Смотреть что такое "азот" в других словарях. Азот - это что за вещество? Типы и свойства азота

АЗОТ, N (лат. Nitrogenium * а. nitrogen; н. Stickstoff; ф. azote, nitrogene; и. nitrogeno), — химический элемент V группы периодической системы Менделеева, атомный номер 7, атомная масса 14,0067. Открыт в 1772 английским исследователем Д. Резерфордом.

Свойства азота

При обычных условиях азот — газ без цвета и запаха. Природный азот состоит из двух стабильных изотопов: 14 N (99,635%) и 15 N (0,365%). Молекула азота двухатомная; атомы связаны ковалентной тройной связью NN. Диаметр молекулы азота, определённый разными способами, 3,15-3,53 А. Молекула азота очень устойчива — энергия диссоциации 942,9 кДж/моль.

Молекулярный азот

Константы молекулярного азота: f плавления — 209,86°С, f кипения — 195,8°С; плотность газообразного азота 1,25 кг/ м 3 , жидкого — 808 кг/м 3 .

Характеристика азота

В твёрдом состоянии азот существует в двух модификациях: кубической а-форме с плотностью 1026,5 кг/м 3 и гексагональной b-форме с плотностью 879,2 кг/м 3 . Теплота плавления 25,5 кДж/кг, теплота испарения 200 кДж/кг. Поверхностное натяжение жидкого азота в контакте с воздухом 8,5.10 -3 Н/м; диэлектрическая проницаемость 1,000538. Растворимость азота в воде (см 3 на 100 мл Н 2 О): 2,33 (0°С), 1,42 (25°С) и 1,32 (60°С). Внешняя электронная оболочка атома азота состоит из 5 электронов. Степени окисления азота меняются от 5 (в N 2 О 5) до -3 (в NH 3).

Соединение азота

Азот при нормальных условиях может реагировать с соединениями переходных металлов (Ti, V, Mo и др.), образуя комплексы либо восстанавливаясь с образованием аммиака и гидразина. С такими активными металлами, как , азот взаимодействует при нагревании до сравнительно невысоких температур. С большинством других элементов азот реагирует при высокой температуре и в присутствии катализаторов. Хорошо изучены соединения азота с : N 2 О, NO, N 2 О 5 . С азот соединяется только при высокой температуре и в присутствии катализаторов; при этом образуется аммиак NH 3 . С галогенами азот непосредственно не взаимодействует; поэтому все галогениды азота получают только косвенным путём, например фтористый азот NF 3 — при взаимодействии с аммиаком. С серой также не происходит непосредственного соединения азота. При взаимодействии раскалённого с азотом образуется циан (CN) 2 . При действии на обычный азот электрических разрядов, а также при электрических разрядах в воздухе может образоваться активный азот, представляющий собой смесь молекул и атомов азота, обладающих повышенным запасом энергии. Активный азот весьма энергично взаимодействует с кислородом, водородом, парами , и некоторыми металлами.

Азот — один из самых распространённых элементов на Земле, причём основная его масса (около 4.10 15 т) сосредоточена в свободном состоянии в . Ежегодно при вулканической деятельности в атмосферу выделяется 2.10 6 т азота. Незначительная часть азота концентрируется в (среднее содержание в литосфере 1,9.10 -3 %). Природные соединения азота — хлористый аммоний и различные нитраты (селитры). Нитриды азота могут образовываться только при высоких температурах и давлениях, что, по-видимому, имело место на самых ранних стадиях развития Земли. Крупные скопления селитры встречаются только в условиях сухого пустынного климата ( , и др.). Небольшие количества связанного азота находятся в (1-2,5%) и (0,02-1,5%), а также в водах рек, морей и океанов. Азот накапливается в почвах (0,1 %) и живых организмах (0,3%). Азот входит в состав белковых молекул и многих естественных органических соединений.

Круговорот азота в природе

В природе осуществляется круговорот азота, который включает цикл молекулярного атмосферного азота в биосфере, цикл в атмосфере химически связанного азота, круговорот захоронённого с органическим веществом поверхностного азота в литосфере с возвратом его обратно в атмосферу. Азот для промышленности ранее добывался целиком из месторождений природных селитр, число которых в мире весьма ограничено. Особенно крупные залежи азота в виде азотнокислого натрия находятся в Чили; добыча селитры в отдельные годы составляла более 3 млн. т.

Азот - седьмой элемент в таблице Менделеева и первый элемент группы УА. Название азот означает "безжизненный" (греч. "а" - отрицательная приставка, "зоэ" - жизнь). Такая оценка азота может считаться справедливой только в отношении простого вещества, но азот как элемент необходим для жизни, так как вместе с углеродом, водородом и кислородом он образует белки и другие жизненно важные вещества. В организме человека содержится в среднем 1,8 кг азота.

