Скорость звука в газообразной среде. Скорость звука в различных средах

Скорость звука.

Скорость звука – скорость перемещения в среде упругой волны при условии, что форма ее профиля остается неизменной. Напр., для плоской волны, бегущей без изменения формы со скоростью с в направлении оси x , звуковое давление можно записать в виде: р=р(х-сt) , где t – время, а функция р дает форму профиля волны. Для гармонич. волны р= А cos(w t – kx + j) . Звуковая волна выражается через частоту w и волновое число k формулой . Скорость гармоничной волн называется также фазовой скоростью звука. В средах, в которых форма волн произвольной формы меняется при распространении, гармоничные волны тем не менее сохраняют свою форму, но фазовая скорость оказывается различной для различных частот, т.е. имеет место дисперсия скорости звука . В этих случаях пользуются также понятием групповой скорости . При больших амплитудах упругой волны появляются нелинейные эффекты , приводящие к изменению формы любых волн, в т.ч. гармонических, так что понятие скорости звука теряет определенность. В этом случае скорость распространения каждой точки профиля волны зависит от амплитуды давления в этой точки. Эта скорость растет с ростом давления в данной точке профиля, что приводит к искажению формы волны.

Скорость звука в газах и жидкостях . В газах и жидкостях звук распространяется в виде объемных волн разрежения – сжатия, причем процесс происходит обычно адиабатически, т.е. изменение температуры в звуковой волне не успевает выравниваться, т.к. за ½ периода тепло из нагретых (сжатых) участков не успевает перейти к холодным (разреженным).

Скорость звука в газах меньше, чем в жидкостях, а в жидкостях, как правило, меньше, чем в твердых телах. В таблице 2.1 приведены значения скорости звука для некоторых газов и жидкостей.

Таблица 2.1

Скорость звука в идеальных газах при заданной температуре не зависит от давления и растет с ростом температуры как , где Т – абсолютная температура. Изменение скорости звука, отнесенное к одному градусу, равно . При комнатной температуре относительное изменение скорости звука в воздухе при изменении температуры на 1 градус составляет примерно 0,17%. В жидкостях скорость звука, как правило, уменьшается с ростом температуры, и изменение температуры на один градус составляет, напр., - 5,5 м/с×град для ацетона и – 3,6 м/с×град для этилового спирта. Исключением из этого правила является вода, в которой скорость звука при комнатной температуре увеличивается с ростом температуры на 2,5 м/с×град, достигает максимума при температуре » 74°С и с дальнейшим ростом температуры уменьшается. Скорость звука в воде растет с увеличением давления примерно на 0,01% на 1 атмосферу; кроме того, скорость звука в воде растет с увеличением содержания растворенных в ней солей.

В сжиженных газах скорость звука больше, чем в газе при той же температуре. Так, например, в газообразном азоте при температуре минус 195°С скорость звука равна 176 м/с, а в жидком при той же температуре минус 859 м/с; в газообразном и жидком гелии при минус 269°С она равна соответственно 102 м/с и 198 м/с.

В водных растворах солей скорость звука растет с ростом концентрации по всем интервале концентраций. Таким образом, измерения скорости звука могут служить для определения и контроля концентрации компонент смесей и растворов.

Скорость звука в твердых телах . Скорость звука в изотропных твердых телах определяется модулями упругости вещества. В неограниченной твердой среде распространяются продольные и сдвиговые (поперечные) упругие волны , причем фазовая скорость звука для продольной волны равна:

, а для сдвиговой

,

где Е – модуль Юнга; r - плотность вещества; G – модуль сдвига; n - коэффициент Пуассона; К – модуль объемного сжатия. В металлах, где n=0,3 , можно проследить зависимость отношения скоростей звука по рис. 2.2.

Рис. 2.2. Зависимость соотношения скоростей продольных , поперечных , поверхностных волн и волн в стержнях (при d<<1) от коэффициента Пуассона.

Скорость распространения продольных волн всегда больше, чем скорость сдвиговых волн, а именно выполняется соотношение . Значения продольной и поперечной скорости звука для некоторых твердых тел приведены в таблице 2.2.

Таблица 2.2

Скорость звука в некоторых твердых веществах.

