Система рациональных уравнений как решать. Квадратное уравнение и квадратный трехчлен

I. Рациональные уравнения.

1) Линейные уравнения.

2) Системы линейных уравнений.

3) Квадратные уравнения и уравнения, сводящиеся к ним.

4) Возвратные уравнения.

5) Формула Виета для многочленов высших степеней.

6) Системы уравнений второй степени.

7) Метод введения новых неизвестных при решении уравнений и систем уравнений.

8) Однородные уравнения.

9) Решение симметрических систем уравнений.

10) Уравнения и системы уравнений с параметрами.

11) Графический метод решения систем нелинейных уравнений.

12) Уравнения, содержащие знак модуля.

13) Основные методы решения рациональных уравнений

II. Рациональные неравенства.

1) Свойства равносильных неравенств.

2) Алгебраические неравенства.

3) Метод интервалов.

4) Дробно-рациональные неравенства.

5) Неравенства, содержащие неизвестное под знаком абсолютной величины.

6) Неравенства с параметрами.

7) Системы рациональных неравенств.

8) Графическое решение неравенств.

III. Проверочный тест.

Рациональные уравнения

Функция вида

P(x) = a 0 x n + a 1 x n – 1 + a 2 x n – 2 + … + a n – 1 x + a n ,

где n - натуральное, a 0 , a 1 ,…, a n - некоторые действительные числа, называется целой рациональной функцией.

Уравнение вида P(x) = 0, где P(x) - целая рациональная функция, называется целым рациональным уравнением.

Уравнение вида

P 1 (x) / Q 1 (x) + P 2 (x) / Q 2 (x) + … + P m (x) / Q m (x) = 0,

где P 1 (x), P 2 (x), … ,P m (x), Q 1 (x), Q 2 (x), …, Q m (x) - целые рациональные функции, называется рациональным уравнением.

Решение рационального уравнения P (x) / Q (x) = 0, где P (x) и Q (x) - многочлены (Q (x) ¹ 0), сводится к решению уравнения P (x) = 0 и проверке того, что корни удовлетворяют условию Q (x) ¹ 0.

Линейные уравнения.

Уравнения вида ax+b=0, где a и b - некоторые постоянные, называется линейным уравнением.

Если a¹0, то линейное уравнение имеет единственный корень:x = -b /a.

Если a=0; b¹0, то линейное уравнение решений не имеет.

Если a=0; b=0, то, переписав исходное уравнение в виде ax = -b, легко видеть, что любое x является решением линейного уравнения.

Уравнение прямой имеет вид: y = ax + b.

Если прямая проходит через точку с координатами X 0 и Y 0 , то эти координаты удовлетворяют уравнению прямой, т. е. Y 0 = aX 0 + b.

Пример 1.1 . Решить уравнение

2x – 3 + 4(x – 1) = 5.

Решение. Последовательно раскроем скобки, приведём подобные члены и найдём x: 2x – 3 + 4x – 4 = 5, 2x + 4x = 5 + 4 + 3,

Пример 1.2. Решить уравнение

2x – 3 + 2(x – 1) = 4(x – 1) – 7.

Решение. 2x + 2x – 4x = 3 +2 – 4 – 7, 0x = – 6.

Пример 1.3 . Решить уравнение.

2x + 3 – 6(x – 1) = 4(x – 1) + 5.

Решение. 2x – 6x + 3 + 6 = 4 – 4x + 5,

– 4x + 9 = 9 – 4x,

4x + 4x = 9 – 9,

Ответ: Любое число.

Системы линейных уравнений.

Уравнение вида

a 1 x 1 + a 2 x 2 + … + a n x n = b,

где a 1 , b 1 , … ,a n , b -некоторые постоянные, называется линейным уравнением с n неизвестными x 1 , x 2 , …, x n .

Система уравнений называется линейной, если все уравнения, входящие в систему, являются линейными. Если система из n неизвестных, то возможны следующие три случая:

1) система не имеет решений;

2) система имеет ровно одно решение;

3) система имеет бесконечно много решений.

Пример 2.4. решить систему уравнений

2x + 3y = 8,

Решение. Решить систему линейных уравнений можно способом подстановки, который состоит в том, что какого-либо уравнения системы выражают одно неизвестное через другие неизвестные, а затем подставляют значение этого неизвестного в остальные уравнения.

Из первого уравнения выражаем:x= (8 – 3y) / 2. Подставляем это выражение во второе уравнение и получаем систему уравнений


Решение. Система не имеет решений, так как два уравнения системы не могут удовлетворяться одновременно (из первого уравнения x + y = 3, а из второго x + y = 3,5).

Ответ: Решений нет.

Пример 2.6. решить систему уравнений


Решение. Система имеет бесконечно много решений, так как второе уравнение получается из первого путём умножения на 2 (т.е. фактически есть всего одно уравнение с двумя неизвестными).

Ответ: Бесконечно много решений.

Пример 2.7. решить систему уравнений

x + y – z = 2,

2x – y + 4z = 1,

– x + 6y + z = 5.

Решение. При решении систем линейных уравнений удобно пользоваться методом Гаусса, который состоит в преобразовании системы к треугольному виду.

Умножаем первое уравнение системы на – 2 и, складывая полученный результат со вторым уравнением, получаем – 3y + 6z = – 3. Это уравнение можно переписать в виде y – 2z = 1. Складывая первое уравнение с третьим, получаем 7y = 7, или y = 1.

Таким образом, система приобрела треугольный вид


x + y – z = 2,

Подставляя y = 1 во второе уравнение, находим z = 0. Подставляя y =1 и z = 0 в первое уравнение, находим x = 1.

Ответ: (1; 1; 0).

Пример 2.8. при каких значениях параметра a система уравнений

2x + ay = a + 2,

(a + 1)x + 2ay = 2a + 4

имеет бесконечно много решений?

Решение. Из первого уравнения выражаем x:

x = – (a / 2)y + a / 2 +1.

Подставляя это выражение во второе уравнение, получаем

(a + 1)(– (a / 2)y + a / 2 +1) + 2ay = 2a + 4.

(a + 1)(a + 2 – ay) + 4ay = 4a + 8,

4ay – a(a + 1)y = 4(a + 2) – (a + 1)(a + 2),

ya(4 – a – 1) = (a + 2)(4 – a – 1),

ya(3 – a) = (a + 2)(3 – a).

Анализируя последнее уравнение, отметим, что при a = 3 оно имеет вид 0y = 0, т.е. оно удовлетворяется при любых значениях y.

