Синус косинус тангенс котангенс таблица числовая окружность. Соблюдение вашей конфиденциальности на уровне компании

Таблица значений тригонометрических функций

Примечание . В данной таблице значений тригонометрических функций используется знак √ для обозначения квадратного корня. Для обозначения дроби - символ "/".

См. также полезные материалы:

Для определения значения тригонометрической функции , найдите его на пересечении строки с указанием тригонометрической функции. Например, синус 30 градусов - ищем колонку с заголовком sin (синус) и находим пересечение этой колонки таблицы со строкой "30 градусов", на их пересечении считываем результат - одна вторая. Аналогично находим косинус 60 градусов, синус 60 градусов (еще раз, в пересечении колонки sin (синус) и строки 60 градусов находим значение sin 60 = √3/2) и т.д. Точно так же находятся значения синусов, косинусов и тангенсов других "популярных" углов.

Синус пи, косинус пи, тангенс пи и других углов в радианах

Приведенная ниже таблица косинусов, синусов и тангенсов также подходит для нахождения значения тригонометрических функций, аргумент которых задан в радианах . Для этого воспользуйтесь второй колонкой значений угла. Благодаря этому можно перевести значение популярных углов из градусов в радианы. Например, найдем угол 60 градусов в первой строке и под ним прочитаем его значение в радианах. 60 градусов равно π/3 радиан.

Число пи однозначно выражает зависимость длины окружности от градусной меры угла. Таким образом, пи радиан равны 180 градусам.

Любое число, выраженное через пи (радиан) можно легко перевести в градусную меру, заменив число пи (π) на 180 .

Примеры :
1. Синус пи .
sin π = sin 180 = 0
таким образом, синус пи - это тоже самое, что синус 180 градусов и он равен нулю.

2. Косинус пи .
cos π = cos 180 = -1
таким образом, косинус пи - это тоже самое, что косинус 180 градусов и он равен минус единице.

3. Тангенс пи
tg π = tg 180 = 0
таким образом, тангенс пи - это тоже самое, что тангенс 180 градусов и он равен нулю.

Таблица значений синуса, косинуса, тангенса для углов 0 - 360 градусов (часто встречающиеся значения)

значение угла α
(градусов)

значение угла α
в радианах

(через число пи)

sin
(синус)
cos
(косинус)
tg
(тангенс)
ctg
(котангенс)
sec
(секанс)
cosec
(косеканс)
0 0 0 1 0 - 1 -
15 π/12 2 - √3 2 + √3
30 π/6 1/2 √3/2 1/√3 √3 2/√3 2
45 π/4 √2/2 √2/2 1 1 √2 √2
60 π/3 √3/2 1/2 √3 1/√3 2 2/√3
75 5π/12 2 + √3 2 - √3
90 π/2 1 0 - 0 - 1
105 7π/12 -
- 2 - √3 √3 - 2
120 2π/3 √3/2 -1/2 -√3 -√3/3
135 3π/4 √2/2 -√2/2 -1 -1 -√2 √2
150 5π/6 1/2 -√3/2 -√3/3 -√3
180 π 0 -1 0 - -1 -
210 7π/6 -1/2 -√3/2 √3/3 √3
240 4π/3 -√3/2 -1/2 √3 √3/3
270 3π/2 -1 0 - 0 - -1
360 0 1 0 - 1 -

Если в таблице значений тригонометрических функций вместо значения функции указан прочерк (тангенс (tg) 90 градусов, котангенс (ctg) 180 градусов) значит при данном значении градусной меры угла функция не имеет определенного значения. Если же прочерка нет - клетка пуста, значит мы еще не внесли нужное значение. Мы интересуемся, по каким запросам к нам приходят пользователи и дополняем таблицу новыми значениями, несмотря на то, что текущих данных о значениях косинусов, синусов и тангенсов самых часто встречающихся значений углов вполне достаточно для решения большинства задач.

Таблица значений тригонометрических функций sin, cos, tg для наиболее популярных углов
0, 15, 30, 45, 60, 90 ... 360 градусов
(цифровые значения "как по таблицам Брадиса")

значение угла α (градусов) значение угла α в радианах sin (синус) cos (косинус) tg (тангенс) ctg (котангенс)
0 0
15

0,2588

0,9659

0,2679

30

0,5000

0,5774

45

0,7071

0,7660

60

0,8660

0,5000

1,7321

7π/18

Тригонометрия, как наука, зародилась на Древнем Востоке. Первые тригонометрические соотношения были выведены астрономами для создания точного календаря и ориентированию по звездам. Данные вычисления относились к сферической тригонометрии, в то время как в школьном курсе изучают соотношения сторон и угла плоского треугольника.

Тригонометрия – это раздел математики, занимающийся свойствами тригонометрических функций и зависимостью между сторонами и углами треугольников.