Материал м/с м/с С ст, м/с
Бетон 4200-5300 - -
Полистирол 2350-2380 1860-2240
Железо 5835-5950 3180-3240 5000-5200
Золото 3200-3240
Платина 3260-3960 1670-1730 2690-2800
Свинец 1960-2400 700-790 1200-1320
Цинк 4170-4210 3700-3850
Серебро 3650-3700 1600-1690 2610-2800
Углеродистые стали 5900 - 5940 3220 – 3250 5099-5177
Нержавеющие стали 5660 – 6140 3120 – 3250
Титан
Медь
Алюминиевый сплав АМГ

В ограниченных твердых телах, кроме продольной и поперечной волн, имеются и другие типы волн. Так, вдоль свободной поверхности твердого тела или вдоль границы его с другой средой распространяется специфический вид волн – поверхностные волны , скорость которых меньше, чем все остальные скорости звука для данного твердого тела. В пластинах, стержнях и других твердых акустических волноводах распространяются нормальные волны , скорость которых определяется не только упругими характеристиками вещества, но и геометрией тела. Так, например, скорость звука для продольной волны в стержне, поперечные размеры которого много меньше длины волны, равна: . В таблице 2.2 приведены значения скорости звука в тонком стержне для некоторых материалов.

Для распространения звука необходима упругая среда. В вакууме звуковые волны распро­страняться не могут, так как там нечему колебаться. В этом можно убедиться на простом опыте. Если поместить под стеклянный колокол электрический звонок, то по мере выкачивания из-под колокола воздуха звук от звонка будет становиться все слабее и слабее, пока не прекратится совсем.

Известно, что во время грозы мы видим вспышку молнии и лишь через некоторое время слы­шим раскаты грома. Это запаздывание возникает из-за того, что скорость звука в воздухе значи­тельно меньше скорости света, идущего от молнии.

Скорость звука в воздухе впервые была измерена в 1636 г. французским ученым М. Мерсен-ном. При температуре 20 °С она равна 343 м/с, т. е. 1235 км/ч. Заметим, что именно до такого значения уменьшается на расстоянии 800 м скорость пули, вылетевшей из автомата Калашни­кова. Начальная скорость пули 825 м/с, что значительно превышает скорость звука в воздухе. Поэтому человек, услышавший звук выстрела или свист пули, может не беспокоиться: эта пуля его уже миновала. Пуля обгоняет звук выстрела и достигает своей жертвы до того, как приходит этот звук.

Скорость звука в газах зависит от температуры среды: с увеличением температуры воздуха она возрастает, а с уменьшением - убывает. При 0 °С скорость звука в воздухе составляет 332 м/с.

В разных газах звук распространяется с разной скоростью. Чем больше масса молекул газа, тем меньше скорость звука в нем. Так, при температуре 0 °С скорость звука в водороде составляет 1284 м/с, в гелии - 965 м/с, а в кислороде - 316 м/с.

Скорость звука в жидкостях, как правило, больше скорости звука в газах. Скорость звука в во­де впервые была измерена в 1826 г. Ж. Колладоном и Я. Штурмом. Свои опыты они проводили на Женевском озере в Швейцарии. На одной лодке поджигали порох и одновременно ударяли в ко­локол, опущенный в воду. Звук этого колокола, опущенного в воду, улавливался на другой лодке, которая находилась на расстоянии 14 км от первой. По интервалу времени между вспышкой све­тового сигнала и приходом звукового сигнала определили скорость звука в воде. При температуре 8°С она оказалась равной 1440 м/с.

Скорость звука в твердых телах больше, чем в жидкостях и газах. Если приложить ухо к рель­су, то после удара по другому концу рельса слышно два звука. Один из них достигает уха по рельсу, другой - по воздуху.

Хорошей проводимостью звука обладает земля. Поэтому в старые времена при осаде в крепос­тных стенах помещали «слухачей», которые по звуку, передаваемому землей, могли определить, ведет ли враг подкоп к стенам или нет. Прикладывая ухо к земле, также следили за приближе­нием вражеской конницы.

Твердые тела хорошо проводят звук. Благодаря этому люди, потерявшие слух, иной раз спо­собны танцевать под музыку, которая доходит до слуховых нервов не через воздух и наружное ухо, а через пол и кости.

Скорость звука можно определить, зная длину волны и частоту (или период) колебаний.

Скорость звука - скорость распространения упругих волн в среде: как продольных (в газах, жидкостях или твёрдых телах), так и поперечных, сдвиговых (в твёрдых телах). Определяется упругостью и плотностью среды: как правило, в газах скорость звука меньше, чем в жидкостях , а в жидкостях - меньше, чем в твёрдых телах. Также, в газах скорость звука зависит от температуры данного вещества , в монокристаллах - от направления распространения волны. Обычно не зависит от частоты волны и её амплитуды ; в тех случаях, когда скорость звука зависит от частоты, говорят о дисперсии звука.

