Скорость распространения электрического поля. Чему равна скорость тока в проводнике

Давайте проведем такой мысленный эксперимент. Представьте, что на расстоянии в 100 километров от города находится некая деревня, и что из города в эту деревню проложена проводная сигнальная линия длиной примерно в 100 километров с лампочкой на конце. Линия экранированная двухпроводная, она проложена на опорах вдоль автомобильной дороги. И если теперь послать сигнал по этой линии из города в деревню, то через какое время он сможет быть там принят?

Расчеты и опыт говорят нам, что сигнал в виде засветившейся лампочки появится на другом конце минимум через 100/300000 секунд, то есть минимум через 333,3 мкс (без учета индуктивности провода) в деревне загорится лампочка, значит в проводнике установится ток (допустим, мы используем постоянный ток от ).

100 - это длина каждой из жил нашего провода в километрах, а 300000 километров в секунду - скорость света - скорость распространения в вакууме. Да, «движение электронов» распространится по проводнику со скоростью света.


Но тот факт, что электроны начинают приходить в движение друг за другом со скоростью света вовсе не означает, что сами электроны движутся в проводнике со столь огромной скоростью. Электроны или ионы, в металлическом проводнике, в электролите или в другой проводящей среде, не могут двигаться так быстро, то есть носители заряда не движутся друг относительно друга со скоростью света.

Скорость света в данном случае - это та скорость, с которой носители заряда в проводнике начинают друг за другом приходить в движение, то есть это скорость распространения поступательного движения носителей заряда. Сами же носители заряда имеют «дрейфовую скорость» при установившемся токе, скажем в медном проводнике, всего несколько миллиметров в секунду!

Поясним этот момент. Допустим, у нас есть заряженный конденсатор, и мы присоединяем к нему длинные провода от нашей лампочки, установленной в деревне на расстоянии в 100 километров от конденсатора. Присоединение проводов, то есть замыкание цепи осуществляем выключателем вручную.

Что произойдет? При замыкании выключателя начинается движение заряженных частиц в тех частях проводов, которые присоединены к конденсатору. Электроны покидают минусовую обкладку конденсатора, электрическое поле в диэлектрике конденсатора уменьшается, положительный заряд противоположной (плюсовой) обкладки уменьшается - на нее забегают электроны из присоединенного провода.

Так разность потенциалов между обкладками уменьшается. А так как электроны в прилегающих к конденсатору проводах начали двигаться, то на их места приходят другие электроны из отдаленных мест провода, иначе говоря начинается процесс перераспределения электронов в проводе из-за действия электрического поля в замкнутой цепи. Этот процесс распространяется все дальше и дальше по проводу и наконец достигает нити накаливания сигнальной лампы.

Итак, изменение электрического поля распространяется по проводнику со скоростью света, активируя электроны в цепи. Но сами электроны движутся гораздо медленнее.


Прежде чем пойти дальше, рассмотрим гидравлическую аналогию. Пусть из деревни в город по трубе подается минеральная вода. Утром в деревне запустили насос, и он стал повышать давление воды в трубе, чтобы заставить воду из деревенского источника двигаться в город. Изменение давления распространяется по трубопроводу очень быстро, примерно со скоростью 1400 км/с (зависит от плотности воды, от ее температуры, от величины давления).

Спустя долю секунды после пуска насоса в деревне, вода начала двигаться уже в городе. Но та же ли это вода, что движется в данный момент в деревне? Нет! Молекулы воды в нашем примере толкают друг друга, а сами движутся значительно медленнее, поскольку скорость их дрейфа зависит от величины напора. Толкотня молекул между собой распространяется на много порядков быстрее чем движение молекул вдоль трубы.

Так и с электрическим током: скорость распространения электрического поля аналогична распространению давления, а скорость движения электронов, образующих ток, аналогична движению непосредственно молекул воды.

Теперь вернемся непосредственно к электронам. Скорость упорядоченного движения электронов (или других носителей заряда) называют дрейфовой скоростью. Ее электроны приобретают благодаря действию .

Если внешнего электрического поля нет, то электроны движутся хаотично внутри проводника лишь в тепловом движении, но направленного тока нет, и следовательно дрейфовая скорость в среднем оказывается равной нулю.

Если внешнее электрическое поле приложено к проводнику, то в зависимости от материала проводника, от массы и заряда носителей заряда, от температуры, от разности потенциалов, - носители заряда придут в движение, но скорость этого движения будет существенно меньше скорости света, порядка 0,5 мм в секунду (для медного проводника сечением 1 мм2, по которому течет ток 10 А, средняя скорость дрейфа электронов составит 0,6–6 мм/c).

Эта скорость зависит от концентрации свободных носителей заряда в проводнике n, от площади сечения проводника S, от заряда частицы e, от величины тока I. Как видите, несмотря на то, что электрический ток (фронт электромагнитной волны) распространяется по проводнику со скоростью света, сами электроны движутся куда медленнее. Получается, что скорость тока - это очень малая скорость.

Источниками электрическою тока яв­ляются батареи, аккумуляторы, динамомашины, различные виды генерато­ров и т. д. Они производят элект­роэнергию за счет какого-нибудь дру­гого вида энергии, например, химиче­ской, механической, тепловой и пр. Следовательно, и вслучаях с источни­ками электрического тока закон сохра­нения энергии остается в силе.

Каждый источник тока имеет свойство при замыкании цепи создавать в проводниках электрическое поле, ко­торое с определенной силой действует на свободные электроны. Поэтому го­ворят, что каждый источник тока имеет определенную электродвижу­щую силу (ЭДС).

Источники электрического тока электронов не производят, но создан­ное ими электрическое поле приводит в движение свободные электроны, находящиеся всамих проводниках. В этом отношении любой источник тока можно сравнить с насосом, который приводит в движение воду в замкнутой системе труб (рис. 3.3б). Насос пере­дает энергию турбине так же, как бата­рейка передает энергию лампочке. Оче­видно, в любой неразветвленной систе­ме количество воды, протекающей в толстых и тонких трубах за единицу времени, одно и то же, только по тон­ким трубам частицы воды движутся с большей

скоростью. По аналогии можно сказать, что величина тока в неразветвленной электрической цепи везде одна та же, только в проводниках большего диаметра электроны движутся медленнее, чем в более тонких проводниках.

Скорость электрического тока

Электрическое поле распространяется по проводам со скоростью 300 000 ки­лометров в секунду. Эта скорость так велика, что за одну секунду поле может обойти земной шар около восьми раз!

Скорость направленного движения электронов в проводниках намного меньше и зависит от плотности тока.

По накаленной нити электрической лампочки электроны движутся со ско­ростью 1-2 сантиметра в секунду, в то время как в шнурах и кабелях эта ско­рость не превышает 2-3 миллиметров в секунду. Здесь может возникнуть воп­рос: почему же говорят, что скорость электрического тока огромна?

