Сложение векторов с помощью параллелограмма. Действия с векторами

Как происходит сложение векторов, не всегда понятно ученикам. Дети не представляют того, что за ними скрывается. Приходится просто запоминать правила, а не вдумываться в суть. Поэтому именно о принципах сложения и вычитания векторных величин требуется много знаний.

В результате сложения двух и более векторов всегда получается еще один. Причем он всегда обязательно будет одинаковым, независимо от приема его нахождения.

Чаще всего в школьном курсе геометрии рассматривается сложение двух векторов. Оно может быть выполнено по правилу треугольника или параллелограмма. Эти рисунки выглядят по-разному, но результат от действия один.

Как происходит сложение по правилу треугольника?

Оно применяется тогда, когда векторы неколлинеарные. То есть не лежат на одной прямой или на параллельных.

В этом случае от некоторой произвольной точки нужно отложить первый вектор. Из его конца требуется провести параллельный и равный второму. Результатом станет вектор, исходящий из начала первого и завершающийся в конце второго. Рисунок напоминает треугольник. Отсюда и название правила.

Если векторы коллинеарные, то это правило тоже можно применять. Только рисунок будет расположен вдоль одной линии.

Как выполняется сложение по правилу параллелограмма?

Опять же? применяется только для неколлинеарных векторов. Построение выполняется по другому принципу. Хотя начало такое же. Нужно отложить первый вектор. И от его начала - второй. На их основе достроить параллелограмм и провести диагональ из начала обоих векторов. Она и будет результатом. Так выполняется сложение векторов по правилу параллелограмма.

До сих пор их было два. А как быть, если их 3 или 10? Использовать следующий прием.

Как и когда применяется правило многоугольника?

Если требуется выполнить сложение векторов, число которых — больше двух, пугаться не стоит. Достаточно последовательно отложить их все и соединить начало цепочки с ее концом. Этот вектор и будет искомой суммой.

Какие свойства действительны для действий с векторами?

О нулевом векторе. Которое утверждает, что при сложении с ним получается исходный.

О противоположном векторе. То есть о таком, который имеет противоположное направление и равное по модулю значение. Их сумма будет равна нулю.

О коммутативности сложения. То, что известно еще с начальной школы. Смена мест слагаемых не приводит к изменению результата. Другими словами, неважно какой вектор откладывать сначала. Ответ все равно будет верным и единственным.

Об ассоциативности сложения. Этот закон позволяет складывать попарно любые векторы из тройки и к ним прибавлять третий. Если записать это с помощью знаков, то получится следующее:

первый + (второй + третий) = второй + (первый + третий) = третий + (первый + второй).

Что известно о разности векторов?

Отдельной операции вычитания не существует. Это связано с тем, что оно, по сути, является сложением. Только второму из них задается противоположное направление. А потом все выполняется так, как если бы рассматривалось сложение векторов. Поэтому об их разности практически не говорят.

Для того чтобы упростить работу с их вычитанием, видоизменено правило треугольника. Теперь (при вычитании) второй вектор нужно отложить из начала первого. Ответом будет тот, что соединяет конечную точку уменьшаемого с ней же вычитаемого. Хотя можно и откладывать так, как было описано ранее, просто изменив направление второго.

Как найти сумму и разность векторов в координатах?

В задаче даны координаты векторов и требуется узнать их значения для итогового. При этом построений выполнять не нужно. То есть можно воспользоваться несложными формулами, которые описывают правило сложения векторов. Они выглядят так:

а (х, у, z) + в (k, l, m) = с (х+k, y+l, z+m);

а (х, у, z) -в (k, l, m) = с (х-k, y-l, z-m).

Легко заметить, что координаты нужно просто сложить или вычесть в зависимости от конкретного задания.

Первый пример с решением

Условие. Дан прямоугольник АВСД. Его стороны равны 6 и 8 см. Точка пересечения диагоналей обозначена буквой О. Требуется вычислить разность векторов АО и ВО.

Решение. Сначала нужно изобразить эти векторы. Они направлены от вершин прямоугольника к точке пересечения диагоналей.