Квадратные уравнения и уравнения, сводящиеся к ним.

Уравнение вида ax 2 + bx + c = 0, где a, b и c - некоторые числа (a¹0);

x - переменная, называется квадратным уравнением.

Формула решения квадратного уравнения.

Сначала разделим обе части уравнения ax 2 + bx + c = 0 на a - от этого его корни не изменятся. Для решения получившегося уравнения

x 2 + (b / a)x + (c / a) = 0

выделим в левой части полный квадрат

x 2 + (b / a) + (c / a) = (x 2 + 2(b / 2a)x + (b / 2a) 2) – (b / 2a) 2 + (c / a) =

= (x + (b / 2a)) 2 – (b 2) / (4a 2) + (c / a) = (x + (b / 2a)) 2 – ((b 2 – 4ac) / (4a 2)).

Для краткости обозначим выражение (b 2 – 4ac) через D. Тогда полученное тождество примет вид

Возможны три случая:

1) если число D положительно (D > 0), то в этом случае можно извлечь из D квадратный корень и записать D в виде D = (ÖD) 2 . Тогда

D / (4a 2) = (ÖD) 2 / (2a) 2 = (ÖD / 2a) 2 , потому тождество принимает вид

x 2 + (b / a)x + (c / a) = (x + (b / 2a)) 2 – (ÖD / 2a) 2 .

По формуле разности квадратов выводим отсюда:

x 2 + (b / a)x + (c / a) = (x + (b / 2a) – (ÖD / 2a))(x + (b / 2a) + (ÖD / 2a)) =

= (x – ((-b + ÖD) / 2a)) (x – ((– b – ÖD) / 2a)).

Теорема : Если выполняется тождество

ax 2 + bx + c = a(x – x 1)(x – x 2),

то квадратное уравнение ax 2 + bx + c = 0 при X 1 ¹ X 2 имеет два корня X 1 и X 2 , а при X 1 = X 2 - лишь один корень X 1 .

В силу этой теоремы из, выведенного выше, тождества следует, что уравнение

x 2 + (b / a)x + (c / a) = 0,

а тем самым и уравнение ax 2 + bx + c = 0, имеет два корня:

X 1 =(-b + Ö D) / 2a; X 2 = (-b - Ö D) / 2a.

Таким образом x 2 + (b / a)x + (c / a) = (x – x1)(x – x2).

Обычно эти корни записывают одной формулой:

где b 2 – 4ac = D.

2) если число D равно нулю (D = 0), то тождество

x 2 + (b / a)x + (c / a) = (x + (b / 2a)) 2 – (D / (4a 2))

принимает вид x 2 + (b / a)x + (c / a) = (x + (b / 2a)) 2 .

Отсюда следует, что при D = 0 уравнение ax 2 + bx + c = 0 имеет один корень кратности 2: X 1 = – b / 2a

3) Если число D отрицательно (D < 0), то – D > 0, и потому выражение

x 2 + (b / a)x + (c / a) = (x + (b / 2a)) 2 – (D / (4a 2))

является суммой двух слагаемых, одно из которых неотрицательно, а другое положительно. Такая сумма не может равняться нулю, поэтому уравнение

x 2 + (b / a)x + (c / a) = 0

не имеет действительных корней. Не имеет их и уравнение ax 2 + bx + c = 0.

Таким образом, для решения квадратного уравнения следует вычислить дискриминант

D = b 2 – 4ac.

Если D = 0, то квадратное уравнение имеет единственное решение:

Если D > 0, то квадратное уравнение имеет два корня:

X 1 =(-b + ÖD) / (2a); X 2 = (-b - ÖD) / (2a).

Если D < 0, то квадратное уравнение не имеет корней.

Если один из коэффициентов b или c равен нулю, то квадратное уравнение можно решать, не вычисляя дискриминанта:

1) b = 0; c ¹ 0; c / a <0; X1,2 = ±Ö(-c / a)

2) b ¹ 0; c = 0; X1 = 0, X2= -b / a.

Корни квадратного уравнения общего вида ax 2 + bx + c = 0 находятся по формуле

Соблюдение Вашей конфиденциальности важно для нас. По этой причине, мы разработали Политику Конфиденциальности, которая описывает, как мы используем и храним Вашу информацию. Пожалуйста, ознакомьтесь с нашими правилами соблюдения конфиденциальности и сообщите нам, если у вас возникнут какие-либо вопросы.

Сбор и использование персональной информации

Под персональной информацией понимаются данные, которые могут быть использованы для идентификации определенного лица либо связи с ним.

От вас может быть запрошено предоставление вашей персональной информации в любой момент, когда вы связываетесь с нами.

Ниже приведены некоторые примеры типов персональной информации, которую мы можем собирать, и как мы можем использовать такую информацию.

Какую персональную информацию мы собираем:

  • Когда вы оставляете заявку на сайте, мы можем собирать различную информацию, включая ваши имя, номер телефона, адрес электронной почты и т.д.

Как мы используем вашу персональную информацию:

  • Собираемая нами персональная информация позволяет нам связываться с вами и сообщать об уникальных предложениях, акциях и других мероприятиях и ближайших событиях.
  • Время от времени, мы можем использовать вашу персональную информацию для отправки важных уведомлений и сообщений.
  • Мы также можем использовать персональную информацию для внутренних целей, таких как проведения аудита, анализа данных и различных исследований в целях улучшения услуг предоставляемых нами и предоставления Вам рекомендаций относительно наших услуг.
  • Если вы принимаете участие в розыгрыше призов, конкурсе или сходном стимулирующем мероприятии, мы можем использовать предоставляемую вами информацию для управления такими программами.

Раскрытие информации третьим лицам

Мы не раскрываем полученную от Вас информацию третьим лицам.

Исключения:

  • В случае если необходимо - в соответствии с законом, судебным порядком, в судебном разбирательстве, и/или на основании публичных запросов или запросов от государственных органов на территории РФ - раскрыть вашу персональную информацию. Мы также можем раскрывать информацию о вас если мы определим, что такое раскрытие необходимо или уместно в целях безопасности, поддержания правопорядка, или иных общественно важных случаях.
  • В случае реорганизации, слияния или продажи мы можем передать собираемую нами персональную информацию соответствующему третьему лицу – правопреемнику.

Защита персональной информации

Мы предпринимаем меры предосторожности - включая административные, технические и физические - для защиты вашей персональной информации от утраты, кражи, и недобросовестного использования, а также от несанкционированного доступа, раскрытия, изменения и уничтожения.