В период расцвета культуры и науки I тысячелетия нашей эры знания распространились с Древнего Востока в Грецию. Но основные открытия тригонометрии – это заслуга мужей арабского халифата. В частности, туркменский ученый аль-Маразви ввел такие функции, как тангенс и котангенс, составил первые таблицы значений для синусов, тангенсов и котангенсов. Понятие синуса и косинуса введены индийскими учеными. Тригонометрии посвящено немало внимания в трудах таких великих деятелей древности, как Евклида, Архимеда и Эратосфена.

Основные величины тригонометрии

Основные тригонометрические функции числового аргумента – это синус, косинус, тангенс и котангенс. Каждая из них имеет свой график: синусоида, косинусоида, тангенсоида и котангенсоида.

В основе формул для расчета значений указанных величин лежит теорема Пифагора. Школьникам она больше известна в формулировке: «Пифагоровы штаны, во все стороны равны», так как доказательство приводится на примере равнобедренного прямоугольного треугольника.

Синус, косинус и другие зависимости устанавливают связь между острыми углами и сторонами любого прямоугольного треугольника. Приведем формулы для расчета этих величин для угла A и проследим взаимосвязи тригонометрических функций:

Как видно, tg и ctg являются обратными функциями. Если представить катет a как произведение sin A и гипотенузы с, а катет b в виде cos A * c, то получим следующие формулы для тангенса и котангенса:

Тригонометрический круг

Графически соотношение упомянутых величин можно представить следующим образом:

Окружность, в данном случае, представляет собой все возможные значения угла α — от 0° до 360°. Как видно из рисунка, каждая функция принимает отрицательное или положительное значение в зависимости от величины угла. Например, sin α будет со знаком «+», если α принадлежит I и II четверти окружности, то есть, находится в промежутке от 0° до 180°. При α от 180° до 360° (III и IV четверти) sin α может быть только отрицательным значением.

Попробуем построить тригонометрические таблицы для конкретных углов и узнать значение величин.

Значения α равные 30°, 45°, 60°, 90°, 180° и так далее – называют частными случаями. Значения тригонометрических функций для них просчитаны и представлены в виде специальных таблиц.

Данные углы выбраны отнюдь не случайно. Обозначение π в таблицах стоит для радиан. Рад — это угол, при котором длина дуги окружности соответствует ее радиусу. Данная величина была введена для того, чтобы установить универсальную зависимость, при расчетах в радианах не имеет значение действительная длина радиуса в см.

Углы в таблицах для тригонометрических функций соответствуют значениям радиан:

Итак, не трудно догадаться, что 2π – это полная окружность или 360°.

Свойства тригонометрических функций: синус и косинус

Для того, чтобы рассмотреть и сравнить основные свойства синуса и косинуса, тангенса и котангенса, необходимо начертить их функции. Сделать это можно в виде кривой, расположенной в двумерной системе координат.

Рассмотри сравнительную таблицу свойств для синусоиды и косинусоиды:

Синусоида Косинусоида
y = sin x y = cos x
ОДЗ [-1; 1] ОДЗ [-1; 1]
sin x = 0, при x = πk, где k ϵ Z cos x = 0, при x = π/2 + πk, где k ϵ Z
sin x = 1, при x = π/2 + 2πk, где k ϵ Z cos x = 1, при x = 2πk, где k ϵ Z
sin x = - 1, при x = 3π/2 + 2πk, где k ϵ Z cos x = - 1, при x = π + 2πk, где k ϵ Z
sin (-x) = - sin x, т. е. функция нечетная cos (-x) = cos x, т. е. функция четная
функция периодическая, наименьший период - 2π
sin x › 0, при x принадлежащем I и II четвертям или от 0° до 180° (2πk, π + 2πk) cos x › 0, при x принадлежащем I и IV четвертям или от 270° до 90° (- π/2 + 2πk, π/2 + 2πk)
sin x ‹ 0, при x принадлежащем III и IV четвертям или от 180° до 360° (π + 2πk, 2π + 2πk) cos x ‹ 0, при x принадлежащем II и III четвертям или от 90° до 270° (π/2 + 2πk, 3π/2 + 2πk)
возрастает на промежутке [- π/2 + 2πk, π/2 + 2πk] возрастает на промежутке [-π + 2πk, 2πk]
убывает на промежутках [ π/2 + 2πk, 3π/2 + 2πk] убывает на промежутках
производная (sin x)’ = cos x производная (cos x)’ = - sin x

Определить является ли функция четной или нет очень просто. Достаточно представить тригонометрический круг со знаками тригонометрических величин и мысленно «сложить» график относительно оси OX. Если знаки совпадают, функция четная, в противном случае — нечетная.