Азот - довольно широко распространенный элемент биосферы. Наибольшее количество его находится в атмосфере в виде простого вещества Ы 2 . Общая масса азота в атмосфере составляет 4 10 18 кг. Твердых минералов, содержащих азот, почти нет. Лишь в исключительно сухой

пустыне на севере Чили есть залежи нитрата натрия, названного чилийской селитрой. Значительное количество азота содержится в биомассе растений и животных и в органических остатках (каменный уголь, торф). В обычных условиях на поверхности земли большая часть азота из отмерших растений постепенно превращается в газообразный азот и переходит в атмосферу. Некоторая доля имеющихся в почве соединений азота вымывается водой и попадает в водоемы. Поэтому растения часто оказываются в условиях недостатка азота, доступного для биологического усвоения. Неисчерпаемые запасы азота Ы 2 в окружающем воздухе большинство растений использовать не могут. Можно сравнить отношение растений к атмосферному азоту и кислороду. Последний активно используется растениями и животными в процессах окисления. Это различие между азотом и кислородом связано с необычайной прочностью молекул Ы 2 . Азот с трудом участвует в обычных химических реакциях. Биохимические реакции азота возможны лишь при участии фермента нитрогеназы, который имеется только у отдельных видов бактерий.

Промышленное получение соединений азота было трудной проблемой еще в начале XX в. В то же время потребность в соединениях азота огромна, так как они необходимы для производства не только удобрений, но и взрывчатых веществ. Немецкий химик Ф. Габер (Нобелевская премия по химии 1918 г.) внес важнейший вклад в решение проблемы связывания атмосферного азота, разработав катализатор для синтеза аммиака из азота и водорода. Это изобретение оказало огромное влияние на дальнейшее развитие промышленности и сельского хозяйства. В 1913 г. был пущен первый завод по производству аммиака, а в настоящее время его годовое производство превышает 100 млн т.

По строению атома азот - трехвалентный элемент. В устойчивых соединениях он образует не менее трех химических связей. Азот не может повысить свою валентность за счет перехода в возбужденное состояние. Для него единственная возможность перехода в четырехвалентное состояние - это потеря одного электрона:

В таком состоянии азот может находиться только в соединениях с более электроотрицательными элементами, г.е. кислородом и фтором. В этих соединениях азот имеет положительные степени окисления, а в соединениях со всеми остальными элементами - отрицательные.

Атом азота имеет валентную электронную пару на подуровне 2.? и как донор (основание) часто образует дополнительную химическую связь по донорно-акцепторному механизму. Примерами соответствующих соединений служат соли аммония и комплексные соединения ионов металлов с лигандом МН 3 .

Пример 20.1. Каковы степени окисления у азота в гидразине К 2 Н 4 , нитробензоле С 6 Н 5 Ы0 2 и аминоэтане С 2 Н 5 ЫН 2 ?

Решение. В гидразине СО азота -2. В этой молекуле имеется связь между атомами азота, не влияющая на степень окисления. В нитробензоле азот связан одновременно с более электроотрицательным кислородом и менее электроотрицательным углеродом. К двум атомам кислорода смещено четыре электрона, а от углерода - один. Получается СО +3. В аминоэтане азот связан с менее электроотрицательными водородом и углеродом. Степень окисления -3.

У азота известно только одно простое вещество N9, называемое, согласно химической номенклатуре, диазотом. Это газ, начинающий переходить в жидкость при -195,8°С при обычном давлении. Жидкий азот замерзает в бесцветные кристаллы при -210°С. В индивидуальном состоянии азот хранят и перевозят в баллонах под высоким давлением. Молекулы К 2 имеют на два электрона меньше, чем молекулы кислорода 0 2:

Два дополнительных электрона кислорода уменьшают прочность связи. Связь между атомами азота без этих электронов становится по-настоящему тройной, и Ы 2 оказывается самой устойчивой и наименее реакционноспособной из всех молекул. Энергия связи в молекуле Ы 2 -946 кДж/моль.

Прочностью молекул Ы 2 определяются нс только свойства этого вещества, но и поведение соединений азота. Они, как правило, не очень устойчивы, разлагаются при сравнительно слабом нагревании. Азот образует также неустойчивые соединения, являющиеся взрывчатыми веществами. Во всех случаях разложению соединений азота способствует образование устойчивых молекул Ы 2 .

Простой лабораторный способ получения азота заключается в разложении нитрита аммония при слабом нагревании соли как в виде твердого вещества, так и ее раствора:

Для проведения реакции в растворе можно взять часто используемые соли с теми же ионами - хлорид аммония и нитрит натрия:

При сгорании органических соединений азота также образуется простое вещество:

В промышленности азот получают из воздуха ректификацией при низкой температуре. Используется также азот воздуха после удаления кислорода химическими способами. В этом случае азот содержит примесь благородных газов. Азот используется в наибольшем количестве для синтеза аммиака. Инертность азота в обычных условиях позволяет применять его в качестве газообразной среды при проведении технологических процессов и в научных исследованиях.