Для того, чтобы разобраться в этом, представим себе несколько десят­ков кубиков, плотно сложенных по прямой линии на гладкой поверхности. Если толкнем первый кубик, то толчок дойдет до последнего кубика почти мо­ментально, однако, скорость каждого кубика в отдельности не будет очень большой. Таким же образом при за­мыкании электрической цепи электри­ческое поле распространяется по про­воднику с огромной скоростью и по­чти одновременно приводит в движение как близкие, так и дальние электроны. Вот почему и принято считать, что электрический ток распространяется по проводникам со скоростью около 300 000 километров в секунду.

Направление электрического тока

Мы уже выяснили, что в металлах электрический ток обусловлен только одним видом носителей зарядов – электронами. Однако в электролитах электрический ток обусловлен как электронами, так и положительными ионами. Подобную картину наблю­даем

и в полупроводниках, где элект­рический ток обусловлен двумя видами заряженных частиц: электронами и дырками (дырки имеют свойства поло­жительно заряженных частиц, т. к. представляют собой места, в которых отсутствуют электроны). На рис. 3.4а условно показан полупроводник, по ко­торому не течет ток. Видно, что элект­роны и дырки движутся хаотично в различных направлениях вследствие теплового колебания. Если же полу­проводник соединен с источником то­ка, то возникает электрическое поле, и дырки начинают двигаться в направле­нии поля, а электроны навстречу по­лю (рис. 3.4б).

Еще в прошлом веке было принято под направлением электрического тока понимать направление движения положительно заряженных зарядов (тогда еще не знали, что ток в металлах обусловлен только электронами). По традиции это правило сохранилось и до сих пор. Поэтому согласно этому правилу, направление тока в металлах противоположно направлению движения электронов. Следовательно, ток во внешней цепи течет в направлении от положительного полюса к отрицательному.

– есть единичная напряженность электрического поля проводника (квант напряженности), который по физической сути есть отношение продольной силы электрино к его заряду.

– гиромагнитная постоянная электрино.

отличается от скорости света всего на 3,40299%, но отличается. Для техники прошлого века это отличие было неуловимым, поэтому в качестве электродинамической постоянной приняли . Однако, спустя 4 года после публикации своей знаменитой статьи по электродинамике, в 1868 году, Дж. Максвелл усомнился в этом и с участием ассистента Хоукина перемерил ее значение. Результат , который отличается от истинной электродинамической постоянной всего на 0,66885%, остался никем непонятым, в том числе и самим автором.

Орбиты электрино в поперечном к оси проводника сечении расположены одна над другой, образуя пакет электрино вихря или один электрино вихрь. Внешние и внутренние электрино в пакете движутся с одинаковой продольной скоростью .

Каждая частица развивает напряжение ;

(– электрическая постоянная), а их совокупность в пакете – напряжение линии. Квант магнитного потока есть отношение напряжения одного электрино к его круговой частоте

Отсюда напряжение линии .

Магнитный поток проводника .

– квант продольного смещения напряжения.

Магнитная индукция есть плотность магнитного потока, отнесенная к сечению элементарной траектории вихря

; .

– шаг вихря; расстояние между пакетами; расстояние между орбитами – то есть расстояние между частицам – электрино.

Максимальная индукция – при плотно сжатых электрино, когда – диаметру электрино,

технически никогда не достижима, но является ориентиром, например, для Токамака. Недостижимость объясняется сильным взаимным отталкиванием электрино при их сближении: так, при механическое напряжение в магнитном потоке составит , до которого сжать магнитный поток ныне не под силу.

Напряженность магнитного поля есть отношение кольцевого тока к межорбитальному расстоянию в пакете.

Если - частота прохождения электрино вдоль проводника через данное сечение при единичном токе , то . Число частиц электрино, принимаемых за единицу времени будет (постоянная Франклина). Тогда: единица тока в определяется шаговым переносом совокупности электрино, равной числу Франклина. Также и: единица количества электричества в определяется шаговым переносом совокупности электрино, равной числу Франклина.

Если по параллельным проводникам ток течет в одном направлении, то наружные вихревые поля системы из 2-х проводников сливаются, образуя общий вихрь, охватывающий оба проводника, а между проводниками из-за встречного направления вихрей плотность магнитного потока уменьшается, вызывая снижение положительного напряжения поля. Итогом разности напряжений является сближение проводников. При встречном токе плотность магнитного потока и напряженность растет между проводниками, и они взаимно отталкиваются, но не друг от друга, а от межпроводникового пространства, более насыщенного энергией вихревых полей.

Для тока ведущая роль в проводниках принадлежит атомам поверхностного слоя. Рассмотрим алюминиевый проводник. Его особенностью является оксидная пленка . И физики, и химики эту молекулу считают электронейтральной на том основании, что атомы алюминия и кислорода взаимно компенсируют валентность друг друга. Если бы это было так, то алюминий не мог бы проводить электричество, а он проводит, и проводит хорошо, значит, обладает избыточным отрицательным зарядом.

Анализ показывает, что атом содержит один избыточный электрон при дефиците электрино, обусловливающие ему значительный избыточный заряд отрицательного знака:

где – недостающее число электрино в атоме алюминия;

– атомная масса,

Атомное число алюминия.

Каждые две молекулы содержит 3 электрона связи.

Нижний радиус надпроводниковой части вихря можно принимать равным половине межатомного расстояния – периода решетки электропроводящего материала:

(– масса атома; – его плотность).

Круговая частота вихря также определяется через :

Здесь: – секториальная скорость для ;

– радиус проводника;

– электростатическая постоянная.

Аналогично закону Ома запишем .

Из видно, что есть население одной орбиты частицами – электрино, следующими по ней след в след;

.

Проиллюстрируем расчет параметров для алюминиевого проводника (радиус ) с постоянным током при напряжении .

Секториальная скорость

Круговая частота вихря ()

Продольная частота электрино

.

Напряжение, развиваемое одной траекторией электрино:

Шаг вихревого пакета

.

Кольцевой ток одного электрино пакета

Полное число электрино в вихревом пакете

Население орбиты частицами – электрино

Число орбит вихревого пакета

.

Напряжение линии, развиваемое одним пакетом – элементом вихря:

Ток линии

(или ).

Мощность линии

(или )

Толщина вихря

Внешний радиус вихря

.

Продольная составляющая магнитного поля проводника

.

Индукция линии

где – магнитная постоянная;

– относительная магнитная проницаемость .

Нормальная составляющая вихревого магнитного поля проводника:

.

Как видно, электрический ток и магнитное поле являются свойствами вихревого электрического поля.

Началом деструкции линии электропередачи служит появление коронного свечения. При приближении механического напряжения вихря к значению модуля Юнга проводника амплитуда колебания внешних атомов возрастает до критического значения, при достижении которого начинается высвобождение из них избыточных электронов, которые тут же обращаются в электроны-генераторы и приступают к ФПВР, сопровождаемому излучением света в видимой области спектра. В основе коронного свечения проводника и свечения нити лампы накаливания лежит одно и то же явление – ФПВР, запускаемый столкновительным взаимодействием вихря с атомами нити и проводника.