Если внимательно посмотреть на чертеж, то можно увидеть, что векторы уже совмещены так, чтобы второй из них соприкасался с концом первого. Вот только его направление неверное. Он должен из этой точки начинаться. Это если векторы складываются, а в задаче — вычитание. Стоп. Это действие означает, что нужно прибавить противоположно направленный вектор. Значит, ВО нужно заменить на ОВ. И получится, что два вектора уже образовали пару сторон из правила треугольника. Поэтому результат от их сложения, то есть искомая разность, — вектор АВ.

А он совпадает со стороной прямоугольника. Для того чтобы записать числовой ответ, потребуется следующее. Начертить прямоугольник вдоль так, чтобы большая сторона шла горизонтально. Нумерацию вершин начинать с левой нижней и идти против часовой стрелки. Тогда длина вектора АВ будет равна 8 см.

Ответ. Разность АО и ВО равна 8 см.

Второй пример и его подробное решение

Условие. У ромба АВСД диагонали равны 12 и 16 см. Точка их пересечения обозначена буквой О. Вычислите длину вектора, образованного разностью векторов АО и ВО.

Решение. Пусть обозначение вершин ромба будет таким же, как в предыдущей задаче. Аналогично решению первого примера получается, что искомая разность равна вектору АВ. А его длина неизвестна. Решение задачи свелось к тому, чтобы вычислить одну из сторон ромба.

Для этой цели потребуется рассмотреть треугольник АВО. Он прямоугольный, потому что диагонали ромба пересекаются под углом в 90 градусов. А его катеты равны половинам диагоналей. То есть 6 и 8 см. Искомая в задаче сторона совпадает с гипотенузой в этом треугольнике.

Для ее нахождения потребуется теорема Пифагора. Квадрат гипотенузы будет равен сумме чисел 6 2 и 8 2 . После возведения в квадрат получатся значения: 36 и 64. Их сумма — 100. Отсюда следует, что гипотенуза равна 10 см.

Ответ. Разность векторов АО и ВО составляет 10 см.

Третий пример с детальным решением

Условие. Вычислить разность и сумму двух векторов. Известны их координаты: у первого — 1 и 2, у второго — 4 и 8.

Решение. Для нахождения суммы потребуется сложить попарно первые и вторые координаты. Результатом будут числа 5 и 10. Ответом будет вектор с координатами (5; 10).

Для разности нужно выполнить вычитание координат. После выполнения этого действия получатся числа -3 и -6. Они и будут координатами искомого вектора.

Ответ. Сумма векторов — (5; 10), их разность — (-3; -6).

Четвертый пример

Условие. Длина вектора АВ равна 6 см, ВС — 8 см. Второй отложен от конца первого под углом в 90 градусов. Вычислить: а) разность модулей векторов ВА и ВС и модуль разности ВА и ВС; б) сумму этих же модулей и модуль суммы.

Решение: а) Длины векторов уже даны в задаче. Поэтому вычислить их разность не составит труда. 6 - 8 = -2. Несколько сложнее обстоит дело с модулем разности. Сначала нужно узнать, какой вектор будет являться результатом вычитания. Для этой цели следует отложить вектор ВА, который направлен в противоположную сторону АВ. Потом от его конца провести вектор ВС, направив его в сторону, противоположную исходному. Результатом вычитания получится вектор СА. Его модуль можно вычислить по теореме Пифагора. Несложные вычисления приводят к значению 10 см.

б) Сумма модулей векторов получается равной 14 см. Для поиска второго ответа потребуется некоторое преобразование. Вектор ВА противоположно направлен тому, который дан — АВ. Оба вектора направлены из одной точки. В этой ситуации можно использовать правило параллелограмма. Результатом сложения будет диагональ, причем не просто параллелограмма, а прямоугольника. Его диагонали равны, значит, модуль суммы такой же, как в предыдущем пункте.

Ответ: а) -2 и 10 см; б) 14 и 10 см.

вектора от данной точки.

Определение 1

Если точка $A$ начала какого-либо вектора $\overrightarrow{a}$, то говорят, что вектор $\overrightarrow{a}$ отложен от точки $A$ (рис. 1).

