другой вопрос: при каких условиях водяные капли перестают удерживаться в воздухе и падают на землю в виде дождя?

Начнем с наиболее мелких капелек, радиус которых составляет доли микрометра. Таким капелькам не дают падать вниз беспорядочные удары со стороны молекул воздуха, находящихся в хаотичном тепловом движении. Такое движение называют броуновским - по имени английского ботаника Р. Броуна, открывшего его в 1828 г. Удары молекул воздуха вынуждают капельку отскакивать в самых различных направлениях; в итоге она движется по причудливо изломанной траектории.

Чем тяжелее капля, тем труднее молекулам воздуха сдвинуть ее с места, и, следовательно, тем меньше роль броуновского движения. Но при этом возрастает влияние земного притяжения. Когда радиус капли становится больше микрометра, ее движение перестает быть броуновским. Капля начинает падать под действием силы тяжести, постепенно ускоряясь. И тогда начинает играть большую роль новый фактор, препятствующий падению капли вниз, - сопротивление воздушной среды. Одновременно с ускорением капли возникает и начинает расти действующая на каплю сила сопротивления воздуха. Она направлена противоположно силе тяжести и пропорциональна скорости капли.

По мере возрастания силы сопротивления скорость падающей капли нарастает все медленнее. Когда сила сопротивления воздуха выравнивается по модулю с силой тяжести, дальнейшее увеличение скорости капли прекращается, и далее капля падает равномерно. Такую равномерно движущуюся капельку может затормозить и даже подбросить вверх восходящий поток теплого воздуха. А земля, которую нагревает солнце, является постоянным источником таких восходящих воздушных потоков.

Кроме того, в процессе падения капля может просто-напросто испариться. Или раздробиться на более мелкие капельки.

Но капля может и, наоборот, укрупниться: слиться с другими или сконденсировать на своей поверхности дополнительный пар и тогда она все-таки упадет на землю. Так и выпадают осадки. В каком-то смысле можно даже сказать, что осадки (дождь или снег) - это падение облаков на землю, только на самом деле капельки дождя или снежинки слишком велики и тяжелы, чтобы они могли быть составляющими облаков.


Если во время дождя посмотреть на тучу со стороны,
то кажется, что она падает на землю.

Почему облака не падают на землю?

Все знают, что облака состоят из мелких капелек воды или кристалликов льда. Водяные капли в облаке имеют различный диаметр - от долей микрометра до нескольких миллиметров. Как бы ни была мала ледяная капля, она все же тяжелее воздуха. Поэтому возникает естественный вопрос: каким образом водяные капли (а вместе с тем и облако в целом) удерживаются в воздухе и не падают на землю? Одновременно возникает и другой вопрос: при каких условиях водяные капли перестают удерживаться в воздухе и падают на землю в виде дождя?

Начнем с наиболее мелких капелек, радиус которых составляет доли микрометра. Таким капелькам не дают падать вниз беспорядочные удары со стороны молекул воздуха, находящихся в хаотичном тепловом движении. Такое движение называют броуновским - по имени английского ботаника Р. Броуна, открывшего его в 1828 г. Удары молекул воздуха вынуждают капельку отскакивать в самых различных направлениях; в итоге она движется по причудливо изломанной траектории.

Чем тяжелее капля, тем труднее молекулам воздуха сдвинуть ее с места, и, следовательно, тем меньше роль броуновского движения. Но при этом возрастает влияние земного притяжения. Когда радиус капли становится больше микрометра, ее движение перестает быть броуновским. Капля начинает падать под действием силы тяжести, постепенно ускоряясь. И тогда начинает играть большую роль новый фактор, препятствующий падению капли вниз, - сопротивление воздушной среды. Одновременно с ускорением капли возникает и начинает расти действующая на каплю сила сопротивления воздуха. Она направлена противоположно силе тяжести и пропорциональна скорости капли.