Удельное сопротивление проводника определяется его параметрами: периодом решетки и диаметром глобулы :

.

Ширина межатомного канала.

Это подтверждается расчетом по фотографии золота, совпадающим с фактически значением. Часть электрино рассеивается при столкновениях с атомами проводника, что определяет КПД линии электропередачи. КПД пропорционален температуре: .

Это уже достигается при сверхпроводимости, но полной сверхпроводимости не может быть из-за рассеяния электрино. Сверхпроводимость объясняется скачкообразным уменьшением нулевого колебания атомов (в 85 раз для ) и перестройкой кристаллической решетки (в 4 раза увеличивается межатомный канал), поэтому удельное сопротивление уменьшается на 5 порядков. Незатухающий ток сверхпроводимости объясняется магнитным полем Земли. Поскольку сопротивление все же больше нуля, то без магнитного поля Земли ток затухает.

Несколько экзотической иллюстрацией электрического тока является излучение лазера, хотя его излучение считают оптическим. Например, в неодимовом лазере с энергией импульса и продолжительностью , протяженность импульса ;

число вихревых пакетов на импульсе ;

число орбит вихревого пакета ;

структурное сопротивление луча ;

население одной орбиты (~на 3 порядка больше, чем в ). Эти расчеты выполнены по новой теории без противоречий с фактами. Что же происходит в лазере?

Лучи света в активном элементе многократно отражаются, что приводит к полной деструкции луча белого света. Образуется большое количество электрино, вошедших с лучом фотонами. Одновременно часть осевых полей элементарных лучей после тоже многократного отражения формирует объединенное осевое поле резонатора и через выходное зеркало уходит в пространство с бесконечной скоростью. Свободные электрино устремляются к осевому отрицательному полю. В начале вокруг осевого поля они движутся беспорядочно; затем приобретают вращение в одну сторону, и формируется нормальный вихрь. Факт сложения модулей одноименных электрических полей подтверждается суммарным зарядом осевого поля лазера данной установки. Как уже видно – лазерное излучение – это электрический ток по идеальному сверхпроводнику – электронному лучу. Но есть еще несколько примеров, отличающих лазерный луч от светового. Так, скорость распространения лазерного луча по световоду является обратной функцией частоты, то есть высокочастотный луч по световоду распространяется с меньшей скоростью, чем низкочастотный; для естественного света картина обратная.

Лазерный луч, как и проволочный ток, легко модулируется; световой – нет. Лазерный луч распространяется со скоростью электрического тока ; световой со своей скоростью (фиолетовый) .

КПД традиционных лазеров никогда не будет высоким в виду многоэтапности процесса и потерь: сначала нужно добыть свет, затем его разрушить, потом из обломков собрать осевое электронное поле и нанизать на него остатки фотонов. Предлагается электрический ток с металлического проводника переводить сразу на сверхпроводящий проводник – осевое электронное поле, создаваемое каким-либо прибором, например, магнетроном. Тогда КПД лазера будет не меньше 90%. Поскольку вихрь электрино легко проходит туда и обратно (металлический проводник осевое электронное поле), то можно осуществить, например, беспроволочную линию электропередачи и другие использующие это свойство установки, в том числе, электрогенераторы с ФПВР, которые возбуждаются электрическим разрядом, химической реакцией, горением, электронным пучком и т.п.

Конец работы -

Эта тема принадлежит разделу:

Основы естественной энергетики

На сайте сайт читайте: "Андреев Е. основы естественной энергетики"

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ:

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Энергетики
Санкт-Петербург ББК 31.15 Е 86 Андреев Е.И. Основы естестве

Аккумулированная энергия
Основные положения концепции естественной энергетики 1. Установлены процессы выделения избыточной энергии в результате частичного ядерного распада

Осцилляторы газа
Поскольку атомы (молекулы) находятся в частотном электродинамическом взаимодействии друг с другом, то они называются общим понятием «осциллятор». Индивидуальное пространство осциллятора, в

Природа постоянной Авогадро и единицы массы в системе СИ
Число Авогадро нейтронов /

Температура и вакуум
Температурой абсолютного вакуума считают Т = 0 К. В настоящее время достигнуты температуры 2,65·10-3… …2,5·10-4 К и возможности не исчерпаны. Но абсолютного нул

Термодинамика
В природе не существует замкнутых термодинамических систем. Термодинамические процессы непременно сопровождаются фазовыми переходами вещества, так как даже у гелия – самого инертного из газов – име

Фазовый переход высшего рода (ФПВР)
Энергия нейтрона может быть выражена через электростатические потенциалы электрино и электрона:

Естественный свет
Осью монолуча, например, фиолетового света является отрицательный электронный луч электрона – генератора. Его пульсирующее электронное поле совпадает с осью луча света. Луч света состоит из монолуч

Строение твердого тела
Коренным отличием от традиционного точечного представления узла кристаллической решетки, который занимает атом, является объемное представление, заключающееся в том, что в узле расположена глобула

Жидкости и пары
В классической физике не делается различия между паром и газом. Отличие их состоит в том, что осциллятору газа свойственны три формы движения: частотно-колебательное и блуждающее (

Электрический ток. Лазер
Определение тока: электрический ток есть упорядоченное вихревое движение электрино вокруг проводника, в котором траектория каждого электрино представлена винтовой линией с заходом в тело про

Электрический аккумулятор
Электрический, например, свинцовый аккумулятор как раз является таким устройством, в котором ФПВР возбуждается химической реакцией. В пристенном слое свинцовой пластины-анода, имеющей отри

Строение атома
Атом состоит из нейтронов со слегка разбалансированными зарядами. Нейтрон описан выше в §2. Протонов нет, как нет и орбитальных электронов, поэтому порядковый номер элемента не несет смысловой нагр

Валентность элементов
I группа II период Элементы Валентность Элементы Валентность Li - 1,1

Маленький эпилог
На очень трудный и важный вопрос: откуда энергия? – теперь, как видно, можно дать однозначный ответ: энергия – из вещества, которое в принципе является аккумулятором энергии. При этом энер

Немного предыстории
Задолго до появления книги Д.Х. Базиева /3/ были известны случаи, когда энергия взрыва превосходила расчетную или теоретически возможную. В первую очередь это относилось к взрывам запыленного возду

Структура и механизм распада молекул азота
Известно, что молекулы азота распадаются на атомы или с ними происходят некоторые превращения, например, N2 Û CO /14/, при подведении к ним энергии. Это может быть: н

Баланс продуктов азотной реакции
Как известно, объемные доли азота и кислорода в воздухе составляют, соответственно, 0,79 и 0,21. Зная плотности азота