Рисунок 1. $\overrightarrow{a}$ отложенный от точки $A$

Введем следующую теорему:

Теорема 1

От любой точки $K$ можно отложить вектор $\overrightarrow{a}$ и притом только один.

Доказательство.

Существование: Здесь нужно рассмотреть два случая:

    Вектор $\overrightarrow{a}$ - нулевой.

    В этом случае, очевидно, что искомый вектор -- вектор $\overrightarrow{KK}$.

    Вектор $\overrightarrow{a}$ - ненулевой.

Обозначим точкой $A$ начало вектора $\overrightarrow{a}$, а точкой $B$ - конец вектора $\overrightarrow{a}$. Проведем через точку $K$ прямую $b$ параллельную вектору $\overrightarrow{a}$. Отложим на этой прямой отрезки $\left|KL\right|=|AB|$ и $\left|KM\right|=|AB|$. Рассмотрим векторы $\overrightarrow{KL}$ и $\overrightarrow{KM}$. Из этих двух векторов искомым будет тот, который будет сонаправлен с вектором $\overrightarrow{a}$ (рис. 2)

Рисунок 2. Иллюстрация теоремы 1

Единственность: единственность сразу следует из построения, проведенного в пункте «существование».

Теорема доказана.

Сложение векторов. Правило треугольника

Пусть нам даны векторы $\overrightarrow{a}$ и $\overrightarrow{b}$.

Определение 2

Суммой векторов $\overrightarrow{a}+\overrightarrow{b}$ называется вектор $\overrightarrow{c}=\overrightarrow{AC}$, построенный следующим образом: От произвольной точки $A$ отклабывается вектор $\overrightarrow{AB}=\overrightarrow{a}$, затем от полученной точки $B$ откладывается вектор $\overrightarrow{BC}=\overrightarrow{b}$ и соединяют точку $A$ c точкой $C$ (рис. 3).

Рисунок 3. Сумма векторов

Замечание 1

Иначе, определение 2, еще называют правилом треугольника для сложения двух векторов.

Из этого правила следует несколько свойств сложения двух векторов:

    Для любого вектора $\overrightarrow{a}$ выполняется равенство

    \[\overrightarrow{a}+\overrightarrow{0}=\overrightarrow{a}\]

    Для любых произвольных точек $A,\ B\ и\ C$ выполняется равенство

    \[\overrightarrow{AB}+\overrightarrow{BC}=\overrightarrow{AC}\]

Замечание 2

Аналогично правилу треугольника можно строить сумму любого количества векторов. Такое правило сложения называется правилом многоугольника.

Правило параллелограмма

Помимо правила треугольника для сложения двух векторов, есть еще правило параллелограмма для сложения двух векторов. Сформулируем и докажем для начала следующую теорему.

Теорема 2

Для любых треух векторов $\overrightarrow{a},\ \overrightarrow{b}\ и\ \overrightarrow{c}$ справедливы следующие два закона:

  1. Переместительный закон:
\[\overrightarrow{a}+\overrightarrow{b}=\overrightarrow{b}+\overrightarrow{a}\]
  1. Сочетательный закон:
\[\left(\overrightarrow{a}+\overrightarrow{b}\right)+\overrightarrow{c}=\overrightarrow{a}+\left(\overrightarrow{b}+\overrightarrow{c}\right)\]

Доказательство.

Переместительный закон:

Сочетательный закон:

Построим следующий рисунок: Отложим от произвольной точки $A$ вектор $\overrightarrow{AB}=\overrightarrow{a}$, от полученной точки $B$ -- вектор $\overrightarrow{BC}=\overrightarrow{b}$ и от точки $C$ -- вектор $\overrightarrow{CD}=\overrightarrow{c}$ (Рис. 5).

Рисунок 5. Иллюстрация сочетательного закона

Из свойства правила треугольника $\overrightarrow{AB}+\overrightarrow{BC}=\overrightarrow{AC}$, получим:

Следовательно, $\left(\overrightarrow{a}+\overrightarrow{b}\right)+\overrightarrow{c}=\overrightarrow{a}+\left(\overrightarrow{b}+\overrightarrow{c}\right)$.