Введение радиан и перечисление основных свойств синусоиды и косинусоиды позволяют привести следующую закономерность:

Убедиться в верности формулы очень просто. Например, для x = π/2 синус равен 1, как и косинус x = 0. Проверку можно осуществить обративших к таблицам или проследив кривые функций для заданных значений.

Свойства тангенсоиды и котангенсоиды

Графики функций тангенса и котангенса значительно отличаются от синусоиды и косинусоиды. Величины tg и ctg являются обратными друг другу.

  1. Y = tg x.
  2. Тангенсоида стремится к значениям y при x = π/2 + πk, но никогда не достигает их.
  3. Наименьший положительный период тангенсоиды равен π.
  4. Tg (- x) = — tg x, т. е. функция нечетная.
  5. Tg x = 0, при x = πk.
  6. Функция является возрастающей.
  7. Tg x › 0, при x ϵ (πk, π/2 + πk).
  8. Tg x ‹ 0, при x ϵ (— π/2 + πk, πk).
  9. Производная (tg x)’ = 1/cos 2 ⁡x .

Рассмотрим графическое изображение котангенсоиды ниже по тексту.

Основные свойства котангенсоиды:

  1. Y = ctg x.
  2. В отличие от функций синуса и косинуса, в тангенсоиде Y может принимать значения множества всех действительных чисел.
  3. Котангенсоида стремится к значениям y при x = πk, но никогда не достигает их.
  4. Наименьший положительный период котангенсоиды равен π.
  5. Ctg (- x) = — ctg x, т. е. функция нечетная.
  6. Ctg x = 0, при x = π/2 + πk.
  7. Функция является убывающей.
  8. Ctg x › 0, при x ϵ (πk, π/2 + πk).
  9. Ctg x ‹ 0, при x ϵ (π/2 + πk, πk).
  10. Производная (ctg x)’ = — 1/sin 2 ⁡x Исправить

Координаты x лежащих на окружности точек равны cos(θ), а координаты y соответствуют sin(θ), где θ - величина угла.

  • Если вам сложно запомнить данное правило, просто помните, что в паре (cos; sin) "синус стоит на последнем месте".
  • Это правило можно вывести, если рассмотреть прямоугольные треугольники и определение данных тригонометрических функций (синус угла равен отношению длины противолежащего, а косинус - прилежащего катета к гипотенузе).
  • Запишите координаты четырех точек на окружности. "Единичная окружность" - это такая окружность, радиус которой равен единице. Используйте это, чтобы определить координаты x и y в четырех точках пересечения координатных осей с окружностью. Выше мы обозначили эти точки для наглядности "востоком", "севером", "западом" и "югом", хотя они не имеют устоявшихся названий.

    • "Восток" соответствует точке с координатами (1; 0) .
    • "Север" соответствует точке с координатами (0; 1) .
    • "Запад" соответствует точке с координатами (-1; 0) .
    • "Юг" соответствует точке с координатами (0; -1) .
    • Это аналогично обычному графику, поэтому нет необходимости запоминать эти значения, достаточно помнить основной принцип.
  • Запомните координаты точек в первом квадранте. Первый квадрант расположен в верхней правой части круга, где координаты x и y принимают положительные значения. Это единственные координаты, которые необходимо запомнить:

    • точка π / 6 имеет координаты () ;
    • точка π / 4 имеет координаты () ;
    • точка π / 3 имеет координаты () ;
    • обратите внимание, что числитель принимает лишь три значения. Если перемещаться в положительном направлении (слева направо по оси x и снизу вверх по оси y ), числитель принимает значения 1 → √2 → √3.
  • Проведите прямые линии и определите координаты точек их пересечения с окружностью. Если вы проведете от точек одного квадранта прямые горизонтальные и вертикальные линии, вторые точки пересечения этих линий с окружностью будут иметь координаты x и y с теми же абсолютными значениями, но другими знаками. Иными словами, можно провести горизонтальные и вертикальные линии от точек первого квадранта и подписать точки пересечения с окружностью теми же координатами, но при этом оставить слева место для правильного знака ("+" или "-").

    • Например, можно провести горизонтальную линию между точками π / 3 и 2π / 3 . Поскольку первая точка имеет координаты ( 1 2 , 3 2 {\displaystyle {\frac {1}{2}},{\frac {\sqrt {3}}{2}}} ), координаты второй точки будут (? 1 2 , ? 3 2 {\displaystyle {\frac {1}{2}},?{\frac {\sqrt {3}}{2}}} ), где вместо знака "+" или "-" поставлен знак вопроса.
    • Используйте наиболее простой способ: обратите внимание на знаменатели координат точки в радианах. Все точки со знаменателем 3 имеют одинаковые абсолютные значения координат. То же самое относится к точкам со знаменателями 4 и 6.
  • Для определения знака координат используйте правила симметрии. Существует несколько способов определить, где следует поставить знак "-":