Теплота азотной реакции
Поскольку нам неизвестны дефекты массы продуктов азотной реакции, в первом приближении можем определить теплоту реакции по теплотворной способности водорода


В чистом воздухе источником плазмы, как состояния ионизированного вещества, и электронов является сам воздух, составляющие его ионы и молекулы в основном азота и кислорода. В предыдущем материале д

Химические реакции
Общеизвестным примером химической реакции для создания плазмы является горение органического топлива, описанное в /3/. И хотя эта реакция является также щадящей ядерной (масса атома кислорода умень

Электрический разряд
В соответствии с теорией Д.Х.Базиева /4/ электрический разряд – есть электрический ток, который, по аналогии с электронной проводимостью в проводниках, идет благодаря ионной проводимости в плазме р

Лазерное излучение
Как указано в /3/ лазерное излучение есть концентрированный электрический ток вокруг естественного сверхпроводника – электронного луча. Концентрация энергии в лазерном луче на 4 порядка выше концен

Оценка энергии инициированного лазером взрыва атмосферного воздуха
1. Реакция взрыва. Компоненты Продукты Воздуха Реакции 1)

Электромагнитный импульс
Электромагнитный импульс широко применяется для преобразования вещества и получения плазмы, в том числе, высокотемпературной, для термоядерного «синтеза». Новая интерпретация – электромагнитный имп

Стоячие волны давления
Во всяком объеме при звуковых колебаниях воздуха создается система перекрестных волн, которые при регулярном воздействии являются стоячими. Активированная в пучности (при повышенном давлении) молек

Микровзрывы, кавитация
Мелкопорошковые добавки в смеси с воздухом при инициировании азотной реакции, например, с помощью обычного взрывного воспламенения топливо-воздушной смеси, могут стать центрами микровзрывов (азотно

Катализаторы
Катализаторы, как правило, существенно уменьшают энергию активации – активационный барьер первого звена цепной реакции по сравнению с активационным барьером прямой реакции. Это способствует проведе

Механизм катализа
В настоящее время механизм катализа неизвестен. Действие катализатора традиционно объясняют образованием в его присутствии цепной реакции и соответствующим понижением энергии активации на первом зв

Азотный термодинамический цикл работы двигателей внутреннего сгорания
Двигатели внутреннего сгорания (ДВС) являются наиболее массовыми энергосиловыми установками. Поэтому кажется естественным, что именно в ДВС впервые были получены режимы работы, соответствующие азот

Углерод в двигателях внутреннего сгорания
В условиях ядерной реакции частичного распада азота воздуха, как указано выше, в цилиндре двигателя образуется мелкодисперсный атомарный углерод С12. Будучи взвешенным в объеме газовой с

Кавитация как возбудитель ядерной реакции
В предыдущей главе рассмотрели процессы и установки, работающие на естественном ядерном топливе – воздухе. Другим естественным ядерным топливом является вода. Механизм энерговыделения в воде – ФПВР

Вихревые теплогенераторы
В вихревом теплогенераторе /21/ вода подается мощной струей по касательной к трубе. На оси вращения, как известно, ускорение стремится к бесконечности, и неизбежен разрыв сплошности жидкой среды, в

Дисковые ультразвуковые теплогенераторы
В теплогенераторе Кладова А.Ф. /19/ жидкость дросселируется между двумя встречно вращающимися перфорированными дисками (по типу сирены). Вода или другая жидкость дросселируется с образованием кавит

Виброрезонансные установки
В виброрезонансных установках нет струй, и нет затрат энергии на разгон струи, поэтому они должны быть эффективнее описанных выше установок. Рассмотрим колебательные процессы, которые прои

Электрогидравлические установки
Электрогидравлические установки условно можно разделить на два типа: 1 – установки с электрическим током; 2 – установки с электрическим разрядом. Простейшими являются установки электролиза воды, к

Электрические генераторы
6.1. Процессы взаимодействия элементарных частиц в проводнике при генерации электрического тока Электричество – один из самых удобных для использования человеком видо

Электрические заряды и их взаимодействие
В классической физике и нетрадиционной физике (за редким исключением) считается, что заряд – это присущее телу свойство, которое проявляется при притягивании разноименно заряженных и отталкивании о

Физическая природа гравитации
Видимо, наиболее мелкими, первичными, вихрями-торами праматерии являются так называемые гравитоны

Система основных частиц материи
Приведем сводный перечень описанных выше устойчивых образований, составляющих основу микромира, а также их единичную массу или ее порядок: 4.1. Субчастицы, совокупность которых явля

Особенности фазовых переходов вещества
Фазовые переходы – это преобразование вещества из одного состояния (фазы) в другое. Наиболее часто визуально наблюдаемый фазовый переход – это испарение жидкости и конденсация пара.

Закономерности дискретных процессов
Процессы в реальном микро- и макромире представляют совокупность единичных актов взаимодействия отдельных частиц и тел; то есть реальные процессы – дискретны. В то же время, классическая физика с д

Форма атомов и состав периодической системы химических элементов
Скажем сразу: состав устойчивых изотопов периодической системы химических элементов обусловлен, в конечном итоге, овалоидной формой атомов. Кто-нибудь видел квадратную ягоду, например, арб

Представление о магнитном потоке
Вихри электрино есть вокруг любого атома, имеющего отрицательный заряд. Однако ферритами или магнетиками могут быть только те вещества, которые имеют тоннельную (коридорную) кристаллическую решетку

Энергообмен между атомами, молекулами, телами и внешней средой с помощью динамического заряда
В веществе заряд бывает статический и динамический. Статический заряд, положительный и отрицательный, дают структурные элементарные частицы (электроны и электрино), которые образуют вещество и его

Физический механизм резонанса
В названии – центральный вопрос для понимания сути резонанса, который обойден в традиционной физике и в многочисленных нетрадиционных теориях, включающих слова об обмене резонирующим телом энергией

Алгоритм энергообмена в колебательных системах
Последовательность и наименование процессов Макросистема: гроза в атмосфере Микросистема: кавитация в жидкости Наносистема: колебания твердых т

Принципы классификации энергоустановок. Классы, подклассы, группы, подгруппы
Класс – определяется по основному процессу и виду исходной (потребляемой) энергии. Подкласс – определяется по характерным особенностям и принятым (привычным) наименованиям.