Теорема доказана.

Из этой теоремы мы теперь можем выделить правило параллелограмма для суммы двух неколлинеарных векторов: чтобы сложить два неколлинеарных вектора $\overrightarrow{a}$ и $\overrightarrow{b}$, нужно отложить от произвольной точки $A$ векторы $\overrightarrow{AB}=\overrightarrow{a}$ и $\overrightarrow{AD}=\overrightarrow{b}$ и построить параллелограмм $ABCD$. Тогда $\overrightarrow{a}+\overrightarrow{b}=\overrightarrow{AC}$.

Пример задачи на сложение векторов

Пример 1

Дан четырехугольник $ABCD$. Доказать, что $\overrightarrow{AB}+\overrightarrow{BC}+\overrightarrow{CD}=\overrightarrow{AD}$

Рисунок 6.

Доказательство.

Воспользуемся свойством правила треугольника $\overrightarrow{AB}+\overrightarrow{BC}=\overrightarrow{AC}$, получим:

\[\overrightarrow{AB}+\overrightarrow{BC}+\overrightarrow{CD}=\overrightarrow{AC}+\overrightarrow{CD}=\overrightarrow{AD}\]

Как происходит сложение векторов, не всегда понятно ученикам. Дети не представляют того, что за ними скрывается. Приходится просто запоминать правила, а не вдумываться в суть. Поэтому именно о принципах сложения и вычитания векторных величин требуется много знаний.

В результате сложения двух и более векторов всегда получается еще один. Причем он всегда обязательно будет одинаковым, независимо от приема его нахождения.

Чаще всего в школьном курсе геометрии рассматривается сложение двух векторов. Оно может быть выполнено по правилу треугольника или параллелограмма. Эти рисунки выглядят по-разному, но результат от действия один.

Как происходит сложение по правилу треугольника?

Оно применяется тогда, когда векторы неколлинеарные. То есть не лежат на одной прямой или на параллельных.

В этом случае от некоторой произвольной точки нужно отложить первый вектор. Из его конца требуется провести параллельный и равный второму. Результатом станет вектор, исходящий из начала первого и завершающийся в конце второго. Рисунок напоминает треугольник. Отсюда и название правила.

Если векторы коллинеарные, то это правило тоже можно применять. Только рисунок будет расположен вдоль одной линии.

Как выполняется сложение по правилу параллелограмма?

Опять же? применяется только для неколлинеарных векторов. Построение выполняется по другому принципу. Хотя начало такое же. Нужно отложить первый вектор. И от его начала - второй. На их основе достроить параллелограмм и провести диагональ из начала обоих векторов. Она и будет результатом. Так выполняется сложение векторов по правилу параллелограмма.

До сих пор их было два. А как быть, если их 3 или 10? Использовать следующий прием.

Как и когда применяется правило многоугольника?

Если требуется выполнить сложение векторов, число которых — больше двух, пугаться не стоит. Достаточно последовательно отложить их все и соединить начало цепочки с ее концом. Этот вектор и будет искомой суммой.

Какие свойства действительны для действий с векторами?

О нулевом векторе. Которое утверждает, что при сложении с ним получается исходный.

О противоположном векторе. То есть о таком, который имеет противоположное направление и равное по модулю значение. Их сумма будет равна нулю.

О коммутативности сложения. То, что известно еще с начальной школы. Смена мест слагаемых не приводит к изменению результата. Другими словами, неважно какой вектор откладывать сначала. Ответ все равно будет верным и единственным.

Об ассоциативности сложения. Этот закон позволяет складывать попарно любые векторы из тройки и к ним прибавлять третий. Если записать это с помощью знаков, то получится следующее:

первый + (второй + третий) = второй + (первый + третий) = третий + (первый + второй).

Что известно о разности векторов?

Отдельной операции вычитания не существует. Это связано с тем, что оно, по сути, является сложением. Только второму из них задается противоположное направление. А потом все выполняется так, как если бы рассматривалось сложение векторов. Поэтому об их разности практически не говорят.