Соблюдение вашей конфиденциальности на уровне компании

Для того чтобы убедиться, что ваша персональная информация находится в безопасности, мы доводим нормы соблюдения конфиденциальности и безопасности до наших сотрудников, и строго следим за исполнением мер соблюдения конфиденциальности.

Глава 4. Системы рациональных уравнений

Четвёртая глава посвящена изучению способов решения систем рациональных уравнений. Здесь используются понятия, изученные в 7 классе и применявшиеся ранее к системам линейных уравнений, что даёт возможность повторить изученное и научится действовать в новой ситуации. Это понятия: решения уравнения с двумя (тремя) неизвестными, системы уравнений с двумя (тремя) неизвестными, понятие равносильности уравнений, систем уравнений.

Цель изучения главы 4: усвоить перечисленные понятия, научиться решать системы рациональных уравнений и применять их к решению текстовых задач.

§ 9. Системы рациональных уравнений

Основная цель девятого параграфа заключается в том, чтобы, опираясь на известные понятия, связанные с уравнениями и системами линейных уравнений, научится решать системы рациональных уравнений, научиться применять их к решению текстовых задач.

9.1. Понятие системы рациональных уравнений

В данном пункте вводятся понятия рационального уравнения с двумя (тремя) неизвестными и его решения, определяется, что значит решить систему уравнений, приводятся утверждения о равносильности систем уравнений.

Основными заданиями данного пункта являются задания на установление того, что данная пара (тройка) чисел является решением системы. Дополнительное задание приучает учащихся к решению задач с параметрами.

Задание для повторения. 805–807.

Решения и комментарии

500. Является ли решением системы уравнений пара чисел:

а) (0; 3); б) (–3; 2).

Решение. а) Так как 0 + 5 3, то пара чисел (0; 3) не является решением вто-рого уравнения системы, а значит, не является и решением системы уравнений.

б) Так как –3 + 5 = 2, (–3) 2 + (–3)2 – 3 = 0, то пара чисел (–3; 2) является решением системы уравнений.

501. Является ли решением системы уравнений
тройка чисел:

а) (1; –1; 1); б) (1; 1; 1).

Решение. а) Так как 1 – 1 + 1 3, то тройка чисел (1; –1; 1) не является решением первого уравнения системы, а значит, не является и решением системы уравнений.

б) Так как 1 + 1 + 1 = 3, 1 –1 – 1 –2, то тройка чисел (1; 1; 1) не является решением второго уравнения системы, а значит, не является решением системы уравнений.

Дополнительное задание

1. При каком значении a пара чисел (2; –1) является решением системы уравнений

Решение. Пусть a - некоторое число, для которого пара чисел (2; –1) является решением системы уравнений, тогда верны два числовых равенства:

1) 2a 2 + a = 21 и 2) 10 + a = a 2 + 4,

которые можно рассматривать как уравнения относительно a . Уравнение 2) имеет два корня: a 1 = 3 или a 2 = –2. Число a 1 является корнем уравнения 1), а число a 2 = –2 - нет, следовательно, при a = 3 пара чисел (2; –1) является решением системы уравнений. И других значений а , удовлетворяющих условию задачи, нет.

9.2. Способ подстановки решения систем рациональных уравнений

В данном пункте на трёх примерах показано, как можно решать способом подстановки рациональных уравнений, в которых имеется хотя бы одно уравнение первой.

Задание для повторения. При изучении данного пункта можно использовать задание 810.

Решения и комментарии

512. Решите систему уравнений:

г)
д)

Решение. г) Выразив x через y из второго уравнения системы и подставив y + 1 вместо x

(1)

Теперь, решив первое уравнение системы (1), найдём два его корня y 1 = –4 и y 2 = 3. Из второго уравнения системы (1) получим соответствующие им значения x : x 1 = –3 и x 2 = 4.

д) Выразив y через x из второго уравнения системы и подставив 3 – 3x вместо y в первое уравнение, перепишем систему в виде:

(2)

Теперь, решив первое уравнение системы (2), найдём два его корня x 1 = и
x 2 = . Из второго уравнения системы (2) получим соответствующие им значения y : y 1 = – и y 2 = 2.

Ответ. г) (–3; –4), (4; 3); д) (; –), (; 2).

Промежуточный контроль. С-21.

9.3. Другие способы решения систем рациональных уравнений

В данном пункте разобраны примеры решения систем рациональных уравнений - способом сложения уравнений, способом введения новых неизвестных, способом выделения полных квадратов, способом разложения на множители. При этом используются равносильные преобразования уравнений. Иногда решению системы помогает знание того, что сумма квадратов двух чисел равна нулю тогда и только тогда, когда эти числа нули.

Задание для повторения. При изучении данного пункта можно использовать задание 820.

Решения и комментарии

517. Решите систему уравнений:

в)
д)

Решение. в) Заменим в системе первое уравнение суммой двух уравнений этой системы. Получим систему, равносильную исходной системе:

(1)

Теперь выделим полные квадраты в первом уравнении системы (1):

(2)

Так как сумма квадратов двух чисел равна нулю тогда и только тогда, когда эти числа нули, то первое уравнение системы (2) имеет единственное решение (2; –6). Эта пара чисел является решением второго уравнения системы (2), следовательно, она является решением системы (2) и равносильной ей исходной системы.

д) Сделаем замену неизвестных: a = и b = . Перепишем систему в виде:

(3)

Система (3) имеет единственное решение: a 1 = 1, b 1 = . Следовательно, система д) также имеет единственное решение: x 1 = 1, y 1 = 2.

Ответ. в) (2; –6); д) (1; 2).

512. ж) Решите систему уравнений

Решение. Обычно решение такой системы записывают, заменяя данную систему равносильными ей системами:





(4)

Знаки равносильности () поставлены для учителя, но в классе с углублён-ным изучением математики его вполне можно использовать.

Решениями второго уравнения последней из систем (4) являются такие пары чисел (x ; y ), которые являются решениями хотя бы одного из уравнений:

1) x + y = 1 и 2) x + y = –1.

Поэтому все решения исходной системы есть объединение всех решений двух систем:

3)
и 4)

Решив системы 3) и 4) получим все решения исходной системы: (–1; 2), (2; –1), (1; –2), (–2; 1).

Ответ. (–1; 2), (2; –1), (1; –2), (–2; 1).