Термические энергоустановки
В этот класс входят все традиционные энергоустановки на органическом топливе, ядерные, водородные и новые установки естественной энергетики. К традиционным относятся: двигатели внутреннего

Электромагнитные энергоустановки
В традиционных электрических машинах (электродвигатели и генераторы электрической энергии) используются электромагнитные системы, в которых механическая энергия привода преобразуется в электрическу

Тепловые кориолисовые двигатели
Известен проект ротативного двигателя Чернышева И.Д. /12/. Двигатель представляет собой ротор в виде диска, установленного на валу. На периферии диска с помощью кольца закреплены камеры сгорания со

Магнитные кориолисовые двигатели
Поскольку постоянный магнит является естественным вечным двигателем, создающим циркулирующий по нему магнитный поток – поток элементарных частиц – электрино, то имеется принципиальная возможность с

Виброрезонансные энергоустановки
Наибольшее количество информации связано с машинами безопорного движения – инерцоидами (Толчин, Савелькаев, Маринов и другие). Теория сводится к переходу энергии из окружающей среды к виброрезониру

Энергетика взрывов
10.1. Безопасность топливо – энергетических процессов. Безопасность предполагает защиту от ожидаемого взрыва, от неожиданного взрыва и от взрыва нерасчетной избыточной мощ

Механизм горения топлива
В классической термодинамике и термохимии вопрос об источнике энергии при горении органического топлива даже не ставится. Теплотворная способность принимается как само собой разумеющееся, данное пр

Роль топлива в процессе горения
Обычное горение. В воздухе на одну молекулу кислорода приходится примерно 4 молекулы азота. При распаде молекулы кислорода на два атома освобождается один электрон связи, который становится

Твердые взрывчатые вещества (ВВ)
В твердом веществе, в том числе, во взрывчатом веществе (ВВ), в результате инициирующего воздействия от детонатора первоначально в малом объеме вещества образуется локальная зона с высокими парамет

Жидкие взрывчатые вещества
В жидком веществе практически осуществляется тот же процесс локальных микровзрывов, что и в твердом веществе. Специфическим является то, что резкими колебаниями и сбросом давления, разгоном и растя

Ядерный взрыв
Рассмотрим ФПВР урана /2/. Почему уран – 238 не пригоден для ядерного горючего? Традиционный ответ: «потому что коэффициент размножения меньше единицы не обеспечивает реакцию выделения» – не объясн

Термоядерный взрыв
Итак, в водородной бомбе при термоядерном взрыве выгорает 100% смеси дейтерия и трития. Но в ней, как и во всех энергетических процессах, идет их расщепление, а не синтез гелия. Именно поэтому нет

Лазерный взрыв
Наряду с детонирующим воздействием лазерное излучение является мощным средством инициирования взрыва. Это объясняется высокой концентрацией энергии в лазерном луче. Поэтому в фокусе луча происходят

Воздушный взрыв
Как видно из приведенных выше примеров воздушные взрывы могут произойти внезапно при наличии плазмы и электронов в достаточном количестве. Если состояние раздробленности воздуха не полное и азот не

Опасность пароводяных и водородных взрывов
В результате ядерной реакции частичного распада азота и кислорода воздуха образуется преимущественно водяной пар. Возможно, в некоторых случаях естественным ядерным топливом может быть не воздух, а

Особенности взрывов естественных взрывчатых веществ и поражающие факторы
В результате приведенного анализа установлено следующее: 1. Обнаружены ядерные реакции частичного распада веществ на элементарные частицы с выделением энергии их связи в атомах. 2

Опасность электромагнитных излучений
В самых последних современных публикациях /50/ люди, специально занимающиеся этим вопросом пишут, что на сегодняшний день физический механизм действия электромагнитных излучений, в частности, на че

Логика и алгоритм начала мироздания
Наличие неравномерности в первичной материи и кориолисова ускорения приводят к возникновению вихря – тора. Для частиц праматерии нет других сил взаимодействия, кроме механических («подталкивания»),

Равновесие энергообмена в человеке
Носителем энергии и информации является мелкая положительно заряженная элементарная частица – электрино, количество которых на заряд одного электрона составляет более 100 миллионов штук (10)

Хранение информации
Информация хранится в памяти человека. Оперативная и краткосрочная информация хранится в мозгу. Среднесрочная (подсознание) хранится в подкорке. Долгосрочная информация хранится в генах. Все виды и

Получение информации
Самую долгосрочную информацию человек получает при рождении, от родителей. Основу ее составляют инстинкты и рефлексы. Другую информацию человек получает от других людей и окружающего мира в результ

Каждый человек сам себе бог
Информация в памяти человека разрушается под влиянием различных, в том числе, телепатических, воздействий; и умирает вместе с человеком. Что человек передал при жизни пртомству, другим людям, то и

Основные этапы разработки
Первый этап /2/ – 1980... 1994 гг.: созданы теоретические основы новой гиперчастотной физики. Второй этап – 1996...2000гг.: разработана концепция естественной энергетики как решения топлив

Установки естественной энергетики
13.2.1. Двигатели внутреннего и внешнего сгорания (ДВС). Карбюраторные, эжекторные и дизельные ДВС, двигатели Стирлинга и двигатели других типов могут быть переведены

Котельные установки
Горелки и камеры сгорания котлоагрегатов на теплоэлектростанциях и отопительных котельных также могут быть переоборудованы на воздушный бестопливный цикл как ДВС и ГГУ. Тысячи котельных пе

Энергетическая перспектива
По сравнению с традиционной энергетикой на органическом топливе и ядерной энергетикой, перспективу имеет естественная энергетика, использующая воздух и воду как созданные природой. аккумуляторы эне

От осознания теории к изобилию энергии
Два вида энергии – аккумулированная /1/ и свободная /2/ – рассматриваются как неисчерпаемый источник экологически чистой, возобновляемой в природных условиях естественной энергии, созданной самой п

Обычное горение
1. При обычном горении, например, углерода 12С, углеродные цепочки топлива разрушаются на отдельные элементы так, что на каждый атом углерода приходится по одному электрону их связи, кот

Природа сверхпроводимости
Сверхпроводники могут работать и работают при обычных температурах. Современные представления /1/ о физических процессах позволяют лучше понять природу сверхпроводимости и получить практич

Структура первых химических элементов таблицы Менделеева
Выше была дана информация о том, что атомы химических элементов являются по форме точно сферическими, начиная с 12С углерода, или овалоидными. Естественно, что атомы меньше углерода не м

Движители транспортных средств
Исторически одними из первых были разработаны различного типа инерцоиды как средства безопорного движения. Они двигались, ползали, ездили, но не летали. Почему? Авторы, назвав их безопорны

Магнитные электроустановки
Все, о чем выше писали про магниты, можно осуществить на основе резонанса и атомного привода. В отличие от механического, электрического приводов и отсутствия резонанса, эффективность устройств с р

Катализаторы с резонансом
Катализ – по-гречески – «разрушение». Катализаторы разрушают крупные молекулы на мелкие фрагменты, чем обеспечивают более легкое проведение химических реакций, в том числе, энергетических – таких,

Шаровые молнии
Будучи осколками прямой молнии или специально созданные, они сворачиваются в сферу (аналог капли) по тем же причинам равномерного воздействия со всех сторон. Шаровые молнии так же светятся, как веч

Физический механизм фазовых переходов
Наиболее привычными процессами фазовых переходов для нас являются конденсация и испарение воды как наиболее распространенного вещества. Однако к фазовым переходам относится также – образование веще