Энциклопедичный YouTube

  • 1 / 5

    Уже у античных авторов встречается указание на то, что звук обусловлен колебательным движением тела (Птолемей , Евклид). Аристотель отмечает, что скорость звука имеет конечную величину, и правильно представляет себе природу звука . Попытки экспериментального определения скорости звука относятся к первой половине XVII в. Ф.Бэкон в «Новом органоне » указал на возможность определения скорости звука путём сравнения промежутков времени между вспышкой света и звуком выстрела. Применив этот метод, различные исследователи (М.Мерсенн , П.Гассенди , У.Дерхам , группа учёных Парижской академии наук - Д.Кассини , Ж.Пикар , Гюйгенс , Рёмер) определили значение скорости звука (в зависимости от условий экспериментов, 350-390 м/с). Теоретически вопрос о скорости звука впервые рассмотрел И.Ньютон в своих «Началах ». Ньютон фактически предполагал изотермичность распространения звука, поэтому получил заниженную оценку. Правильное теоретическое значение скорости звука было получено Лапласом .

    Расчёт скорости в жидкости и газе

    Скорость звука в однородной жидкости (или газе) вычисляется по формуле:

    c = 1 β ρ {\displaystyle c={\sqrt {\frac {1}{\beta \rho }}}}

    В частных производных:

    c = − v 2 (∂ p ∂ v) s = − v 2 C p C v (∂ p ∂ v) T {\displaystyle c={\sqrt {-v^{2}\left({\frac {\partial p}{\partial v}}\right)_{s}}}={\sqrt {-v^{2}{\frac {Cp}{Cv}}\left({\frac {\partial p}{\partial v}}\right)_{T}}}}

    где β {\displaystyle \beta } - адиабатическая сжимаемость среды; ρ {\displaystyle \rho } - плотность; C p {\displaystyle Cp} - изобарная теплоемкость; C v {\displaystyle Cv} - изохорная теплоемкость; p {\displaystyle p} , v {\displaystyle v} , T {\displaystyle T} - давление, удельный объём и температура среды; s {\displaystyle s} - энтропия среды.

    Для растворов и других сложных физико-химических систем (например, природный газ, нефть) данные выражения могут давать очень большую погрешность.

    Твёрдые тела

    При наличии границ раздела, упругая энергия может передаваться посредством поверхностных волн различных типов, скорость которых отличается от скорости продольных и поперечных волн. Энергия этих колебаний может во много раз превосходить энергию объемных волн.

    СКОРОСТЬ ЗВУКА - скорость распространения в среде . Определяется упругостью и плотностью среды. Для , бегущей без изменения формы со скоростью с в направлении оси х , звуковое давление р можно представить в виде р = р(х - - ct) , где t - время. Для плоской гармония, волны в среде без дисперсии и С. з. выражается через частоту w и k ф-лой с = w/k. Со скоростью с распространяется фаза гармонич. волны, поэтому с наз. также фазовой С. з. В средах, в к-рых форма произвольной волны меняется при распространении, гармонич. волны тем не менее сохраняют свою форму, но фазовая скорость оказывается различной для разных частот, т. е. имеет место дисперсия звука .В этих случаях пользуются также понятием групповой скорости . При больших амплитудах упругой волны появляются нелинейные эффекты (см. Нелинейная акустика ),приводящие к изменению любых волн, в т. ч. и гармонических: скорость распространения каждой точки профиля волны зависит от величины давления в этой точке, возрастая с ростом давления, что и приводит к искажению формы волны.

    Скорость звука в газах и жидкостях . В газах и жидкостях звук распространяется в виде объёмных волн сжатия - разряжения. Если процесс распространения происходит адиабатически (что, как правило, и имеет место), т. е. изменение темп-ры в звуковой волне не успевает выравниваться и за 1 / 2 , периода тепло из нагретых (сжатых) участков не успевает перейти к холодным (разреженным), то С. з. равна , где Р - давление в веществе, - его плотность, а индекс s показывает, что производная берётся при постоянной энтропии. Эта С. з. наз. адиабатической. Выражение для С. з. может быть записано также в одной из следующих форм:

    где К ад - адиабатич. модуль всестороннего сжатия вещества, - адиабатич. сжимаемость, - изотермич. сжимаемость, = - отношение теплоёмкостей при постоянных давлении и объёме.