518. Решите систему уравнений:

а)
в)
ж)

Решение. а) Введя новое неизвестное a = x 2 – 4y
. Оно имеет единственный корень a = 1. Это означает, что данная система равносильна системе

(5)

Сложив уравнения системы (5) и заменив полученным уравнением первое уравнение системы, получим новую систему, равносильную системе (5), а значит, и исходной системе:

(6)

Выделив в первом уравнении системы (6) полные квадраты, перепишем систему (6) в виде:

(7)

Теперь очевидно, что первое уравнение системы (7) имеет единственное решение: x 1 = 3, y 1 = 2. Проверка показывает, что эта пара чисел является решением второго уравнения системы (7), а значит, она является решением системы (7) и равносильной ей исходной системе.

Итак, исходная система имеет единственное решение (3; 2).

в) Введя новое неизвестное a =
, перепишем первое уравнение системы в виде:
. Оно имеет два корня: a 1 = 1 и a 2 = –4. Поэтому все решения исходной системы есть объединение всех решений двух систем:

1)
и 2)

Используя подстановку y = 9 – x , решим каждую из систем и получим, что система 1) имеет единственное решение (6; 3), а система 2) имеет единственное решение (14; –5).

Итак, исходная система имеет два решения: (6; 3), (14; –5).

ж) Перепишем систему в виде:

(8)

Если пара чисел (x 0 ; y 0) - решение системы (8), то верны числовые равенства: x 0 (9x 0 + 4y 0) = 1 и y 0 (9x 0 + 4y 0) = –2. Заметим, что обе части этих числовых равенств не нули, поэтому разделив первое равенство на второе почленно, получим новое числовое равенство:
. Откуда следует, что y 0 = –2x 0 . То есть искомые решения системы (8) являются решениями системы

(9)

Решив систему (9), получим два её решения: (1; –2), (–1; 2).

Проверкой убеждаемся, что обе эти пары чисел действительно являются решениями исходной системы.

Ответ. а) (3; 2); в) (6; 3), (14; –5); ж) (1; –2), (–1; 2).

Замечание. Отметим, что мы не доказали в процессе решения задания ж) равносильность системы (9) исходной системе, но из проведённого рассуждения следует, что любое решение исходной системы является решением системы (9) (т. е. система (9) является следствием исходной системы), поэтому необходимо проверить, является ли каждое решение системы (9) решением исходной системы. И эта проверка является обязательной частью решения системы.

На самом деле система (9) равносильна исходной системе, что следует из утверждения, доказанного ниже.

Дополнительные задания

1. Решите систему уравнений

а)
б)

в)
г)

Решение. а) Выделив полные квадраты в первом уравнении, перепишем его в виде:

(x – 3) 2 + (y – 1) 2 = 0. (1)

Теперь очевидно, что первое уравнение системы имеет единственное решение: x 1 = 3, y 1 = 1. Проверкой убеждаемся, что эта пара является решением второго уравнения, а значит, и решением системы уравнений.

б) Рассуждая аналогично, получим единственное решение системы (–2, 0,5).

в) Разложим левую часть первого уравнения системы на множители:

x 2 – 7xy + 12y 2 = x 2 – 3xy – 4xy + 12y 2 = x (x – 3y ) – 4y (x – 3y ) = (x – 3y )(x – 4y ).

Перепишем данную систему в виде

(2)

Теперь очевидно, что все решения системы (2) есть объединение всех решений двух систем:

1)
и 2)

Система 1) имеет два решения: (3; 1), (–3; –1). Система 2) также имеет два решения: (12; 3), (–12; –3). Следовательно, исходная система имеет четыре решения: (3; 1), (–3; –1), (12; 3), (–12; –3).

г) Перепишем исходную систему в виде:

(3)

Очевидно, что первое уравнение системы (3) имеет единственное решение:
(3; –2). Проверка показывает, что оно является оно также и решением второго уравнения системы (3), следовательно, система (3), а значит, и исходная система имеют единственное решение (3; –2).

Ответ. а) (3; 1); б) (–2, 0,5); в) (3; 1), (–3; –1), (12; 3), (–12; –3); г) (3; –2).

2. Докажите утверждение: если f (x , y ) и g (x , y ) - многочлены относительно x и y , a и b - числа, b 0, то равносильны системы 1)
и 2)

Доказательство. 1. Пусть пара чисел (x 0 ; y 0) - решение системы 1), тогда верны числовые равенства: f (x 0 , y 0) = a и g (x 0 , y 0) = b . Так как b 0, то и g (x 0 , y 0) 0, поэтому верно числовое равенство:
. Это означает, что любое решение системы 1) является решением системы 2).

2. Пусть теперь пара чисел (x 0 ; y 0) - решение системы 2), тогда верны числовые равенства: и g (x 0 , y 0) = b . Так как b 0, то и g (x 0 , y 0) 0, поэтому умножив обе части первого числового равенства на равные отличные от нуля числа g (x 0 , y 0) и b , получим новое верное числовое равенство: f (x 0 , y 0) = a . Это означает, что любое решение системы 2) является решением системы 1).

3. Предположим, что система 1) не имеет решения, а система 2) имеет решение. Тогда из п. 2. доказательства, проведённого выше, следует, что система 1) имеет решение. Полученное противоречие показывает, что сделанное предположение неверно. Значит, если система 1) не имеет решения, то и система 2) не имеет решения.

Аналогично доказывается, что если система 2) не имеет решения, то и система 1) не имеет решения.

Из приведённого выше доказательства следует, что системы 1) и 2) равносильны, что и требовалось доказать.

Приведём пример решения системы 518, ж с помощью этого утверждения.






Решив последнюю систему, получим два её решения: (1; –2), (–1; 2), следова-тельно, исходная система имеет два решения: (1; –2), (–1; 2).

3. Решите систему уравнений:

а)
б) в)

Решение. а) Исходная система равносильна системе

которую перепишем в виде:

(4)

Система (4) имеет единственное решение (1; 2). Следовательно, и исходная система имеет единственное решение (1; 2).

б) Исходную систему перепишем в виде

Эта система равносильна системе:

(5)

Система (5) имеет единственное решение (–1; –5). Следовательно, и исходная система имеет единственное решение (–1; –5).

в) Исходная система равносильна системе

или системе

(6)

Система (6) имеет два решения (1; 2; –2), (–1; –2; 2). Следовательно, и исходная система имеет два решения (1; 2; –2), (–1; –2; –2).

Ответ. а) (1; 2); б) (–1; –5); в) два решения (1; 2; –2), (–1; –2; –2).

Промежуточный контроль. С-22, С-23, С–24*.