Для того чтобы упростить работу с их вычитанием, видоизменено правило треугольника. Теперь (при вычитании) второй вектор нужно отложить из начала первого. Ответом будет тот, что соединяет конечную точку уменьшаемого с ней же вычитаемого. Хотя можно и откладывать так, как было описано ранее, просто изменив направление второго.

Как найти сумму и разность векторов в координатах?

В задаче даны координаты векторов и требуется узнать их значения для итогового. При этом построений выполнять не нужно. То есть можно воспользоваться несложными формулами, которые описывают правило сложения векторов. Они выглядят так:

а (х, у, z) + в (k, l, m) = с (х+k, y+l, z+m);

а (х, у, z) -в (k, l, m) = с (х-k, y-l, z-m).

Легко заметить, что координаты нужно просто сложить или вычесть в зависимости от конкретного задания.

Первый пример с решением

Условие. Дан прямоугольник АВСД. Его стороны равны 6 и 8 см. Точка пересечения диагоналей обозначена буквой О. Требуется вычислить разность векторов АО и ВО.

Решение. Сначала нужно изобразить эти векторы. Они направлены от вершин прямоугольника к точке пересечения диагоналей.

Если внимательно посмотреть на чертеж, то можно увидеть, что векторы уже совмещены так, чтобы второй из них соприкасался с концом первого. Вот только его направление неверное. Он должен из этой точки начинаться. Это если векторы складываются, а в задаче — вычитание. Стоп. Это действие означает, что нужно прибавить противоположно направленный вектор. Значит, ВО нужно заменить на ОВ. И получится, что два вектора уже образовали пару сторон из правила треугольника. Поэтому результат от их сложения, то есть искомая разность, — вектор АВ.

А он совпадает со стороной прямоугольника. Для того чтобы записать числовой ответ, потребуется следующее. Начертить прямоугольник вдоль так, чтобы большая сторона шла горизонтально. Нумерацию вершин начинать с левой нижней и идти против часовой стрелки. Тогда длина вектора АВ будет равна 8 см.

Ответ. Разность АО и ВО равна 8 см.

Второй пример и его подробное решение

Условие. У ромба АВСД диагонали равны 12 и 16 см. Точка их пересечения обозначена буквой О. Вычислите длину вектора, образованного разностью векторов АО и ВО.

Решение. Пусть обозначение вершин ромба будет таким же, как в предыдущей задаче. Аналогично решению первого примера получается, что искомая разность равна вектору АВ. А его длина неизвестна. Решение задачи свелось к тому, чтобы вычислить одну из сторон ромба.

Для этой цели потребуется рассмотреть треугольник АВО. Он прямоугольный, потому что диагонали ромба пересекаются под углом в 90 градусов. А его катеты равны половинам диагоналей. То есть 6 и 8 см. Искомая в задаче сторона совпадает с гипотенузой в этом треугольнике.

Для ее нахождения потребуется теорема Пифагора. Квадрат гипотенузы будет равен сумме чисел 6 2 и 8 2 . После возведения в квадрат получатся значения: 36 и 64. Их сумма — 100. Отсюда следует, что гипотенуза равна 10 см.

Ответ. Разность векторов АО и ВО составляет 10 см.

Третий пример с детальным решением

Условие. Вычислить разность и сумму двух векторов. Известны их координаты: у первого — 1 и 2, у второго — 4 и 8.

Решение. Для нахождения суммы потребуется сложить попарно первые и вторые координаты. Результатом будут числа 5 и 10. Ответом будет вектор с координатами (5; 10).

Для разности нужно выполнить вычитание координат. После выполнения этого действия получатся числа -3 и -6. Они и будут координатами искомого вектора.

Ответ. Сумма векторов — (5; 10), их разность — (-3; -6).

Четвертый пример

Условие. Длина вектора АВ равна 6 см, ВС — 8 см. Второй отложен от конца первого под углом в 90 градусов. Вычислить: а) разность модулей векторов ВА и ВС и модуль разности ВА и ВС; б) сумму этих же модулей и модуль суммы.