    В ограниченных твёрдых телах кроме продольных и поперечных волн имеются и др. типы волн. Так, вдоль свободной поверхности твёрдого тела или вдоль границы его с др. средой распространяются поверхностные акустические волны , скорость к-рых меньше скорости объёмных волн, характерных для данного материала. Для пластин, стержней и др. твёрдых акустич. волноводов характерны нормальные волны ,скорость к-рых определяется не только свойствами вещества, но и геометрией тела. Так, напр., С. з. для продольной волны в стержне с ст, поперечные размеры к-рого много меньше длины волны звука, отличается от С. з. в неограниченной среде с l (табл. 3):

    Методы измерения С.з. можно подразделить на резонансные, интерферометрические, импульсные и оптические (см. Дифракция света на ультразвуке ).Наиб. точности измерения достигают с помощью импульсно-фазовых методов. Оптич. методы дают возможность измерять С. з. на гиперзвуковых частотах (вплоть до 10 11 -10 12 Гц). Точность абс. измерений С. з. на лучшей аппаратуре ок. 10 -3 % , тогда как точность относит. измерений порядка 10 -5 % (напр., при изучении зависимости с от темп-ры или магн. поля пли от концентрации примесей или дефектов).

    Измерения С. з. используются для определения мн. свойств вещества, таких, как величина отношения теплоёмкостей для газов, сжимаемости газов и жидкостей, модулей упругости твёрдых тел, дебаевской темп-ры и др. (см. Молекулярная акустика) . Определение малых изменений С. з. является чувствит. методом фиксирования примесей в газах и жидкостях. В твёрдых телах измерение С. з. и её зависимости от разл. факторов (темп-ры, магн. поля и др.) позволяет исследовать строение вещества: зонную структуру полупроводников, строение поверхности Ферми в металлах и пр.

    Лит.: Ландау Л. Д., Л и ф ш и ц Е. М., Теория упругости, 4 изд., М., 1987; их же, Гидродинамика, 4 изд., М., 1988; Бергман Л., и его применение в науке и технике, пер. с нем., 2 изд., М., 1957; Михайлов И. Г., Соловьев В. А., Сырников Ю. П., Основы молекулярной акустики, М., 1964; Таблицы для расчета скорости звука в морской воде, Л., 1965; Физическая акустика, под ред. У. Мэзона, пер. с англ., т. 1, ч. А, М., 1966, гл. 4; т. 4, ч. Б, М., 1970, гл. 7; Колесников А. Е., Ультразвуковые измерения, 2 изд., М., 1982; Т р у э л л Р., Э л ь б а у м Ч., Ч и к Б., Ультразвуковые методы в физике твердого тела, пер. с англ., М., 1972; Акустические кристаллы, под ред. М. П. Шаскольской, М., 1982; Красильни ков В. А., Крылов В. В., Введение в физическую акустику, М., 1984. А. Л. Полякова .

    Белорусский государственный университет

    Физический факультет Кафедра общей физики

    Методические указания к лабораторной работе 23н

    « ОПРЕДЕЛЕНИЕ СКОРОСТИ ЗВУКА В МЕТАЛЛЕ»

    Утверждены на заседании

    Кафедры общей физики

    «____»__________2002 г.

    Жолнеревич И.И. – зав. кафедрой общей физики, доцент Перковский Т. А.. – старший преподаватель

    Задание : определить скорость звука в стальной пластинке с предельной относительной погрешностью, не превышающей 5 %.

    Оборудование и принадлежности : установка для определения скорости звука стальной пластинке, микрометр.

    ОПИСАНИЕ УСТАНОВКИ Установка (рис. 1) состоит из

    двух частей: генератора электромагнитных колебаний и стойки.

    В основании стойки закреплена колонка 1 и телефон 2 (без мембраны) . Вдоль колонки можно перемещать и фиксировать в произвольном положении кронштейн 3 с тисками 4, которые служат для закрепления

    пластинки 5. Ее длину можно изменять. При этом кронштейн необходимо перемещать так, чтобы нижний конец пластинки находился против телефона. С помощью винта 6 можно изменять расстояние от телефона до нижнего конца пластинки.

    На передней панели генератора находится регулятор амплитуды напряжения 7, регулятор частоты 8 и дисплей 9, на котором отображаются значения амплитуды напряжения и частоты. На задней панели генератора (рис. 2) находится выключатель сети 10.