Природа радиоактивности
Металлы с большой атомной массой, имеющие большие вихри электрино вокруг каждого атома, неизбежно в силу неравномерности движения и концентрации пополняют вихри соседних атомов, нейтрализуя их заря

Отжиг металлов и магнетизм
При отжиге (нагревании) любого вещества увеличивается частота колебаний атомов. Отрицательно заряженные атомы, имеющие вокруг себя вихри электрино, сбрасывают их за счет увеличившихся центробежных

Концентраторы магнитного потока
Иногда для увеличения силы притяжения полюсов магнитов или увеличения магнитной индукции в зазоре между полюсами применяют концентраторы магнитного потока. Распространенным концентратором является

Единство и возможность усиления магнитной и каталитической обработки веществ
Катализ – разрушение (по-гречески) крупных объектов (молекулы, атомы…) на более мелкие фрагменты, чего не понимает современная наука о катализе и поэтому вместо четкого физического механизма дает ф

Выбор материалов и разработка конструкции оптимизатора для обработки воздуха
Опуская описание этапов поиска инициирующих воздействий, скажем, что, в конечном итоге, остановились на магнитном и каталитическом воздействии как наиболее удобном, доступном и достаточном для доци

Настройка карбюратора
Меня, как не автолюбителя, не знакомого с устройством карбюратора, удивила его примитивность и сложность. Фактически в одном общем карбюраторе объединены до 9-ти частных карбюраторов (на каждый реж

Регулировка зажигания
Здесь мы подошли к внутрицилиндровой обработке воздуха для бестопливного горения. Конечно, лазер бы решил всё: и до- и внутрицилиндровую обработку, так как обеспечивает взрыв воздуха, но подходящих

Пуск, прогрев и холостой ход
Необходимость отсутствия топлива при автотермическом режиме горения воздуха в камерах сгорания цилиндров автомобильного карбюраторного двигателя требует настройки на предельно бедную смесь при пуск

Переходные режимы, перегазовки
Если думаете, что на этих режимах нет неожиданностей, то напрасно. Есть. Увязка в карбюраторе сразу всех 8…9-ти основных и соответствующего числа переходных режимов приводит к тому, что ес

Сезонные особенности
Сезонные особенности эксплуатации автомобильных двигателей и их настройки на автотермический бестопливный режим работы относятся, прежде всего, к пуску и прогреву. Сначала сам факт: настроенный на

Амфибии и бездорожники на основе вихревых движителей
Краткие комментарии к (далеко не полному) перечню направлений естественной энергетики. Конечно, во всех направлениях основным является отсутствие потребления органического или ядерн

Социальные аспекты энергетики
В мире большое количество отдельных ученых, инженеров, специалистов различных отраслей, изобретателей, практиков, мелких и крупных предприятий и организаций локально решают тактические задачи совер

Описание изобретений
16.1. Способ подготовки топливно-воздушной смеси и устройство для его осуществления Заявка 2002124485 от 06.09.2002 F 02 M 27/00 (Полу

Устройство для обработки воздуха топливно-воздушной смеси
Заявка 2002124489 от 06.09.2002 F 02 M 27/00 (Получен патент РФ №2229620) Изобретение относится к энергетике, теплосиловым установкам и двигателям, в том числе, в

Способ повышения энергии рабочей среды для получения полезной работы
Патент № 2179649 от 25.07.2000 г. F 02 G 1/02, F 02 M 27/04 Изобретение относится к энергетике, силовым установкам и двигателям, работающим на горячих газах, и энергоустановкам, и

Горение
1. Природные процессы бестопливной энергетики В традиционной энергетике применяют органическое и ядерное топливо в процессах расщепления, а также такую возобновля

Физический механизм энергообмена
Известно, что нет процессов монотонных, а есть только колебательные процессы. Основной причиной колебаний среды и параметров обменных процессов является запирание, экранирование, меньшего потенциал

Секреты Тесла
Тесла известен как один из первых новаторов – исследователей, получавших энергию окружающей среды (свободную энергию) успешно и в больших количествах. О своих изысканиях Тесла публиковал открытые с

Электрические трансформаторы
Описанный выше принцип работы трансформатора (Тесла) с использованием энергии окружающей среды в виде импульсного высокочастотного перетока электрино подходит также для обычных промышленных трансфо

Электрические двигатели
При включении в электросеть электродвигателя (индуктивность) и специально подобранных конденсаторов (емкость) Мельниченко /15/ удавалось получить в 10…15 раз большую мощность на валу двигателя, чем

Электрогенераторы на постоянных магнитах
Ряд магнитных электрогенераторов (МЭГ) были уже описаны в /2/: генераторы Серла, Рощина-Година, Флойда. Все они не только выдавали избыточную энергию, но и работали автономно. Есть возможность позн

Алгоритм разгона звуковой волны
1. Расстояние критического (нормального) сближения осциллятора газа (воздуха) с соседями, в том числе, и со стенкой (торцем стержня – генератора звука):

Эффект полостных структур
Статья В.С. Гребенникова, опубликованная около 1980 года о том как он летал над Новосибирском произвела тогда большое впечатление, особенно, подробным описанием ощущений и событий вплоть до мельчай

Сверхтекучесть
Сверхтекучестью должна обладать жидкость, лишенная механического взаимодействия ее частей путем трения и вязкости (по традиционной теории), а также – какого-либо другого, в частности, электрическог

Горение воздуха
8. Резюме. Оптимизация процессов горения Традиционно считают, что горит топливо. Оно наделено свыше данным свойством – теплотворной способностью. По ней делают ра

Процессы с воздухом и кислородом
Рассмотрим случаи возгорания или взрыва без присутствия топлива. Таких случаев набирается уж достаточно много: 1. Взрыв воздуха в фокусе лазерного луча; 2. Взрыв чистого кислорода

Процессы с топливом
Рассмотрим, например, метан СН4. Традиционное структурное изображение молекулы метана содержит четыре единичные ординарные связи атома углерода с атомами водорода: Н |

Пределы горючести воздуха
Рассмотрим сначала обычное горение воздуха в смеси с топливом. При импульсном распылении топлива в воздухе в виде аэрозоля самым простым инициирующим воздействием, обеспечивающим зажигание и горени

Адресное микродозирование топлива
Цель – облегчение воспламенения в цилиндре двс при минимальном расходе топлива. При бестопливном режиме топливо нужно, в основном, для облегчения воспламенения переобедненной смеси: тогда

Первоочередные мероприятия для ДВС
Несмотря на то, что использование топлива в малом количестве облегчает работу двигателя в бестопливном режиме, в том числе, пуск, прогрев, воспламенение, переходные режимы, но лучше все же сразу ор

Доцилиндровая обработка воздуха
1. Установка магнитных оптимизаторов. 2. Усиление действия оптимизаторов с помощью: - концентраторов магнитного потока; - катализаторов, размещенных в магнитном поле.