У азота крайне мало реакций, способных идти при обычной температуре. Металл литий на воздухе реагирует одновременно и с кислородом, и с парами воды, и с азотом. Поверхность лития чернеет, так как на ней образуется нитрид лития:

Других реакций азота при обычной температуре не было известно до середины прошлого века. Настоящей сенсацией в химии явилось открытие реакций азота в водной среде с совместно осажденными гидроксидами двух металлов, один из которых является восстановителем, а другой несет каталитическую функцию. Гидроксид ванадия(П), осажденный с гидроксидом магния, реагирует следующим образом:

Получающееся соединение азота с водородом называется гидразин. По строению молекулы он аналогичен перекиси водорода:

Известно также вещество гидроксиламин КН 2 ОП, молекулы которого сочетают фрагменты гидразина и перекиси водорода:

При высокой температуре азот может реагировать со многими простыми веществами. С кислородом реакция идет при нагревании до 2000°С:

Реакция эндотермическая и обратимая, выход оксида азота(П) увеличивается при повышении температуры. В небольшом количестве N0 образуется в атмосфере при грозовых разрядах и при работе двигателей внутреннего сгорания.

Наибольшее практическое значение имеет реакция азота с водородом, о которой уже говорилось в параграфах 67 и 70. Напомним, что это экзотермическая реакция, и ее равновесие смещается влево при повышении температуры. Согласно уравнению реакции, из четырех молекул азота и водорода образуются две молекулы аммиака. Следовательно, при повышении давления равновесие смещается вправо. Выход продукта, определяемый положением равновесия реакции, зависит как от температуры, так и от давления. Эта зависимость показана на рис. 20.1. Возьмем на рисунке какую-либо точку, например, 450°С при давлении 600 атм. В этих условиях выход аммиака составляет 40%, что вполне приемлемо для этого процесса.

Однако устанавливается равновесие крайне медленно. Скорость реакции можно увеличить повышением температуры, но при этом быстро падает выход. Для дальнейшего повышения давления потребовалось бы применение более дорогого оборудования. Поэтому экономически приемлемое сочетание выхода продукта и скорости его образования может быть

достигнуто только при применении катализатора. Катализатор обычно удается создать в результате длительного экспериментального поиска. В этом процессе хорошим катализатором оказалось металлическое железо, активированное оксидами калия и алюминия. Теперь при промышленном получении аммиака применяют давления 300-500 атм (3 10 4 -5 -10 1 кПа) и температуру около 300°С. При этом выход аммиака составляет 10-20%. Однако смесь азота и водорода после отделения полученного аммиака может снова направляться в контактный аппарат с катализатором, и таким образом доля использования сырья повышается.

Рис. 20.1.

Принципиальная схема заводской установки для синтеза аммиака показана па рис. 20.2.

Рис. 20.2.

1 - компрессор; 2 - колонна синтеза; 3 - холодильник; 3 - сепаратор; 5 - сборник жидкого аммиака; в - циркуляционный насос

Очищенная от примесей газовая смесь, состоящая из одного объема азота и трех объемов водорода, сжимается компрессором 1 до 300 атм и поступает в колонну синтеза 2, заполненную катализатором, где и идет реакция образования аммиака. Перед запуском процесса колонну с катализатором нагревают электрическими нагревателями до 500°С. Далее температура поддерживается выделяющейся при реакции теплотой. После прохождения через колонну газы, содержащие до 20% аммиака, поступают в холодильник^, где из смеси газов, находящейся под большим давлением, конденсируется жидкий аммиак. Жидкость отделяется от газовой смеси в сепараторе 4. Отсюда аммиак перекачивается в сборник низкого давления 5 и далее поступает на склад. Неирореагировавшие газы перекачиваются насосом в для смешивания со свежей азото-водородной смесью. Смесь продолжает непрерывно поступать в колонну 2, где постоянно идет синтез аммиака.

В химии уже длительное время изучается возможность получения соединений азота при обычных температуре и давлении, так как применение устройств высокого давления дорого и опасно: они могут взрываться. Надежда на успех поддерживается тем, что известны микроорганизмы - нитробактерии , - имеющие фермент нитрогеназу , при участии которого азот восстанавливается в бактериальной клетке, превращаясь в необходимые органические соединения. По искусственно воспроизвести работу этих чрезвычайно сложных ферментов или похожих на них веществ пока не удается. Восстановление азота до гидразина по реакции с гидроксидами металлов также не удается осуществить в виде непрерывного процесса. Поэтому синтез аммиака, существенным недостатком которого является необходимость применения высокого давления, является пока самым лучшим источником получения соединений азота.

Азот реагирует с углеродом при горении вольтовой дуги с образованием газообразного вещества д и циана:

До промышленного освоения синтеза аммиака имела практическое значение реакция азота с карбидом кальция, продуктом которой является цианамид кальция Са=Ы-С=Ы (СаСЫ 2):

Для осуществления реакции азот пропускают через слой карбида кальция, сильно нагретый в каком-то одном месте. В этом месте возникает реакция, сопровождающаяся выделением теплоты. Масса окружающего вещества нагревается, в нем тоже происходит процесс поглощения азота. В итоге в реакцию вступает весь помещенный в аппарат карбид кальция.

Полученный таким образом цианамид кальция гидролизуют перегретым водяным паром:

Этот способ получения аммиака в настоящее время вытеснен синтезом его из водорода и азота.

При высокой температуре азот реагирует со многими металлами и сплавами, образуя нитриды металлов. Иногда образование нитрида в поверхностном слое придает сплаву дополнительную твердость. В некоторых случаях металл приходится изолировать от воздействия азота. Например, листы титана сваривают в атмосфере аргона во избежание образования нитрида титана.