    ЭЛЕМЕНТЫ ТЕОРИИ Общие сведения. Волной называют колебания, распространяющиеся в простран-

    стве с течением времени. В механической волне колебания совершают частицы вещества. Вэлектромагнитной волне происходят колебания электрического и магнитного полей.Волновым фронтом называется множество точек, до которых дошли колебания.

    Это «передний край» волны. Волновой поверхностью называется множество точек, в которых колебания происходят в одинаковой фазе. В зависимости от формы волновой по-

    верхности различают плоские, сферические, цилиндрическиеи т.д. волны. Длиной волны

    () называется расстояние между волновыми поверхностями, колебания которых происходят с разностью фаз 2 . Период (T) – это время, за которое происходит одно колебание.Частота () – это число колебаний в единицу времени. Частота измеряется в герцах (Гц). 1 Гц – это частота, при которой происходит одно колебание в секунду. Скорость электромагнитных волн в вакууме равна 3 108 м/с. Скорость механических волн зависит от свойств вещества. За один период волна распространяется на расстояние, равное ее длине:

    Волна, в которой колебания происходят с единственной частотой, называется монохроматической волной. Например, монохроматическую звуковую волну издает камертон. В большинстве случаев в волне присутствуют колебания нескольких частот.

    Механические волны в веществе называются упругими волнами. Упругие волны с большой амплитудой называютсяударными волнами. Упругие волны с малой амплитудой, которые воспринимаются человеческим ухом, называютсязвуком . Частота звука лежит в интервале приблизительно от 16Гц до 20000Гц .

    Упругие волны в жидкостях и газах являются продольными. В них колебания частиц вещества происходятвдоль направления распространения волны. (Волны на поверхности жидкости не являются упругими. Они вызваны либо силами поверхностного натяжения, либо силами тяжести.) В твёрдых телах могут распространяться как продольные, так ипоперечные волны. В поперечной волне колебания частиц происходятперпендикулярно направлению распространения волны.

    Скорость продольных звуковых волн в твёрдых телах определяется соотношени-

    где E – модуль Юнга, – плотность тела.

    Теория метода. В упругом теле конечных размеров (например, струна или камертон) могут происходить колебания с определенными частотами. В этом можно убедиться, ударив молоточком по струне, камертону или другому упругому телу. Этособственные колебания упругого тела, их частоты связаны между собой. Амплитуда колебаний минимальной частоты (основного тона или первой гармоники), наибольшая. Эта частота определяет звучание тела. Амплитуда колебаний второй, третьей т.д. гармоник, или обертонов, меньше. От них зависит тембр звучания.

    В упругом теле, на которое действует периодически изменяющаяся внешняя сила, возникают вынужденные колебания той же частоты. Если частота внешней силы совпадет с частотой одной из гармоник собственных колебаний тела, наступитрезонанс . При этом амплитуда колебаний тела резко возрастет.

    Аналогичная зависимость наблюдается и для стальной пластинки, один конец которой жестко закреплен (рис. 3). Амплитуда колебаний пластинки резко возрастает, когда частота внешней силы, приложенной к нижнему концу пластинки, совпадает с одной из частот ν i

    ее собственных колебаний (i = 1, 2, 3 … – номер гармоники колебаний). Частота ν i зависит от размеров и физических свойств (модуля Юнга и плотности) материала пластинки. Скорость звука (см. соотношение 3) также определяется физическими свойствами материала пластинки.

    Теоретический анализ показывает, что скорость звука в пластинке выражается через ее длину L , толщину d , собственную частоту колебаний i и безразмерный параметр b i :

    Численное значение b i определяется номером гармоники колебаний:b 1 =

    1,87510; b 2

    4,69410; b k

    (2k 1)

    K 3,4,....

    Из (4) следует, что собственная частота колебаний пластинки обратно пропорциональна квадратуее длины (остальные величины в (4) постоянные):

    b2 cd

    Порядок выполнения задания

    1. С помощью регуляторов 7 и 8 (рис. 1) установить нулевые значения амплитуды напряжения и частоты. Установить длину пластинки L = 11 см. Это максимальная длина пластинки, которой соответствует минимальная частота собственных колебаний. Про уменьшении длины пластинки собственная частота колебаний будет возрастать.

    2. Включить генератор электромагнитных колебаний. Установить некоторое значение выходного напряжения (в интервале от 5 В до 9 В).

    3. Увеличивая частоту (с шагом 1 Гц), определить, в каком интервале частот становятся особенно заметными вынужденные колебания пластинки. После этого, уменьшая напряжение, изменяя расстояние между нижним концом пластинки и телефоном и плавно изменяя частоту (с шагом 0,1 Гц), определить резонансную частоту (первую гармоникусобственных колебаний пластинки).