Решение: а) Длины векторов уже даны в задаче. Поэтому вычислить их разность не составит труда. 6 - 8 = -2. Несколько сложнее обстоит дело с модулем разности. Сначала нужно узнать, какой вектор будет являться результатом вычитания. Для этой цели следует отложить вектор ВА, который направлен в противоположную сторону АВ. Потом от его конца провести вектор ВС, направив его в сторону, противоположную исходному. Результатом вычитания получится вектор СА. Его модуль можно вычислить по теореме Пифагора. Несложные вычисления приводят к значению 10 см.

б) Сумма модулей векторов получается равной 14 см. Для поиска второго ответа потребуется некоторое преобразование. Вектор ВА противоположно направлен тому, который дан — АВ. Оба вектора направлены из одной точки. В этой ситуации можно использовать правило параллелограмма. Результатом сложения будет диагональ, причем не просто параллелограмма, а прямоугольника. Его диагонали равны, значит, модуль суммы такой же, как в предыдущем пункте.

Ответ: а) -2 и 10 см; б) 14 и 10 см.

Скалярная величина – это физическая величина, которая имеет только одну характеристику – численное значение.

Скалярная величина может быть положительной или отрицательной.

Примеры скалярных величин: температура, масса, объем, время, плотность. Математические действия со скалярными величинами – это алгебраические действия.

Векторная величина – это физическая величина, которая имеет две характеристики:

1) численное значение, которое всегда положительно (модуль вектора);

Примеры векторных физических величин: скорость, ускорение, сила.

Векторная величина обозначается латинской буквой и стрелкой над этой буквой. Например:

Модуль вектора обозначается так:

или - модуль вектора ,

или - модуль вектора ,

или - модуль вектора ,

На рисунке (графически) вектор изображается направленным отрезком прямой линии. Модуль вектора равен длине направленного отрезка в заданном масштабе.

2.2. Действия с векторами

Математические действия с векторными величинами – это геометрические действия.

2.2.1 Сравнение векторов

Равные векторы. Два вектора равны, если они имеют:

    равные модули,

    одинаковые направления.

Противоположные векторы. Два вектора противоположны, если они имеют:

    равные модули,

    противоположные направления.

2.2.2 Сложение векторов

Мы можем сложить два вектора геометрически по правилу параллелограмма и по правилу треугольника.

Пусть заданы два вектора и(см. рис.). Найдем сумму этих векторов+=. Величиныи- это составляющие векторы, вектор- это результирующий вектор.

Правило параллелограмма для сложения двух векторов:

1. Нарисуем вектор.

2. Нарисуем вектор так, что его начало совпадает с началом вектора; угол между векторами равен(см. рисунок).

3. Через конец вектора .

4. Через конец вектора проведем прямую линию, параллельную вектору.

Мы построили параллелограмм. Стороны этого параллелограмма – составляющие векторы и.

5. Проведем диагональ параллелограмма из общей точки начала вектора и начала вектора.

6. Модуль результирующего вектора равен длине диагонали параллелограмма и определяется по формуле:

начало вектора совпадает с началом вектораи началом вектора(направление векторапоказано на рисунке).

Правило треугольника для сложения двух векторов:

1. Нарисуем составляющие векторы итак, что начало векторасовпадает с концом вектора. При этом угол между векторами равен.

2. Результирующий вектор направлен так, что его начало совпадает с началом вектора, а конец совпадает с концом вектора.

3. Модуль результирующего вектора находим по формуле:

2.2.3 Вычитание векторов

Вычитание векторов – это действие, обратное сложению:

Найти разность вектора и вектора- это тоже самое, что найти сумму вектораи вектора
, противоположного вектору. Мы можем найти вектор разности геометрически по правилу параллелограмма или по правилу треугольника (см. рис.).

Правило параллелограмма.

Стороны параллелограмма - вектор и вектор -; диагональ параллелограмма - вектор разности
.

Правило треугольника.

Вектор разности соединяет конец вектораи конец вектора(начало векторасовпадает с концом вектора).

2.2.4 Умножение вектора на скаляр

Пусть заданы вектор и скалярn. Найдем произведение вектора и скалярного вектораn.