Азот (общие сведения)

Азот

Краткая информация

Азо́т - элемент 15-й группы второго периода периодической системы химических элементов Менделеева Д. И., с атомным номером 7.

Общие сведения об азоте

Азот является самым распространенным газом в составе атмосферы Земли. Иными словами, окружающий нас воздух на три четверти состоит именно из азота, а не из кислорода. В периодической системе химических элементов Менделеева азот обозначается символом N (от латинского Nitrogenium), имеет атомный номер 7 и занимает место в 15-ой группе. В нормальных условиях азот представляет собой двухатомный и весьма инертный газ. Он не обладает цветом, вкусом и запахом, следовательно, не ощутим для человека. Формула газа азота N2; именно в таком молекулярном состоянии он на три четверти заполняет атмосферу нашей планеты.

История открытия

В конце XVIII столетия сразу несколько ученых вплотную подошли к открытию нового химического элемента, свойства которого наукой еще не были изучены. Так, Генри Кавендиш в 1772 году осуществил следующий эксперимент: он неоднократно пропустил воздух над раскалённым углём, обработал уголь щелочным раствором и в конечном счете получил остаток нового вещества. Химик назвал этот остаток «удушливым воздухом». Кавендиш по факту получил азот – новый химический элемент, но догадаться об этом он не смог. В том же году эксперименты по получению «удушливого воздуха» продолжил друг Кавендиша профессор Пристли. Он также многократно получал в ходе своих опытов азот, но ошибочно предполагал, что этот газ кислород. Поэтому ни один из двух ученых первооткрывателями азота не считаются.

Параллельно с этими опытами свои собственные эксперименты поставил в том же 1772 году Даниэль Резерфорд. Именно он в магистерской работе правильно описал основные свойства азота. В частности, то, что он не пригоден для дыхания, не вступает в реакцию с щелочами и не поддерживает процесс горения. Чаще всего именно Резерфорда называют открывателем азота.

Свойства азота

Физические свойства азота в нормальных условиях характеризуют его как бесцветный газ, не имеющий запаха и не ощутимый органами чувств человека. Азот слабо растворим в воде, обладает плотностью 1,2506 кг/м 3 . В жидком состоянии азот представляет собой бесцветную и подвижную жидкость, визуально похожую на воду. При температуре −195,8 °C закипает. Плотность жидкого азота уменьшается до 808 кг/м 3 . При −209,86 °C азот переходит в твердое агрегатное состояние, приобретая вид ярко-белых кристаллов больших размеров.

Свободное состояние азота представляет собой двухатомную молекулу N2 с тройной связью между молекулами. Эта связь делает молекулу азота чрезвычайно прочной, и в обычных условиях диссоциации молекул практически не отмечается. В результате азот является очень инертным газом: практически не вступает в химические реакции с другими веществами и в нормальных условиях находится в свободно состоянии. Силы межмолекулярного взаимодействия крайне слабые, вот почему при нормальных условиях азот представляет собой газ, а не жидкость или твердое вещество.

Интересные факты об азоте

Название азот, что значит «лишенный жизни», появилось с легкой руки Антуана Лавуазье в конце XVIII века, когда экспериментально было установлено, что азот не может поддерживать дыхание и горение. Теперь же мы знаем, что, будучи «безжизненным» по названию, азот чрезвычайно важен для поддержания жизни всех существ. Латинское название азота «нитрогениум» переводится как «селитру рождающий» и напоминает о важнейшем значении этого элемента для промышленности.

Все живые организмы усваивать азот в чистом виде не могут. Необходимое его количество мы усваиваем через белковую пищу. Когда человек дышит, то вдыхает содержащийся в воздухе азот. Он никак не усваивается легкими (в отличие от кислорода), поэтому в нашем выдохе в основном присутствует азот. Удивительно, но как раз обилие азота в атмосфере помогает нам не потреблять кислород в количествах, смертельных для организма человека.

В фантастике распространен сюжет о заморозке азотом живых существ, дабы сохранить их для будущих поколений. В реальности современные ученые этого сделать не могут, поскольку заморозка жидким азотом происходит медленно, и организм погибает раньше, чем успевает «правильно» замерзнуть.

Применение азота

Применение азота в промышленном производстве обуславливается его высокими инертными свойствами. Жидкий азот используется в качестве промышленного хладагента. Азот в газообразном состоянии используют как антиокислитель. Поскольку чистым газообразным азотом можно заместить воздух (в составе которого окислитель — кислород), то азотом продувают полости в электротехнической промышленности и в машиностроении как таковом. С его помощью продувают резервуары и трубопроводы, контролируют их работу при большом давлении внутри резервуара.

Азот является сырьем для синтеза важных азотосодержащих соединений. К таким относятся азотные удобрения, которые вместе с фосфорными и калийными удобрениями незаменимы в растениеводстве. Азот является составной частью аммиака, который используется в холодильном оборудовании, в качестве промышленного растворителя, в медицине и вообще является важнейшим химическим сырьем. Производство большинства взрывчатых веществ на планете базируется на химических свойствах кислорода и азота.