9.4. Решение задач при помощи систем рациональных уравнений

В данном пункте разобраны решения текстовых задач, приводящие к системам рациональных уравнений. Начать объяснение нового материала можно с более простых задач 513, 514, 519, 520 .

Задание для повторения. При изучении данного пункта можно использовать задание 820, 952.

Решения и комментарии

513. а) Разложите число 171 на два множителя, сумма которых была бы равна 28.

Решение. Пусть x - первый множитель, y - второй множитель. Составим систему уравнений:

Решив систему, получим два её решения: x 1 = 9, y 1 = 19 и x 2 = 19, y 2 = 9. Порядок множителей здесь не важен, поэтому искомые множители 9 и 19.

Ответ. 9 и 19.

519. а) Если к квадрату первого числа прибавить удвоенное второе число, то получится (–7), а если из первого числа вычесть второе, то получится 11. Найдите эти числа.

Решение. Пусть x - первое число, y - второе число. По условиям задачи составим два уравнения: x 2 + 2y = –7 и x y = 11. Решив систему этих уравнений, получим два её решения: (–5; –16), (3; –8).x = 6 и y = 4, то есть искомое число 64.

Ответ. 64.

522. б) Двое рабочих, работая вместе, выполнили всю работу за 5 дней. Если бы первый рабочий работал в два раза быстрее, а второй - в два раза медленнее, то всю работу они выполнили бы за 4 дня. За сколько дней выполнил бы эту работу первый рабочий?

Решение. I способ. Пусть за x и y дней выполнят всю работу первый и второй рабочий соответственно. При совместной работе они выполнят работу за 5 дней. Составим первое уравнение:
.

Если бы первый работал в 2 раза быстрее, а второй ― в 2 раза медленнее, то в день они выполняли бы и всей работы соответственно и всю работу выполнили бы за 4 дня. Составим второе уравнение:

.

952. Если продать 20 коров, то заготовленного сена хватит на десять дней дольше, если же прикупить 30 коров, то запас сена исчерпается десятью днями раньше. Сколько было коров и на сколько дней заготовлено сена?

Решение. Пусть для x коров заготовлено сена на y дней. Запишем кратко условие задачи:

число коров число дней


Так как при постоянном запасе сена число дней обратно пропорционально числу коров, то составим первое уравнение:
.

Аналогично составим второе уравнение:
.

Система этих уравнений имеет единственное решение: x = 120, y = 50. То есть для 120 коров было запасено сена на 50 дней.

Ответ. Для 120 коров, на 50 дней.

Давыдова М.Г.

Учитель математики

МОУ «Гимназия № 5 г. Белгорода»

Тема урока: Рациональные уравнения.

Класс: 10 класс.

УМК : Алгебра и начала анализа: учеб. Для 10кл. общеобразоват. учреждений/[С.М.Никольский, М.К. Потапов.].-5-е изд., доп.-М.: Просвещение, 2006.-432с. Стр.65-74., 45-47.

Цели урока:

Образовательная: систематизировать и обобщить известные из основной школы сведения о рациональных выражениях; показать способы решения рациональных уравнений;

Развивающая: расширить и углубить изучение различных видов рациональных уравнений разнообразными методами.

Воспитывающая: показать значимость изучаемой темы в разделе математика.

Тип урока: урок- лекция.

Структура урока:

  1. Постановка цели урока (1мин).
  2. Подготовка к изучению нового материала(2 мин).
  3. 3.Ознакомление с новым материалом(38мин).
  4. 4.Итог урока.(2 мин)
  5. 5.Домашнее задание (2 мин)

Оборудование урока: интерактивная доска, проектор, компьютер.

Ход урока:

План.

1. Рациональные выражения.

2. Рациональные уравнения.

3.Системы рациональных уравнений.

I . Повторение.

Алгебра возникла из решения практических задач с помощью уравнений. Цели алгебры оставались неизменными на протяжении тысячелетий- решались уравнения: сначала линейные, потом квадратные, а там и уравнения еще больших степеней. Но форма, в которой излагались алгебраические результаты, менялись до неузнаваемости.

Уравнение- это самая распространенная форма математической задачи. Учение об уравнениях является главным содержанием школьного курса алгебры. Для решения уравнений нужно уметь производить действия над одночленами, многочленами алгебраическими дробями, уметь производить разложение на множители, раскрывать скобки и т. д. Нужно привести свои знания в порядок. Мы начнем повторение с понятия «рациональные выражения». Сообщение ученика о рациональных выражениях известных из основной школы. Таким образом, учение об уравнениях невозможно без учения о законах действий.

II. Основная часть.

Главное в понятии уравнения – это постановка вопроса о его решении. Уравнение, левая и правая части которого есть рациональные выражения относительно х, называют рациональным уравнением с неизвестным х.

Например, уравнения 5х 6 - 9х 5 + 4х - Зх + 1 = 0, являются рациональными.

Корнем (или решением) уравнения с неизвестным х называют число, при подстановке которого в уравнение вместо х получается верное числовое равенство.

Решить уравнение - значит найти все его корни или показать, что их нет. При решении рациональных уравнений приходится умножать и делить обе части уравнения на не равное нулю число, переносить члены уравнения из одной части в другую, применять правила сложения и вычитания алгебраических дробей. В результате будет получаться уравнение, равносильное предшествующему, т. е. уравнение, имеющее те же корни, и только их.

Перечислим стандартные уравнения, которые были нами изучены. Ответы учащихся.(линейное уравнение, квадратное уравнение, простейшее степенное уравнение х n =а). Преобразование уравнений к одному из стандартных является основным шагом в решении уравнения. Полностью алгоритмизировать процесс преобразования нельзя, однако полезно запомнить некоторые приемы, общие для всех типов уравнений.

1).Уравнение вида А(х) В(х) = О, где А(х) и В(х) - многочлены относительно х, называют распадающимся уравнением .

Множество всех корней распадающегося уравнения есть объединение множеств всех корней двух уравнений А(х)=0 и В(х)=0. К уравнениям вида А(х)=0 применяется метод разложения на множители. Суть этого метода: нужно решить уравнение А(х)=0, где А(х)=А 1 (х)А 2 (х)А 3 (х). Уравнение А(х)=0 заменяют совокупностью простых уравнений: А 1 (х)=0,А 2 (х)=0,А 3 (х)=0. Находят корни уравнений этой совокупности и делают проверку. Метод разложения на множители используется в основном для рациональных и тригонометрических уравнений.

ПРИМЕР 1.