Внутрицилиндровая обработка
6. Использование, по возможности, тех же методов, что и в доцилиндровой обработке (п.п 1-5). 7. Настройка двигателя: - по топливу (если оно необходимо): переобеднение смеси;

Использование катализаторов
Усиление катализаторов в магнитном или электрическом поле происходит следующим образом. Основным разгонным органом снарядов – электрино является их вихрь, вращающийся вокруг атомов кристаллической

Адаптация зажигания
Теперь о зажигании. Выше уже поясняли причину, почему молния не может взорвать атмосферу. Так и искра электрического заряда не может самостоятельно взорвать чистый воздух в цилиндре двигателя. С то

Повышение оборотов
Практика показывает, что повышение оборотов способствует наступлению азотного цикла, не совсем бестопливного, но уже с участием не только кислорода, но и азота в горении. Внешними визуальными призн

Наложение высокого напряжения
Электрическое поле между электродами является инициирующим воздействием для катализа – процесса горения воздуха. Оно повышает плотность электринного газа в этом пространстве, нейтрализует частично

Горелки и камеры сгорания
Горелки котельных топок и камеры сгорания газотурбинных (ГТУ) и других энергоустановок отличаются от камер сгорания двс отсутствием поршня и системой аэродинамических волн давления, ударных и детон

Катализ и сжигание воды
Вода самодостаточна для горения: ей не нужны топливо и окислитель. Согласно современным представлениям о естественной энергетике /1, 2, 3/ горение – это процесс электродинамического взаимо

Получение энергии электролизом
Электролиз без других внешних воздействий является энергозатратным процессом, в том смысле, что сколько энергии с учетом кпд затратил, столько потом и получил. Такие горелки, например, для резки ме


Кавитация в жидкости возникает как режим предкипения при нарушении (разрыве) ее сплошности. В образовавшиеся каверны поступает пар, в частности воды. Пузырьки пара вследствие малой кривизны поверхн

Повышение напора энергией природы
Сразу скажем, что это – известное явление: гидравлический удар и гидравлический таран (см. например /31/). Внятного физического объяснения нет, хотя в формуле Жуковского повышения напора ΔР =

Самовращение в гидравлической энергетике
Кориолисовы силы приводят к самовращению в любых средах, в том числе, в воде. Замечено, что, например, в вихревых теплогенераторах Потапова мощность привода насоса уменьшается при увеличении скорос

Некоторые особенности энергетики человека
Из изложенной в книге теории и практики физики и энергетики следует простая схема круговорота вещества и энергии. Первичная материя типа идеальной жидкости, которая не может существовать самостояте

О пользе нетрадиционных знаний
С течением времени нетрадиционные знания становятся традиционными, привычными, если они подтверждаются и используются практикой. Остальное откладывается до следующего витка развития науки и техники

Постскриптум
За прошедший год после написания четвертого раздела книги появилось новое понимание некоторых фактов, которое может быть важным, и поэтому приведено ниже в виде перечня с краткими пояснениями.

Чему равна скорость тока в проводнике? Банальный если не риторический вопрос, не правда ли? Все мы в школе учили физику и хорошо помним, что скорость электрического тока в проводнике равна скорости распространения фронта электромагнитной волны, то есть равна скорости света. Но ведь на тех же уроках физики, нам показывали и кучу интересных опытов, где мы могли сами во всем убедиться. Вспомним хотя бы замечательные опыты с электрофорной машиной, эбонитом, постоянными магнитами и т.д.

А вот опыты по измерению скорости электрического тока не показывали даже в университете, ссылаясь на отсутствие необходимого оборудования и сложность данных экспериментов. За последние несколько десятков лет прикладная наука сделала огромный рывок вперед и сейчас у многих любителей есть дома та аппаратура, о которой несколько десятков лет назад не мечтали даже научные лаборатории. А потому пришла пора начинать показывать и опыт по измерению скорости электрического тока, что бы вопрос был закрыт раз и навсегда в лучших традициях физики. То есть не на уровне математики гипотез и постулатов, а на уровне простых и понятных каждому экспериментов и опытов.

Суть эксперимента по измерению скорости электрического тока проста до безобразия. Возьмем провод, определенной длинны, в нашем случае 40 метров, подключим к нему генератор сигналов высокой частоты и двухлучевой осциллограф один луч соответственно к началу провода, а другой к его концу. Вот и все. Время, за которое электрический ток пройдет по проводу длиной 40 метров составляет около 160 наносекунд. Сдвиг именно на это время мы и должны увидеть на осциллографе между двумя лучами. Посмотрим теперь, что же мы видим на практике

То есть как мы увидели, никакой задержки в 160 наносекунд в нашем случае нет. И именно в нашем случае мы не смогли измерить скорость электрического тока, т.к. она оказалась на несколько порядков больше и не поддается измерению такими приборами. Может быть, у нас провода были сврхнанотехнологичные, или наш электрический ток просто не знал, что он обязан задержаться на 160 наносекунд в проводе? Но что есть, то есть.…

Почему ток в розетке и проводах не бежит со скоростью света? Или все-таки…

Любой человек, разбирающийся в физике, скажет, что скорость движения электрического тока равна скорости света и составляет 300 тысяч километров в секунду. С одной стороны он прав на 100%, но есть нюансы.

Со светом все просто и прозрачно: скорость полета фотона равна скорости распространения светового луча. С электронами сложнее. Электрический ток сильно отличается от видимого излучения.

Почему считается, что скорость полета фотонов в вакууме и скорость электронов в проводнике одинакова? Утверждение основано на фактических результатах. В 1888 году немецкий ученый Генрих Герц экспериментально установил, что электромагнитная волна распространяется в вакууме так же быстро как свет. Но можно ли говорить, что электроны в проводнике летят со скоростью света? Надо разобраться с природой электричества.

Что такое электрический ток?

Из школьного курса физики известно, что электричество – это поток электронов, упорядоченно перемещающихся в проводнике. Пока источника электричества нет, электроны движутся в проводнике хаотически, в разных направлениях. Если суммировать траектории всех заряженных частиц, получится ноль. Поэтому кусок металла не бьет током.

Если металлический предмет подсоединить к электрической цепи, все электроны в нем выстроятся в цепочку и потекут от одного полюса к другому. Насколько быстро произойдет упорядочение? Со скоростью света в вакууме. Но это не означает, что электроны полетели от одного полюса к другому также стремительно. Это заблуждение. Просто люди настолько привыкли к утверждению, что электричество распространяется так же быстро как свет, что не особо задумываются над деталями.

Популярные заблуждения о скорости света

Еще одним примером такого поверхностного восприятия можно назвать понятие о природе молнии. Многие ли задумываются, какие физические процессы происходят во время грозы? Какова, например, скорость молнии? Можно ли без приборов узнать, на какой высоте бушуют грозовые разряды? Разберемся со всем этим по порядку.