Азот можно встретить и в пищевой промышленности как пищевую добавку E941. Газообразный азот необходим для заполнения шинных камер для шасси самолетов. Сейчас стало модным заполнять шины азотом и в среде автолюбителей, хотя научных доказательств эффективности такого использования пока не приведено. Азот и другие газы нашли широкое применение в медицине: как в области создания новых лекарственных препаратов и методик, так и при изготовлении высокоточного медицинского оборудования.

Ведущим поставщиком газов в Украине на сегодня считается компания «DP Air Gas».


Характеристика азота

  • Азот -элемент пятой группы, главной подгруппы, второго периода переодической системы химических элементов Д.И. Менделеева, с атомным номером 7. Обозначается символом N (лат. Nitrogenium ).

1 s 2 s 2 р

Азот – бесцветный газ, без запаха и вкуса. В воде растворяется хуже кислорода.

Атом азота может иметь степень окисления +1; +2; +3; +4 , могут проявлять как окислительные, так и восстановительные свойства.


ИСТОРИЯ ОТКРЫТИЯ

В 1777 году Генри Кавендиш провёл следующий опыт: он многократно пропускал воздух над раскалённым углём, затем обрабатывал его щёлочью, в результате получался остаток, который Кавендиш назвал удушливым (или мефитическим) воздухом. С позиций современной химии ясно, что в реакции с раскалённым углём кислород воздуха связывался в углекислый газ, который затем реагировал со щёлочью. При этом остаток газа представлял собой по большей части азот. Таким образом, Кавендиш выделил азот, но не сумел понять, что это новое простое вещество (химический элемент). В том же году Кавендиш сообщил об этом опыте Джозефу Пристли.

Пристли в это время проводил серию экспериментов, в которых также связывал кислород воздуха и удалял полученный углекислый газ, то есть также получал азот, однако, будучи сторонником господствующей в те времена теории флогистона, совершенно неверно истолковал полученные результаты (по его мнению, процесс был противоположным - не кислород удалялся из газовой смеси, а наоборот, в результате обжига воздух насыщался флогистоном; оставшийся воздух (азот) он и назвал насыщенным флогистоном, то есть флогистированным). Очевидно, что и Пристли, хотя и смог выделить азот, не сумел понять сути своего открытия, поэтому и не считается первооткрывателем азота.




Одновременно схожие эксперименты с тем же результатом проводил и Карл Шееле.

В 1772 году азот как простое вещество описал Даниэль Резерфорд, он опубликовал магистерскую диссертацию, где указал основные свойства азота (не реагирует со щелочами, не поддерживает горения, непригоден для дыхания). Именно Даниэль Резерфорд и считается первооткрывателем азота.

В дальнейшем азот был изучен Генри Кавендишем (интересен тот факт, что он сумел связать азот с кислородом при помощи разрядов электрического тока, а после поглощения оксидов азота в остатке получил небольшое количество газа, абсолютно инертного, хотя, как и в случае с азотом, не смог понять, что выделил новые химические элементы - инертные газы). Однако и Резерфорд был сторонником флогистонной теории, поэтому также не смог понять, что же он выделил. Таким образом, чётко определить первооткрывателя азота невозможно.






ПОЛУЧЕНИЕ АЗОТА

В лабораториях его можно получать по реакции разложения нитрита аммония:

NH4NO2 → N2 + 2H2O

Реакция экзотермическая, идёт с выделением 80 ккал (335 кДж), поэтому требуется охлаждение сосуда при её протекании (хотя для начала реакции требуется нагревание нитрита аммония).

Практически эту реакцию выполняют, добавляя по каплям насыщенный раствор нитрита натрия в нагретый насыщенный раствор сульфата аммония, при этом образующийся в результате обменной реакции нитрит аммония мгновенно разлагается.

Выделяющийся при этом газ загрязнён аммиаком, оксидом азота и кислородом, от которых его очищают, последовательно пропуская через растворы серной кислоты, сульфата железа (II) и над раскалённой медью. Затем азот осушают.


  • Ещё один лабораторный способ получения азота - нагревание смеси дихромата калия и сульфата аммония (в соотношении 2:1 по массе). Реакция идёт по уравнениям:

K2Cr2O7 + (NH4)2SO4 = (NH4)2Cr2O7 + K2SO4

(NH4)2Cr2O7 →(t) Cr2O3 + N2 + 4H2O
  • Самый чистый азот можно получить разложением азидов металлов:

2NaN3 →(t) 2Na + 3N2
  • Так называемый «воздушный», или «атмосферный» азот, то есть смесь азота с благородными газами, получают путём реакции воздуха с раскалённым коксом:

O2+ 4N2 + 2C → 2CO + 4N2

При этом получается так называемый «генераторный», или «воздушный», газ - сырьё для химических синтезов и топливо. При необходимости из него можно выделить азот, поглотив монооксид углерода.


  • Молекулярный азот в промышленности получают фракционной перегонкой жидкого воздуха. Этим методом можно получить и «атмосферный азот». Также широко применяются азотные установки, в которых используется метод адсорбционного и мембранного газоразделения.