В результате умножения вектора на скаляр мы получаем новый вектор :

Направление вектора такое же, как направление векторапри
.

Направление вектора противоположно направлению векторапри
.

Модуль вектора вn раз больше модуля вектора, если
.

2.3. Скалярное и векторное произведения

2.3.1 Скалярное произведение

Из двух векторов иможно образовать скаляр по правилу:

Это выражение называется скалярным произведением векторов и
, или
.

Следовательно, . =
.

По определению скалярное произведение обладает следующими свойствами:

1)
,

2)
,

3)

2.3.2 Векторное произведение

Из двух векторов
и
можно образовать новый вектор:

, где

Модуль нового результирующего вектора находим по формуле:

.

Эта операция называется векторным произведением векторов ии обозначается одним из символов
или
.

Также общеизвестна формула

,

где - угол между векторамии.

Направление вектора можно найти, используя следующий прием. Мысленно совмещаем продольную ось буравчика (правого винта, штопора) с перпендикуляром к плоскости, в которой лежат перемножаемые векторы (в данном примере – векторы и ). Затем начинаем вращать головку винта (ручку штопора) по направлению кратчайшего поворота от первого сомножителя ко второму, то есть от вектора к вектору . Направление движения тела винта и будет являться направлением вектора . Этот прием называетсяправилом правого винта или правилом буравчика (см. рис.).

В терминах векторного произведения выражаются момент силы, момент импульса и др. Говоря о векторе, всегда имеем ввиду его компоненты. Вектор, в отличие от скаляра, определяется тремя числами. Поэтому такие операции как сложение, вычитание, скалярное и векторное произведения сводятся к привычным действиям с компонентами.

Сложение сил производят, используя правило сложения векторов. Или так называемое правило параллелограмма. Так как сила изображается в виде вектора, то есть это отрезок, длинна которого показывает числовое значение силы, а направление указывает направление действия силы. То складывают силы, то есть вектора, с помощью геометрического суммирования векторов.

С другой стороны сложение сил это нахождение равнодействующей нескольких сил. То есть когда на тело действует несколько разных сил. Разных как по величине, так и по направлению. Необходимо найти результирующую силу, которая буде действовать на тело в целом. В этом случае можно силы складывать попарно использую правило параллелограмма. Сначала складываем две силы. К их равнодействующей прибавляем еще одну. И так до тех пор, пока не сложатся все силы.

Рисунок 1 - Правило параллелограмма.


Правило параллелограмма можно описать так. Для двух сил выходящих из одной точки, и имеющих между собой угол отличный от нуля или 180 градусов. Можно построить параллелограмм. Путем переноса начала одного вектора в конец другого. Диагональ этого параллелограмма и будет равнодействующей этих сил.

Но также можно использовать и правило многоугольника сил. В этом случае выбирается начальная точка. Из этой точки выходит первый вектор силы действующей на тело, далее к его концу добавляется следующий вектор, методом параллельного переноса. И так далее до тех пор, пока не будет получен многоугольник сил. В конце концов, равнодействующей всех сил в такой системе будет вектор, проведенный из начальной точки в конец последнего вектора.

Рисунок 2 - Многоугольник сил.


В случае если тело движется под действием нескольких сил приложенных к разным точкам тела. Можно считать, что оно движется под действием равнодействующей силы приложенной к центру масс данного тела.

Наряду со сложением сил, для упрощения расчетов движения, применяется и метод разложения сил. Как видно из названия, суть метода заключается в том, что одну силу, действующую на тело, раскладывают на составляющие силы. В этом случае составляющие силы оказывают на тело такое же воздействие, как и изначальная сила.

Разложение сил также производится по правилу параллелограмма. Они должны выходить из одной точки. Из той же точки, из которой выходит разлагаемая сила. Как правило, разлагаемую силу представляют в виде проекций на перпендикулярные оси. К примеру, как сила тяжести и сила трения, действующие на брусок, лежащий на наклонной плоскости.

Рисунок 3 - Брусок на наклонной плоскости.



Понравилась статья? Поделитесь с друзьями!