Решим уравнение (х 2 - 5х + 6) (х 2 + х - 2) = 0.

Уравнение распадается на два уравнения.

х 2 - 5х + 6 = 0 х 1 = 2 и х 2 = 3

х 2 + х - 2 = 0. х 3 = -2 и х 4 = 1

Значит, уравнение исходное имеет корни х 1 = 2, х 2 = 3, х 3 = -2, х 4 =1.

Ответ. -2; 1; 2; 3.

ПРИМЕР. Решим уравнение х 3 -7х+6=0.

х 3 -х-6х+6=0

х(х 2 -1)-6(х-1)=0

х(х-1)(х+1)-6(х-1)=0

(х-1)(х(х+1)-6)=0

(х-1)(х 2 +х-6)=0

х-1=0 , х 1 =1; х 2 +х-6=0, х 2 =2,х 3 =-3.

Ответ:1;2;-3.

2).Уравнение вида , где А(х) и В(х) - многочлены относительно х.

ПРИМЕР 2.

Решим уравнение

Сначала решим уравнение

х 2 + 4х - 21 = 0. х 1 = 3 и х 2 = -7

Подставив эти числа в знаменатель левой части исходного уравнения, получим

х 1 2 - х 1 -6 = 9-3-6 = 0,

х 2 2 - х 2 - 6 = 49 + 7 - 6 = 50 ≠0.

Это показывает, что число х 1 = 3 не является корнем исходного уравнения, а число х 2 =- 7 - корень этого уравнения.

Ответ. -7.

3).Уравнение вида

где А(х), В(х), С(х) и D(х) - многочлены относительно х, обычно решают по следующему правилу.

Решают уравнение А(х) D(х) - С(х)·В(х) = 0 и отбирают из его корней те, которые не обращают в нуль знаменатель уравнения.

ПРИМЕР 3.

Решим уравнение

Решим уравнение

х 2 - 5х + 6 - (2х + 3) (х - 3) = 0.

х 2 + 2х - 15 = 0

х 1 = -5 и х 2 = 3.

Число х 1 не обращает в нуль знаменатель х - 3, а число х 2 обращает. Следовательно, уравнение имеет единственный корень = -5.

Ответ. -5.

Найти корни рационального уравнения часто помогает замена неизвестного. Умение удачно ввести новую переменную- важный элемент математической культуры. Удачный выбор новой переменной делает структуру уравнения более прозрачной.

ПРИМЕР 4.

Решим уравнение х 8 + 4х 6 -10х 4 + 4х 2 + 1 = 0.

Число х 0 = 0 не является корнем уравнения, поэтому уравнение равносильно уравнению

х 4 + 4х 2 - 10 + + =0

Обозначим t = ,тогда х 4 + =t 2 -2 ,

получаем t 2 + 4t - 12 = 0, х 1 = 2 и х 2 = -6.

Следовательно, корни уравнения найдем, объединив все корни двух уравнений: =2, и =-6,

Первое уравнение имеет два корня -1 и 1, а второе уравнение не имеет действительных корней, поэтому уравнение имеет только два корня: -1 и 1. Ответ. -1; 1.

4). Симметрические уравнения.

Многочлен от нескольких переменных называют симметрическим многочленом, если его вид не изменяется при любой перестановке этих переменных.

Например, многочлены х + у, а 2 + b 2 - 1, zt и 5а 3 + 6ab + 5b 3 - симметрические многочлены от двух переменных, а многочлены х + у + г, а 3 + b 3 + с 3 , - симметрические многочлены от трех переменных.

В то же время многочлены х - у, а 2 –b 2 и а 3 + аb – b 3 - не симметрические многочлены.

Уравнение ax 4 +bx 3 +cx 2 +bx+a=0, где а R/ ,b R, с R называется симметрическим уравнением четвертой степени. Чтобы решить это уравнение необходимо:

1).Поделить обе части уравнения на х 2 и сгруппировать полученные выражения: .

2).Введение переменной уравнение приводится к квадратному.

Пример.

Решите уравнение х 4 +5х 3 +4х 2 -5х+1=0.

Число 0 не является корнем уравнения. Поделим обе части уравнения на х 2 ≠0.

Ответ. .

Системы рациональных уравнений.

Системы уравнений появляются при решении задач, в которых неизвестными являются несколько величин. Эти величины связаны определенной зависимостью, которые записываются в виде уравнений.

Уравнение, левая и правая части которого есть рациональные выражения относительно х и у, называют рациональным уравнением с двумя неизвестными х и у.

Если надо найти все пары чисел х и у, каждая из которых является решением каждого из данных уравнений с двумя неизвестными х и у, то говорят, что надо решить систему уравнений с двумя неизвестными х и у и каждую такую пару называют решением этой системы.

Неизвестные могут обозначаться и другими буквами. Аналогично определяется система уравнений, число неизвестных в которой больше двух.

Если каждое решение первой системы уравнений является решением второй системы, а каждое решение второй системы уравнений является решением первой системы, то такие системы называют равносильными. В частности, равносильными считаются две системы, не имеющие решений.

Например, равносильны системы

1). Способ подстановки .

ПРИМЕР 1. Решим систему уравнений

Выразив у через х из первого уравнения системы, получим уравнение:

у = 3х - 1.

Решив уравнение 5x 2 -4(3x-1)+3(3x-1) 2 =9, найдем его корни х 1 = 1 и х 2 = . Подставив найденные числа х 1 и х 2 в уравнение у = 3х - 1 , получим у 1 = 2

и у = Следовательно, система имеет два решения: (1; 2) и (; )

Ответ. (1; 2), (; )

2). Метод алгебраического сложения.

ПРИМЕР 2. Решим систему уравнений

Оставив без изменения первое уравнение системы и сложив первое уравнение со вторым, получим систему равносильную системе.

Все решения системы есть объединение всех решений двух систем:

(2; 1), (-2; -1),

Ответ. (2; 1), (-2; -1), .

3). Метод введение новых неизвестных.

ПРИМЕР 3. Решим систему уравнений

Обозначив u = ху, v = х - у, перепишем систему в виде

Найдем ее решения: u 1 = 1, v 1 = 0 и u 2 = 5, v 2 = 4. Следовательно, все решения системы есть объединение всех решений двух систем:

Решив методом подстановки каждую из этих систем, найдем ее решения системы: (1; 1), (-1; -1), (5; 1), (-1; -5).

Ответ. (1; 1), (-1; -1), (5; 1), (-1; -5).