  • Один из лабораторных способов - пропускание аммиака над оксидом меди (II) при температуре ~700 °C:

2NH3 + 3CuO → N2 + 3H2O + 3Cu

Аммиак берут из его насыщенного раствора при нагревании. Количество CuO в 2 раза больше расчётного. Непосредственно перед применением азот очищают от примеси кислорода и аммиака пропусканием над медью и её оксидом (II), затем сушат концентрированной серной кислотой и сухой щёлочью. Процесс происходит довольно медленно, но он того стоит: газ получается весьма чистый.




СВОЙСТВА АЗОТА


ХИМИЧЕСКИЕ СВОЙСТВА

  • Вследствие большой прочности молекулы азота многие его соединения эндотермичны, энтальпия их образования отрицательна, а соединения азота термически малоустойчивы и довольно легко разлагаются при нагревании. Именно поэтому азот на Земле находится по большей части в свободном состоянии.

  • Ввиду своей значительной инертности азот при обычных условиях реагирует только с литием:

  • при нагревании он реагирует с некоторыми другими металлами и неметаллами, также образуя нитриды:

6Li + N2 → 2Li3N,

3Mg + N2 → Mg3N2,

2B + N2 →2BN,

Промышленное связывание атмосферного азота

    Соединения азота чрезвычайно широко используются в химии, невозможно даже перечислить все области, где находят применение вещества, содержащие азот: это индустрия удобрений, взрывчатых веществ, красителей, медикаментов и проч. Хотя колоссальные количества азота доступны в прямом смысле слова «из воздуха», из-за описанной выше прочности молекулы азота N2 долгое время оставалась нерешённой задача получения соединений, содержащих азот, из воздуха; большая часть соединений азота добывалась из его минералов, таких, как чилийская селитра. Однако сокращение запасов этих полезных ископаемых, а также рост потребности в соединениях азота заставил форсировать работы по промышленному связыванию атмосферного азота.

  • Наиболее распространён аммиачный способ связывания атмосферного азота. Обратимая реакция синтеза аммиака:

3H2 + N2 ↔ 2NH3

экзотермическая (тепловой эффект 92 кДж) и идёт с уменьшением объёма, поэтому для сдвига равновесия вправо в соответствии с принципом Ле Шателье - Брауна необходимо охлаждение смеси и высокие давления. Однако с кинетической точки зрения снижение температуры невыгодно, так как при этом сильно снижается скорость реакции - уже при 700 °C скорость реакции слишком мала для её практического использования.


В таких случаях используется катализ, так как подходящий катализатор позволяет увеличить скорость реакции без сдвига равновесия. В процессе поиска подходящего катализатора было испробовано около двадцати тысяч различных соединений. По совокупности свойств (каталитическая активность, стойкость к отравлению, дешевизна) наибольшее применение получил катализатор на основе металлического железа с примесями оксидов алюминия и калия. Процесс ведут при температуре 400-600 °C и давлениях 10-1000 атмосфер.

Следует отметить, что при давлениях выше 2000 атмосфер синтез аммиака из смеси водорода и азота идёт с высокой скоростью и без катализатора. Например, при 850 °C и 4500 атмосфер выход продукта составляет 97 %.


  • Существует и ещё один, менее распространённый способ промышленного связывания атмосферного азота - цианамидный метод, основанный на реакции карбида кальция с азотом при 1000 °C. Реакция происходит по уравнению:

CaC2 + N2 → CaCN2 + C.

Реакция экзотермична, её тепловой эффект 293 кДж.

Ежегодно из атмосферы Земли промышленным путём отбирается примерно 1×106 т азота.
  • Взаимодействие оксида азота с кислородом:

2NO + O2 2NO2

ФИЗИЧЕСКИЕ СВОЙСТВА



АЗОТ В ПРИРОДЕ


КРУГОВОРОТ АЗОТА В ПРИРОДЕ

Фиксация атмосферного азота в природе происходит по двум основным направлениям - абиогенному и биогенному. Первый путь включает главным образом реакции азота с кислородом. Так как азот химически весьма инертен, для окисления требуются большие количества энергии (высокие температуры). Эти условия достигаются при разрядах молний, когда температура достигает 25000 °C и более. При этом происходит образование различных оксидов азота. Существует также вероятность, что абиотическая фиксация происходит в результате фотокаталитических реакций на поверхности полупроводников или широкополосных диэлектриков (песок пустынь).


Azotobacter и Clostridium Rhizobium , цианобактерии Anabaena , Nostoc

Однако основная часть молекулярного азота (около 1,4×108 т/год) фиксируется биотическим путём. Долгое время считалось, что связывать молекулярный азот могут только небольшое количество видов микроорганизмов (хотя и широко распространённых на поверхности Земли): бактерии Azotobacter и Clostridium , клубеньковые бактерии бобовых растений Rhizobium , цианобактерии Anabaena , Nostoc и др. Сейчас известно, что этой способностью обладают многие другие организмы в воде и почве, например, актиномицеты в клубнях ольхи и других деревьев (всего 160 видов). Все они превращают молекулярный азот в соединения аммония (NH4+). Этот процесс требует значительных затрат энергии (для фиксации 1 г атмосферного азота бактерии в клубеньках бобовых расходуют порядка 167,5 кДж, то есть окисляют примерно 10 г глюкозы). Таким образом, видна взаимная польза от симбиоза растений и азотфиксирующих бактерий - первые предоставляют вторым «место для проживания» и снабжают полученным в результате фотосинтеза «топливом» - глюкозой, вторые обеспечивают необходимый растениям азот в усваиваемой ими форме.