Кто-то может сказать, что молния бьет со скоростью света, и будет не прав. Настолько быстро распространяется вспышка, вызванная гигантским электрическим разрядом в атмосфере, но сама молния гораздо медленнее. Грозовой разряд – это не удар луча света наподобие лазера, хотя визуально похоже. Это сложная структура в насыщенной электричеством атмосфере.

Ступенчатый лидер или главный канал молнии формируется в несколько этапов. Каждая ступень в десятки метров образуется со скоростью около 100 км/сек вдоль разрядных нитей из ионизированных частиц. Направление меняется на каждом этапе, поэтому молния имеет вид извилистой линии. 100 километров в секунду – это быстро, но до скорости электромагнитной волны очень далеко. В три тысячи раз.

Что быстрее: молния или гром?

Этот детский вопрос имеет простой ответ – молния. Из того же школьного курса физики известно, что скорость звука в воздухе равна примерно 331 м/сек. Почти в миллион раз медленнее электромагнитной волны. Зная это, легко понять, как высчитать расстояние до молнии.

Свет вспышки доходит до нас в момент разряда, а звук летит дольше. Достаточно засечь промежуток времени между вспышкой и громом. Теперь просто считаем, насколько далеко от нас ударила молния, по простой формуле:

L =T × 331

Где T – это время от вспышки до грома, а L – это расстояние от нас до молнии в метрах.

Например, гром прогремел через 7.2 секунды после вспышки. 331 × 7.2 = 2383. Получается, что молния ударила на высоте 2 километра 383 метра.

Скорость электромагнитной волны – это не скорость тока

Теперь будем более внимательны к цифрам и терминам. На примере молнии убедились, что маленькое неверное допущение может привести к большим промахам. Точно известно, что скорость распространения электромагнитной волны равна 300 000 километров в секунду. Однако это не означает, что электроны в проводнике перемещаются с такой же скоростью.

Представим, что две команды соревнуются, кто быстрее доставит мяч с одного края поля на другой. Обязательное условие – каждый член команды сделает несколько шагов с мячом в руках. В одной команде пять человек, а в другой – один. Пятеро, выстроившись в цепочку, сыграют в пас, сделав каждый несколько шагов в направлении от старта к финишу. Одиночке придется бежать всю дистанцию. Очевидно, что победят пятеро, потому что мяч летит быстрее, чем человек бегает.

Так же и с электричеством. Электроны «бегают» медленно (собственная скорость элементарных частиц в направленном потоке исчисляется миллиметрами в секунду), но передают друг другу «мячик» заряда очень быстро. При отсутствии разности потенциалов на разноименных концах проводника все электроны движутся хаотично. Это тепловое движение, присутствующее в каждом веществе.

Если бы электроны двигались в проводах со скоростью света

Представим, что скорость электронов в проводнике все-таки близка к световой. В этом случае современная энергетика была бы невозможна в привычном для нас виде. Если бы электроны двигались по проводам, пролетая 300 000 километров в секунду, пришлось бы решать очень сложные технические задачи.

Жизнь современного человека полна комфорта. Сегодня мы имеем все блага цивилизации в свободном доступе. Главным достижением, которое совершенствовалось в течение долгого времени, является электрическая энергия, доступная практически в любой части мира. Мы привыкли к тому, что электроэнергия повсюду и задумываемся о ней лишь в тот момент, когда она внезапно пропадает. На самом деле явление электричества таит в себе много интересного, что желательно было бы знать каждому человеку.

Например, одним из вопросов, которым нужно задаться, является скорость электрического тока. Мало кто думал о том, как быстро зажжется лампочка, находящаяся в сотне километров от источника энергии. Этот вопрос актуален для населенных пунктов, которые находятся вдали от цивилизации.

Опытным путем учеными и исследователями было доказано, что электрический сигнал движется по кабелю со скоростью света, а именно 300 тысяч км/сек.

Важно отметить, что электроны и ионы в проводнике при этом движутся совсем не с такой скоростью. Они просто на просто не могут иметь столь высокую скорость в проводящем материале.

Под скоростью света в случае с электрическим током понимается показатель скорости, с которым заряженные частицы приходят в движение друг за другом, а не движутся относительно друг друга. Носители заряда при этом обладают средней скоростью, равной, как правило, нескольким миллиметрам за 1 сек.

Более подробно объясним данную ситуацию примером:

К заряженному конденсатору присоединяются провода большой длины, идущие к лампе, что находится на расстоянии около 100 км. Замыкание цепи происходит вручную. После этого носители зарядов приходят в движение на том отрезке провода, который подключен к конденсатору. При этом начинается покидание электронами минусовой обкладки конденсатора, следовательно, происходит уменьшение электрического поля в конденсаторе параллельно с уменьшением плюсовой обкладки.

Таким образом, между обкладками сокращается разность потенциалов. При этом электроны, пришедшие в движение, приходят на место тех, что ушли. То есть, запущен процесс перераспределения электронов внутри провода за счет влияния электрического поля. Данный процесс растет, как снежный ком, и переходит дальше по всей длине провода, достигая в итоге нити накаливания лампы.

Получается, что перемены в состоянии электрического поля распространяются внутри проводника со скоростью, равной скорости света. При этом происходит активация электронов в электрической цепи с аналогичной скоростью. Хотя сами электроны движутся друг за другом по проводнику с гораздо меньшей скоростью.

Теперь разберемся в явлении гидравлической аналогии . Рассмотрим это понятие на примере движения водного потока из пункта А в пункт Б.

Допустим, что из небольшого населенного пункта по трубе в город поступает вода. Для этого функционирует специальный насос, который повышает давление внутри трубы, и вода под влиянием давления движется гораздо быстрее. Малейшие перемены в давлении по трубе распространяются очень быстро (приблизительно 1400 км/сек). Скорость распространения данных перемен напрямую зависит от показателя плотности жидкости, ее температуры и степени оказываемого давления. Через совсем короткий промежуток времени (доля секунды) вода уже поступила в город. Но это уже совсем другая вода. Ведь молекулы в ее составе провоцируют движение друг друга из-за столкновений между собой. При этом скорость движения данных молекул гораздо меньше, ведь дрейфовая скорость имеет прямую связь с силой напора. То есть, столкновения молекул друг с другом распространяются очень быстро, а скорость одной молекулы при этом не увеличивается.

Абсолютно аналогичный процесс происходит с электрическим током. Проведем параллели: скорость распространения поля есть скорость распространения давления, а скорость движения молекул, следовательно, есть скорость электронов, создающих ток.

Дрейфовая скорость – это скорость последовательного движения заряженных частиц. Электронами данная скорость приобретается за счет действия внешнего электрического поля.

В случае, если внешнее электрическое поле отсутствует, то движение электронов внутри проводника происходит хаотично. Иными словами, конкретного направления у электрического тока нет, а дрейфовая скорость при этом нулевая.



Понравилась статья? Поделитесь с друзьями!