4). Уравнение вида ах 2 + bху + су 2 = 0, где а, b, с - данные неравные нулю числа, называют однородным уравнением относительно неизвестных х и у.

Рассмотрим систему уравнений, в котором есть однородное уравнение.

ПРИМЕР 4. Решим систему уравнений

Обозначив t = , перепишем первое уравнение системы в виде t 2 +4t+3=0.

Уравнение имеет два корня t 1 = -1 и t 2 = -3, поэтому все решения системы есть объединение всех решений двух систем:

Решив каждую из этих систем, найдем все решения системы:

(2,5; -2,5), (0,5; -0,5), ,(1,5;-0,5).

Ответ. (2,5; -2,5), (0,5; -0,5), ,(1,5;-0,5).

При решении некоторых систем помогает знание свойств симметрических многочленов.

Пример.

Введем новые неизвестные α = х + у и β= ху, тогда, х 4 +у 4 = α 4 -4 α 2 β+2 β 2

Поэтому систему можно переписать в виде

Решим квадратное уравнение относительно β: β 1 =6, β 2 =44.

Следовательно, все решения системы являются объединением

всех решении двух систем:

Первая система имеет два решения х 1 = 2, у 1 = 3 и х 2 = 3, у 2 =2, а вторая система не имеет действительных решений. Следовательно, система имеет два решения: (х: 1 ; у 1 ) и (х 2 ;у 2 )

Ответ. (2; 3), (3; 2).

Сегодня мы подвели итоги изучения темы рациональные уравнения. Мы поговорили об общих идеях, общих методах, на которых основана вся школьная линия уравнений.

Выделили методы решения уравнений:

1) метод разложения на множители;

2) метод введения новых переменных.

Расширили представления о методах решения систем уравнений.

На следующих 4 уроках проведем практические занятия. Для этого необходимо выучить теоретический материал, и подобрать из учебника по 2 примера на рассмотренные методы решения уравнений и систем уравнений, на 6 уроке будет проведен семинар по этой теме, для этого необходимо подготовить вопросы: формула бинома Ньютона, решение симметрических уравнений 3,5 степени. Заключительный урок по этой теме - зачет.

Литература.

  1. Алгебра и начала анализа: учеб. Для 10кл. общеобразоват. учреждений/[С.М.Никольский, М.К. Потапов.].-5-е изд., доп.-М.: Просвещение, 2006.-432с. Стр.65-74., 45-47.
  2. Математика: тренировочные тематические задания повышенной сложности с ответами для подготовки к ЕГЭ и к другим формам выпускного и вступительного экзаменов/сост. Г.И.Ковалева, Т.И. Бузулина - Волгоград: Учитель,2009.-494с. – стр. 62-72,194-199.
  3. Титаренко А.М. Математика: т9-11 классы: 6000 задач и примеров/А.М. Титаренко.-М.:Эксмо,2007.-336с.

Много можно говорить об уравнениях. В этой области математики существуют вопросы, на которые математики еще не дали ответа. Возможно, кто-то из вас найдет ответы на эти вопросы.

Альберт Эйнштейн говорил: « Мне приходиться делить время между политикой и уравнениями. Однако уравнения, по-моему, гораздо важнее. Политика существует только для данного момента. А уравнения будут существовать вечно ».

Уроки 2-5 отводиться практическим занятиям. Основным видом занятий на этих уроках является самостоятельная работа учащихся по закреплению и углублению теоретического материала, изложенного на лекции. На каждом из них проводится повторение вопросов теории и опрос учащихся. На основе самостоятельной работы на уроке и дома обеспечивается повторение и усвоение вопросов теории, ведется целенаправленная работа по выработке умений и навыков решения задач различного уровня сложности, проводится опрос учащихся. Цель: закрепить и углубить теоретический материал изложенный на лекции, научиться применять его на практике, усвоить алгоритмы решения типовых примеров и задач, добиться, чтобы все учащиеся усвоили основное содержание изучаемого раздела на уровне программных требований.

На семинар отводится 6-й и 7-й уроки, причем целесообразно на 6-м уроке провести семинар, а 7-м- зачет.

План урока – семинара.

Цель: повторение, углубление и обобщение пройденного материала, отработать основные методы, способы и приемы решения математических задач, приобретение новых знаний, обучение самостоятельному применению знаний в нестандартных ситуациях.

1. В начале урока организуется программный контроль. Цель проведения работы- проверка сформированности умений и навыков выполнения несложных упражнений. В процессе фронтального опроса учеников, неверно указавших номер ответа, учитель выясняет, какие из заданий вызвали затруднение. Далее ведется устная или письменная работа по устранению ошибок. На проведение программированного контроля отводится не более 10 минут.

2. Дифференцированный опрос нескольких учащихся по вопросам теории.

3. Историческая справка о возникновении и развитии понятия уравнения (сообщение ученика). Формула бином Ньютона. Решение симметрических уравнений третьей степени, четвертой степени, пятой степени.

х 4 -2х 3 -х 2 -2х+1=0

2х 4 +х 3 -11х 2 +х+2=0

х 5 -х 4 -3х 3 -3х 2 -х+1=0

2х 5 +3х 4 -5х 3 -5х 2 +3х+2=0

4. Решение примеров, проверка готовности учащихся к выполнению контрольной работы – это одна из главных задач семинара.

Проведение зачета.

Проведение зачета не означает отказ от текущего контроля знаний учащихся. Оценки выставляются на практических и семинарских занятиях. На зачет выносятся некоторые типичные упражнения. Заранее ученикам сообщается, какой теоретический материал и упражнения будут представлены на зачете. Приведем содержание одной из карточек для проведения зачета по рассматриваемой теме.

1 уровень.

Решите уравнения: (х+3) 4 +(х 2 +х-6) 2 =2(х-2) 4

Х 2 +25 =24

(2х 2 -3х+1)(2х 2 -5х+1)=8х 2

2 уровень.

Решите уравнения: х 4 +8х 3 +8х 2 -32х-9=0

8х 3 -12х 2 +х-7=0

Предварительный просмотр:

Чтобы пользоваться предварительным просмотром презентаций создайте себе аккаунт (учетную запись) Google и войдите в него:

Уравнение» мы ввели выше в § 7. Сначала напомним, что такое рациональное выражение. Это - алгебраическое выражение, составленное из чисел и переменной х с помощью операций сложения, вычитания, умножения, деления и возведения в степень с натуральным показателем.

Если r(х) - рациональное выражение, то уравнение r(х) = 0 называют рациональным уравнением.