Азот, включённый в ткани растений и животных, после их гибели подвергается аммонификации (разложению содержащих азот сложных соединений с выделением аммиака и ионов аммония) и денитрификации то есть выделению атомарного азота, а также его оксидов. Эти процессы целиком происходят благодаря деятельности микроорганизмов в аэробных и анаэробных условиях.

В отсутствие деятельности человека процессы связывания азота и нитрификации практически полностью уравновешены противоположными реакциями денитрификации. Часть азота поступает в атмосферу из мантии с извержениями вулканов, часть прочно фиксируется в почвах и глинистых минералах, кроме того, постоянно идёт утечка азота из верхних слоёв атмосферы в межпланетное пространство.


БИОЛОГИЧЕСКАЯ РОЛЬ

Азот является элементом, необходимым для существования животных и растений, он входит в состав белков (16-18 % по массе), аминокислот, нуклеиновых кислот, нуклеопротеидов, хлорофилла, гемоглобина и др. В составе живых клеток по числу атомов азота около 2 %, по массовой доле - около 2,5 % (четвёртое место после водорода, углерода и кислорода). В связи с этим значительное количество связанного азота содержится в живых организмах, «мёртвой органике» и дисперсном веществе морей и океанов. Это количество оценивается примерно в 1,9×1011 т. В результате процессов гниения и разложения азотсодержащей органики, при условии благоприятных факторов окружающей среды, могут образоваться природные залежи полезных ископаемых, содержащие азот, например, «чилийская селитра» (нитрат натрия с примесями других соединений), норвежская, индийская селитры.


РАСПРОСТРАНЕННОСТЬ

Вне пределов Земли азот обнаружен в газовых туманностях, солнечной атмосфере, на Уране, Нептуне, межзвёздном пространстве и др. Азот - четвёртый по распространённости элемент Солнечной системы (после водорода, гелия и кислорода).

Азот, в форме двухатомных молекул N2 составляет большую часть атмосферы, где его содержание составляет 75,6 % (по массе) или 78,084 % (по объёму), то есть около 3,87×1015 т.

Содержание азота в земной коре, по данным разных авторов, составляет (0,7-1,5)×1015 т (причём в гумусе - порядка 6×1010 т), а в мантии Земли - 1,3×1016 т. Такое соотношение масс заставляет предположить, что главным источником азота служит верхняя часть мантии, откуда он поступает в другие оболочки Земли с извержениями вулканов.

Масса растворённого в гидросфере азота, учитывая, что одновременно происходят процессы растворения азота атмосферы в воде и выделения его в атмосферу, составляет около 2×1013 т, кроме того примерно 7×1011 т азота содержатся в гидросфере в виде соединений.


Токсикология азота и его соединений

Сам по себе атмосферный азот достаточно инертен, чтобы оказывать непосредственное влияние на организм человека и млекопитающих. Тем не менее, при повышенном давлении он вызывает наркоз, опьянение или удушье (при недостатке кислорода); при быстром снижении давления азот вызывает кессонную болезнь.

Многие соединения азота очень активны и нередко токсичны.




ПРИМЕНЕНИЕ АЗОТА

Слабокипящий жидкий азот металлическом стакане.

Жидкий азот применяется как хладагент и для криотерапии.

Промышленные применения газообразного азота обусловлены его инертными свойствами. Газообразный азот пожаро- и взрывобезопасен, препятствует окислению, гниению. В нефтехимии азот применяется для продувки резервуаров и трубопроводов, проверки работы трубопроводов под давлением, увеличения выработки месторождений. В горнодобывающем деле азот может использоваться для создания в шахтах взрывобезопасной среды, для распирания пластов породы


В производстве электроники азот применяется для продувки областей, не допускающих наличия окисляющего кислорода. Если в процессе, традиционно проходящем с использованием воздуха, окисление или гниение являются негативными факторами - азот может успешно заместить воздух.

Важной областью применения азота является его использование для дальнейшего синтеза самых разнообразных соединений, содержащих азот, таких, как аммиак, азотные удобрения, взрывчатые вещества, красители и т. п. Большие количества азота используются в коксовом производстве («сухое тушение кокса») при выгрузке кокса из коксовых батарей, а также для «передавливания» топлива в ракетах из баков в насосы или двигатели.

В пищевой промышленности азот зарегистрирован в качестве пищевой добавки E941 , как газовая среда для упаковки и хранения, хладагент, а жидкий азот применяется при разливе масел и негазированных напитков для создания избыточного давления и инертной среды в мягкой таре.