    • вспомните основные правила для обычных графиков. Ось x отрицательна слева и положительна справа. Ось y отрицательна снизу и положительна сверху;
    • начните с первого квадранта и проведите линии к другим точкам. Если линия пересечет ось y , координата x изменит свой знак. Если линия пересечет ось x , изменится знак у координаты y ;
    • запомните, что в первом квадранте положительны все функции, во втором квадранте положителен только синус, в третьем квадранте положителен лишь тангенс, и в четвертом квадранте положителен только косинус;
    • какой бы метод вы ни использовали, в первом квадранте должно получиться (+,+), во втором (-,+), в третьем (-,-) и в четвертом (+,-).
  • Проверьте, не ошиблись ли вы. Ниже приведен полный список координат "особых" точек (кроме четырех точек на координатных осях), если двигаться по единичной окружности против часовой стрелки. Помните, что для определения всех этих значений достаточно запомнить координаты точек лишь в первом квадранте:

    • первый квадрант: ( 3 2 , 1 2 {\displaystyle {\frac {\sqrt {3}}{2}},{\frac {1}{2}}} ); ( 2 2 , 2 2 {\displaystyle {\frac {\sqrt {2}}{2}},{\frac {\sqrt {2}}{2}}} ); ( 1 2 , 3 2 {\displaystyle {\frac {1}{2}},{\frac {\sqrt {3}}{2}}} );
    • второй квадрант: ( − 1 2 , 3 2 {\displaystyle -{\frac {1}{2}},{\frac {\sqrt {3}}{2}}} ); ( − 2 2 , 2 2 {\displaystyle -{\frac {\sqrt {2}}{2}},{\frac {\sqrt {2}}{2}}} ); ( − 3 2 , 1 2 {\displaystyle -{\frac {\sqrt {3}}{2}},{\frac {1}{2}}} );
    • третий квадрант: ( − 3 2 , − 1 2 {\displaystyle -{\frac {\sqrt {3}}{2}},-{\frac {1}{2}}} ); ( − 2 2 , − 2 2 {\displaystyle -{\frac {\sqrt {2}}{2}},-{\frac {\sqrt {2}}{2}}} ); ( − 1 2 , − 3 2 {\displaystyle -{\frac {1}{2}},-{\frac {\sqrt {3}}{2}}} );
    • четвертый квадрант: ( 1 2 , − 3 2 {\displaystyle {\frac {1}{2}},-{\frac {\sqrt {3}}{2}}} ); ( 2 2 , − 2 2 {\displaystyle {\frac {\sqrt {2}}{2}},-{\frac {\sqrt {2}}{2}}} ); ( 3 2 , − 1 2 {\displaystyle {\frac {\sqrt {3}}{2}},-{\frac {1}{2}}} ).

  • В этой статье собраны таблицы синусов, косинусов, тангенсов и котангенсов . Сначала мы приведем таблицу основных значений тригонометрических функций, то есть, таблицу синусов, косинусов, тангенсов и котангенсов углов 0, 30, 45, 60, 90, …, 360 градусов (0, π/6, π/4, π/3, π/2, …, 2π радиан). После этого мы дадим таблицу синусов и косинусов, а также таблицу тангенсов и котангенсов В. М. Брадиса, и покажем, как использовать эти таблицы при нахождении значений тригонометрических функций.

    Навигация по странице.

    Таблица синусов, косинусов, тангенсов и котангенсов для углов 0, 30, 45, 60, 90, … градусов

    Список литературы.

    • Алгебра: Учеб. для 9 кл. сред. шк./Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, С. Б. Суворова; Под ред. С. А. Теляковского.- М.: Просвещение, 1990.- 272 с.: ил.- ISBN 5-09-002727-7
    • Башмаков М. И. Алгебра и начала анализа: Учеб. для 10-11 кл. сред. шк. - 3-е изд. - М.: Просвещение, 1993. - 351 с.: ил. - ISBN 5-09-004617-4.
    • Алгебра и начала анализа: Учеб. для 10-11 кл. общеобразоват. учреждений / А. Н. Колмогоров, А. М. Абрамов, Ю. П. Дудницын и др.; Под ред. А. Н. Колмогорова.- 14-е изд.- М.: Просвещение, 2004.- 384 с.: ил.- ISBN 5-09-013651-3.
    • Гусев В. А., Мордкович А. Г. Математика (пособие для поступающих в техникумы): Учеб. пособие.- М.; Высш. шк., 1984.-351 с., ил.
    • Брадис В. М. Четырехзначные математические таблицы: Для общеобразоват. учеб. заведений. - 2-е изд. - М.: Дрофа, 1999.- 96 с.: ил. ISBN 5-7107-2667-2


    Понравилась статья? Поделитесь с друзьями!