По мере возрастания силы сопротивления скорость падающей капли нарастает все медленнее. Когда сила сопротивления воздуха выравнивается по модулю с силой тяжести, дальнейшее увеличение скорости капли прекращается, и далее капля падает равномерно. Такую равномерно движущуюся капельку может затормозить и даже подбросить вверх восходящий поток теплого воздуха. А земля, которую нагревает солнце, является постоянным источником таких восходящих воздушных потоков.

Кроме того, в процессе падения капля может просто-напросто испариться. Или раздробиться на более мелкие капельки.

Но капля может и, наоборот, укрупниться: слиться с другими или сконденсировать на своей поверхности дополнительный пар и тогда она все-таки упадет на землю. Так и выпадают осадки. В каком-то смысле можно даже сказать, что осадки (дождь или снег) - это падение облаков на землю, только на самом деле капельки дождя или снежинки слишком велики и тяжелы, чтобы они могли быть составляющими облаков.

Все тела Вселенной, как небесные, так и находящиеся на Земле, подвержены взаимному притяжению. Если же мы и не наблюдаем его между обычными предметами, окружающими нас в повседневной жизни (например, между книгами, тетрадями, мебелью и т.д.), то лишь потому, что оно в этих случаях слишком слабое.

Взаимодействие, свойственное всем телам Вселенной и проявляющееся в их взаимном притяжении друг к другу, называют гравитационным, а само явление всемирного тяготения - грави-тацией .

Гравитационное взаимодействие осуществляется посредством особого вида материи, называемого гравитационным полем. Такое поле существует вокруг любого тела, будь то планета, камень, человек или лист бумаги. При этом тело, создающее гравитационное поле, действует им на любое другое тело так, что у того появляется ускорение, всегда направленное к источнику поля. Появление такого ускорения и означает, что между телами возникает притяжение.

Особенностью гравитационного поля является его всепроникающая спо-собность. Защититься от него ничем нельзя, оно проникает сквозь любые материалы.

Гравитационные силы обусловлены взаимным притяжением тел и направлены вдоль линии, соединяющей взаимодействующии точки, поэтому называются центральными силами. Они зависят только от координат взаимодействующих точек и являются потенциальными силами.

В 1682 г. И.Ньютон открыл закон всемирного тяготения:

Все тела во Вселенной притягиваются друг к другу с силой, прямо пропорциональной произведению их масс и обратно пропорциональ-ной квадрату расстояния между ними:

Коэффициент пропорциональности G называется гравитационной постоянной,

G = 6,67*10 -11 (Н*м 2)/кг 2 .

Скорость, которую необходимо сообщить телу у поверхности планеты, чтобы оно стало ее спутником, движущимся по круговой орбите, называется первая космическая скорость. Любое тело может стать искусственным спутником другого тела, если сообщить ему необходимую скорость.

где g – ускорение свободного падения на планете, R – радиус планеты. Для Земли первая космическая скорость составляет приблизительно 7,9 км/с.

Сила, с которой тела притягиваются к Земле вследствие гравитационного взаимодействия, назы-вается силой тяжести . Согласно закону всемирного тяготения

где g - ускорение свободного падения, R - рассто-яние от центра Земли до тела, М - масса Земли, т - масса тела.

Направлена сила тяжести вниз к центру Земли. В теле же она проходит через точку, которая называется центром тяжести .

Весом тела называют силу, с которой тело дей-ствует на опору или подвес вследствие притяжения к Земле. Вес тела Р, в отличие от силы тяжести, приложен не к данному телу, а к его опоре или под-весу.

Р =mg .

В случае свободного падения вес тела равен нулю (это состояние невесомости), поскольку само тело и его опора движутся с одинаковым ускорением g . Несмотря на то, что в состоянии невесомости вес тела равен нулю, на него продолжает действовать сила тяжести, которая не равна нулю. Невесомость – состояние, возникающее при движении опоры с ускорением свободного падения. Вес тела при невесомости равен нулю.



Понравилась статья? Поделитесь с друзьями!