Литр жидкого азота, испаряясь и нагреваясь до 20 °C, образует примерно 700 литров газа. По этой причине жидкий азот хранят в специальных сосудах Дьюара с вакуумной изоляцией открытого типа или криогенных ёмкостях под давлением. На этом же факте основан принцип тушения пожаров жидким азотом. Испаряясь, азот вытесняет кислород, необходимый для горения, и пожар прекращается. Так как азот, в отличие от воды, пены или порошка, просто испаряется и выветривается, азотное пожаротушение - самый эффективный с точки зрения сохранности ценностей механизм тушения пожаров.


Из этой статьи вы узнаете про кислород и азот - два газа, которые успешно взаимодействуют между собой.

Азот

Сам азот был открыт в 1772 году химиком Генри Кавендишем. В своей лаборатории Генри с помощью специального устройства несколько раз пропускал над раскаленным углем. Затем воздух обрабатывался щелочами. Из-за свойств полученный от эксперимента остаток был назван «удушливым» газом. Но ученый не смог понять, какое вещество он получил. Современному химику известно, что пропускание воздуха над раскаленным углем дает в результате углекислый газ, который нейтрализуется щелочью. О своем опыте Генри сообщил приятелю - Джозефу Пристли.

Интересно, что это не первый случай, когда ученые не могут понять, какое вещество получилось в ходе . Например, с помощью тока Пристли как-то связал кислород и азот, но не смог понять, что в результате опыта он получил аргон, который является инертным газом.

Физические свойства азота

При стандартных условиях азот представляет собой инертный бесцветный газ без запаха и вкуса. Он безопасен для человека. Кроме того, этот газ практически не растворяется в воде и химически не взаимодействует с ней.

Также седьмой элемент периодической системы Менделеева существует в жидком и твердом агрегатных состояниях.

Жидкий азот

Температура кипения жидкого азота составляет -195,8 °С, а в твердое состояние он переходит при -209,86 °С.

Химические свойства азота

Сам бесцветный газ имеет очень прочные двухатомные молекулы, которые образуют тройную связь. Поэтому молекулы практически не распадаются. И именно из-за этого свойства азот проявляет малую химическую активность. Все его соединения крайне неустойчивы, потому что при нагреве вещества образуется свободный азот.

Реакции азота с металлами

Молекулярный азот может вступать в реакцию лишь с небольшой группой металлов, которые проявляют восстановительные свойства. Например, N₂ может вступать в реакцию с литием:

6Li + N₂ = 2Li₃N

Также он реагирует с легким серебристым металлом , но для этого химического процесса нужен нагрев до 300 °С. Результатом реакции будет нитрид магния - желтовато-зеленые кристаллы, которые при нагревании разлагаются на магний и свободный азот:

3Mg + N₂ = Mg₃N₂

Mg₃N₂ → 3Мg + N₂ (при нагреве от 1000 °С)

Если нитрид активного металла добавить в воду, запустится процесс гидролиза, и в итоге получится аммиак.

Азот и водород

При температуре около 400 °С и давлении в 200 атмосфер, а также в присутствии железа (то есть катализатора) протекает взаимодействие азота и водорода:

3H₂ + N₂ = 2NH₃


Взаимодействие азота с другими неметаллами

Все реакции с азотом проходят при высоких температурах. Например, с бором:

2B + N₂ = 2BN.

Азот не взаимодействует со многими галогенами, а также серой. Однако сульфиды и галогениды можно получить косвенным путем.

Реакция азота с кислородом

Кислород - это химический элемент, который имеет VIII порядковый атомный номер. Это прозрачный без запаха и цвета. В жидком виде кислород имеет синеватый оттенок.


Жидкий кислород

Также он способен находиться и в твердом агрегатном состоянии и представляет собой голубые кристаллики. Кислород имеет двухатомную молекулу.

Интересный факт: ученый Пристли первоначально не понял, что он открыл кислород - он считал, что в результате эксперимента получил некую составную часть воздуха. Ученый наблюдал за разложением оксида ртути в герметичном устройстве и с помощью линзы направлял на оксид солнечные лучи.

Если говорить о взаимодействии азота и кислорода, то вещества вступают в реакцию под воздействием электрического тока. У азота очень прочная молекула, которая весьма неохотно взаимодействуют с другими веществами:

O₂ + N₂ = 2NO

Существует несколько оксидов бесцветного газа, валентность которых колеблется от одного до пяти.

Вот несколько соединений, которые могут образовываться в ходе реакции азота и кислорода:

    N₂O - закись азота;

    NO - окись азота;

    N₂O₃ - азотистый ангидрид;

    NO₂ - двуокись азота;

    N₂O₅ - азотный ангидрид.

Нажмите , чтобы провести интересный с получением двуокиси азота и изучить его свойства.

Закись азота применяют в качестве анестезии. Это соединение получают путем распада азотнокислого аммония - бесцветного газа с характерным запахом. Закись отлично растворяется в воде.


Молекула закиси азота

N₂O является постоянной составляющей воздуха. Химический процесс протекает при температуре 200 °С. Уравнение реакции выглядит следующим образом:

NH₄NO₃ = 2Н₂О + N₂O

Окись азота NO тоже является бесцветным газом, который практически не растворяется в воде. Это соединение неохотно отдает кислород, но зато известно своими реакциями присоединения. Например, взаимодействие с зеленовато-желтым токсичным газом хлором.



Понравилась статья? Поделитесь с друзьями!