    4. Определить частоту второй гармоники при данной длине пластинки. Для ускорения поиска 2 следует учесть, что2 = (b 2 /b 1 ) 2 1 = 6,267 1 (это вытекает из соотноше-

    5. Уменьшая длину пластинки до 8 см через 0,5 см, определить соответствующие каждому значению L собственные частоты колебаний1 и2 . Результаты измерений занести в таблицу1.

    6. Из соотношения (4) оценить минимальную относительную погрешность косвенных измерений величины c . Приборную погрешность считать равной 0,1 Гц.

    Таблица 1.

    Результаты измерения зависимости собственной частоты колебаний стальной пластинки от ее длины.

    L , м

    1 , Гц

    2 , Гц

    7. Обозначив в формуле (5) 1/L 2 =x, i , =y, k i =a, определить методом наименьших квадратов среднее значение и относительную случайную погрешностьk i для 1-й и 2-й гармоник (см. приложение, формулы (11) и (13)). Из соотношения (7) определить среднее значение и относительную случайную погрешностьс на 1-й и 2-й гармониках.

    8. Определить полную относительную погрешность косвенных измерений скорости звука в стальной пластинке.

    На основании проделанных измерений сформулировать цель работы и сделать выводы.

    Контрольные вопросы.

    1. От чего зависит скорость распространения волн в упругой среде?

    2. Имеются ли среды, в которых скорость распространения поперечных волн больше, чем продольных?

    3. Как определить собственные частоты колебаний упругого тела (стальной пластинки, струны рояля, столба воздуха в трубе органа)?

    ЛИТЕРАТУРА

    1. Кембровский Г.С. Приближённые вычисления и методы обработки результатов измерений в физике. -Минск: Изд-во "Университетское", 1990.

    2. Матвеев А.Н. Механика и теория относительности. -М.: Высшая школа, 1986.

    3. Петровский И.И. Механика. -Минск: Изд-во БГУ, 1973.

    4. Савельев И.В. Курс общей физики. -М.: Наука, 1982. Т. 1. Механика. Молекулярная физика.

    5. Сивухин Д.В. Общий курс физики. М.: Наука, 1989 Т. 1. Механика.

    6. Стрелков С.П. Механика. -М.: Наука, 1975.

    7. Физический практикум. Под ред. Кембровского Г.С. -Минск: Изд-во "Универ-

    ситетское", 1986.

    ПРИЛОЖЕНИЕ

    МЕТОД НАИМЕНЬШИХ КВАДРАТОВ

    Пусть некоторая величина y прямо пропорциональна величинех, т.е.

    y = ax. (8)

    Экспериментально независимыми способами измерен ряд значений x i ,i = 1, 2, ...,n , одной величины и соответствующие им значенияy i другой величины. При графической обработке результатов измерений полученные данные по соответствующим правилам изображаются в виде точек (рис. 1п). Дальнейшая задача сводится к подбору такого угла наклона проводимой прямой, при котором она располагалась бы возможно ближе ко всем точкам и по обе ее стороны оказывалось бы приблизительно равное их коли-

    чество. Понятно, что выполнение подобной операции “на глаз” не может обеспечить высокую точностью Более точное математическое правило проведения прямой линии заключается в нахождении такого значения параметра а , при котором сумма квадратов отклонений всех экспериментальных точек от линии графика была бы наименьшей.

    Обычно случайные погрешности в определении аргумента х незначительны (как правило, в ходе эксперимента значенияx i задаются и устанавливаются на приборах самим экспериментатором). Поэтому отклонения экспериментальных точек от прямой, т.е. случайные погрешностиy i , будут равны разностям ординат данных точек и соответствующих точек на прямой (см. рис. 1п). Согласно методу наименьших квадратов наилучшей будет та прямая, для которой будет минимальной величина

    y i 2n

    (ax iy i) 2 .

    По условию минимума производная от величины S по параметруa должна быть равна нулю:

    При количестве измерений n 10 абсолютную случайную погрешность принимают равнойa c = 3a , приn = 7a c = 4a , приn = 5 величинаa c = 5a .

    Относительная случайная погрешность a,c =a c /a, или в процентах

    a, c

    Инструментальные и другие погрешности оценивают так же, как и при косвенных измерениях.



Понравилась статья? Поделитесь с друзьями!