Впрочем, на практике удобнее пользоваться несколько более широким толкованием термина «рациональное уравнение»: это уравнение вида h(x) = q(x), где h(x) и q(x) - рациональные выражения.

До сих пор мы могли решить не любое рациональное уравнение, а только такое, которое в результате различных преобразований и рассуждений сводилось к линейному уравнению . Теперь наши возможности значительно больше: мы сумеем решить рациональное уравнение, которое сводится не только к линейно-
му, но и к квадратному уравнению.

Напомним, как мы решали рациональные уравнения раньше, и попробуем сформулировать алгоритм решения.

Пример 1. Решить уравнение

Решение. Перепишем уравнение в виде

При этом, как обычно, мы пользуемся тем, что равенства А = В и А - В = 0 выражают одну и ту же зависимость между А и В. Это и позволило нам перенести член в левую часть уравнения с противоположным знаком.

Выполним преобразования левой части уравнения. Имеем


Вспомним условия равенства дроби нулю: тогда, и только тогда, когда одновременно выполняются два соотношения:

1) числитель дроби равен нулю (а = 0); 2) знаменатель дроби отличен от нуля ).
Приравняв нулю числитель дроби в левой части уравнения (1), получим

Осталось проверить выполнение второго указанного выше условия. Соотношение означает для уравнения (1), что . Значения х 1 = 2 и х 2 = 0,6 указанным соотношениям удовлетворяют и потому служат корнями уравнения (1), а вместе с тем и корнями заданного уравнения.

1) Преобразуем уравнение к виду

2) Выполним преобразования левой части этого уравнения:

(одновременно изменили знаки в числителе и
дроби).
Таким образом, заданное уравнение принимает вид

3) Решим уравнение х 2 - 6x + 8 = 0. Находим

4) Для найденных значений проверим выполнение условия . Число 4 этому условию удовлетворяет, а число 2 - нет. Значит, 4 - корень заданного уравнения, а 2 - посторонний корень.
О т в е т: 4.

2. Решение рациональных уравнений методом введения новой переменной

Метод введения новой переменной вам знаком, мы не раз им пользовались. Покажем на примерах, как он применяется при решении рациональных уравнений.

Пример 3. Решить уравнение х 4 + х 2 - 20 = 0.

Решение. Введем новую переменную у = х 2 . Так как х 4 = (х 2) 2 = у 2 , то заданное уравнение можно переписать в виде

у 2 + у - 20 = 0.

Это - квадратное уравнение, корни которого найдем, используя известные формулы ; получим у 1 = 4, у 2 = - 5.
Но у = х 2 , значит, задача свелась к решению двух уравнений:
x 2 =4; х 2 =-5.

Из первого уравнения находим второе уравнение не имеет корней.
Ответ: .
Уравнение вида ах 4 + bx 2 +c = 0 называют биквадратным уравнением («би» - два, т. е. как бы «дважды квадратное» уравнение). Только что решенное уравнение было именно биквадратным. Любое биквадратное уравнение решается так же, как уравнение из примера 3: вводят новую переменную у = х 2 , решают полученное квадратное уравнение относительно переменной у, а затем возвращаются к переменной х.

Пример 4. Решить уравнение

Решение. Заметим, что здесь дважды встречается одно и то же выражение х 2 + Зх. Значит, имеет смысл ввести новую переменную у = х 2 + Зх. Это позволит переписать уравнение в более простом и приятном виде (что, собственно говоря, и составляет цель введения новой переменной - и запись упроща
ется, и структура уравнения становится более ясной):

А теперь воспользуемся алгоритмом решения рационального уравнения.

1) Перенесем все члены уравнения в одну часть:

= 0
2) Преобразуем левую часть уравнения

Итак, мы преобразовали заданное уравнение к виду


3) Из уравнения - 7у 2 + 29у -4 = 0 находим (мы с вами уже решили довольно много квадратных уравнений, так что всегда приводить в учебнике подробные выкладки, наверное, не стоит).

4) Выполним проверку найденных корней с помощью условия 5 (у - 3) (у + 1). Оба корня этому условию удовлетворяют.
Итак, квадратное уравнение относительно новой переменной у решено:
Поскольку у = х 2 + Зх, а у, как мы установили, принимает два значения: 4 и , - нам еще предстоит решить два уравнения: х 2 + Зх = 4; х 2 + Зх = . Корнями первого уравнения являются числа 1 и - 4, корнями второго уравнения - числа

В рассмотренных примерах метод введения новой переменной был, как любят выражаться математики, адекватен ситуации, т. е. хорошо ей соответствовал. Почему? Да потому, что одно и то же выражение явно встречалось в записи уравнения несколько раз и был резон обозначить это выражение новой буквой. Но так бывает не всегда, иногда новая переменная «проявляется» только в процессе преобразований. Именно так будет обстоять дело в следующем примере.

Пример 5. Решить уравнение
х(х- 1)(x-2)(x-3) = 24.
Решение. Имеем
х(х - 3) = х 2 - 3х;
(х - 1)(x - 2) = x 2 -Зx+2.

Значит, заданное уравнение можно переписать в виде

(x 2 - 3x)(x 2 + 3x + 2) = 24

Вот теперь новая переменная «проявилась»: у = х 2 - Зх.

С ее помощью уравнение можно переписать в виде у (у + 2) = 24 и далее у 2 + 2у - 24 = 0. Корнями этого уравнения служат числа 4 и -6.

Возвращаясь к исходной переменной х, получаем два уравнения х 2 - Зх = 4 и х 2 - Зх = - 6. Из первого уравнения находим х 1 = 4, х 2 = - 1; второе уравнение не имеет корней.

О т в е т: 4, - 1.

Содержание урока конспект урока опорный каркас презентация урока акселеративные методы интерактивные технологии Практика задачи и упражнения самопроверка практикумы, тренинги, кейсы, квесты домашние задания дискуссионные вопросы риторические вопросы от учеников Иллюстрации аудио-, видеоклипы и мультимедиа фотографии, картинки графики, таблицы, схемы юмор, анекдоты, приколы, комиксы притчи, поговорки, кроссворды, цитаты Дополнения рефераты статьи фишки для любознательных шпаргалки учебники основные и дополнительные словарь терминов прочие Совершенствование учебников и уроков исправление ошибок в учебнике обновление фрагмента в учебнике элементы новаторства на уроке замена устаревших знаний новыми Только для учителей идеальные уроки календарный план на год методические рекомендации программы обсуждения Интегрированные уроки

Понравилась статья? Поделитесь с друзьями!