Способы кристаллизации. Плавление и кристаллизация

Переход вещества из твердого кристаллического состояния в жидкое называется плавлением . Чтобы расплавить твердое кристаллическое тело, его нужно нагреть до определенной температуры, т. е. подвести тепло. Температура, при которой вещество плавится, называется температурой плавления вещества.

Обратный процесс — переход из жидкого состояния в твердое — происходит при понижении температуры, т. е. тепло отводится. Переход вещества из жидкого состояния в твердое называется отвердеванием, или кристал лизацией. Температура, при которой вещество кристаллизуется, называется температурой кристалли зации.

Опыт показывает, что любое вещество кристаллизуется и плавится при одной и той же температуре.

На рисунке представлен график зависимости температуры кристаллического тела (льда) от времени нагревания (от точки А до точки D) и времени охлаждения (от точки D до точки K ). На нем по горизонтальной оси отложено время, а по вертикальной — температура.

Из графика видно, что наблюдение за процессом началось с момента, когда температура льда была -40 °С, или, как принято говорить, температура в начальный момент времени t нач = -40 °С (точка А на графике). При дальнейшем нагревании температура льда растет (на графике это участок АВ ). Увеличение температуры происходит до 0 °С — температуры плавления льда. При 0°С лед начинает плавиться, а его температура перестает расти. В течение всего времени плавления (т.е. пока весь лед не расплавится) температура льда не меняется, хотя горелка продолжает го-реть и тепло, следовательно, подводится. Процессу плавления соответствует горизонтальный учас-ток графика ВС. Только после того как весь лед расплавится и превратится в воду , температура снова начинает подниматься (участок CD ). После того, как температура воды достигнет +40 °С, горелку гасят и воду начинают охлаждать, т. е. тепло отводят (для этого можно сосуд с водой по-местить в другой, больший сосуд со льдом). Температура воды начинает снижаться (участок DE ). При достижении температуры 0 °С температура воды перестает снижаться, несмотря на то, что тепло по-прежнему отводится. Это идет процесс кристаллизации воды — образования льда (гори-зонтальный участок EF ). Пока вся вода не превратится в лед, температура не изменится. Лишь после этого начинает уменьшаться температура льда (участок FK ).

Вид рассмотренного графика объясняется следующим образом. На участке АВ благодаря подводимому теплу средняя кинетическая энергия молекул льда увеличивается, и температура его повышается. На участке ВС вся энергия, получаемая содержимым колбы, тратится на разрушение кристаллической решетки льда: упорядоченное пространственное расположение его молекул сменяется неупорядоченным, меняется расстояние между молекулами, т.е. происходит перестройка молекул таким образом, что вещество становится жидким. Средняя кинетическая энергия моле-кул при этом не меняется, поэтому неизменной остается и температура. Дальнейшее увеличение температуры расплавленного льда-воды (на участке CD ) означает увеличение кинетической энер-гии молекул воды вследствие подводимого горелкой тепла.

При охлаждении воды (участок DE ) часть энергии у нее отбирается, молекулы воды движутся с меньшими скоростями, их средняя кинетическая энергия падает — температура уменьшается, вода охлаждается. При 0°С (горизонтальный участок EF ) молекулы начинают выстраиваться в определенном порядке, образуя кристаллическую решетку. Пока этот процесс не завершится, температура вещества не изменится, несмотря на отводимое тепло, а это означает, что при отвер-девании жидкость (вода) выделяет энергию. Это как раз та энергия, которую поглотил лед, пре-вращаясь в жидкость (участок ВС ). Внутренняя энергия у жидкости больше, чем у твердого тела. При плавлении (и кристаллизации) внутренняя энергия тела меняется скачком.

Металлы, плавящиеся при температуре выше 1650 ºС, называют тугоплавкими (титан, хром , молибден и др.). Самая высокая температура плавления среди них у вольфрама — около 3400 °С . Тугоплавкие металлы и их соединения используют в качестве жаропрочных материалов в самолетостроении, ракетостроении и космической технике, атомной энергетике.

Подчеркнем еще раз, что при плавлении вещество поглощает энергию. При кристаллизации оно, наоборот, отдает ее в окружающую среду. Получая определенное количество теплоты, выделяющееся при кристаллизации, среда нагревается. Это хорошо известно многим птицам. Неда-ром их можно заметить зимой в морозную погоду сидящими на льду, который покрывает реки и озера. Из-за выделения энергии при образовании льда воздух над ним оказывается на несколько градусов теплее, чем в лесу на деревьях, и птицы этим пользуются.

Плавление аморфных веществ.

Наличие определенной точки плавления — это важный признак кристаллических веществ. Именно по этому признаку их можно легко отличить от аморфных тел, которые также относят к твердым телам. К ним, в частности, относятся стекла, очень вязкие смолы, пластмассы.

Аморфные вещества (в отличие от кристаллических) не имеют определенной температуры плавления — они не плавятся, а размягчаются. При нагревании кусок стекла, например, снача-ла становится из твердого мягким, его легко можно гнуть или растягивать; при более высокой температуре кусок начинает менять свою форму под действием собственной тяжести. По мере нагревания густая вязкая масса принимает форму того сосуда, в котором лежит. Эта масса сначала густая, как мед, затем — как сметана и, наконец, становится почти такой же маловязкой жидкостью, как вода. Однако указать определенную температуру перехода твердого тела в жидкое здесь невозможно, поскольку ее нет.

Причины этого лежат в коренном отличии строения аморфных тел от строения кристаллических. Атомы в аморфных телах расположены беспорядочно. Аморфные тела по своему строению напоминают жидкости. Уже в твердом стекле атомы расположены беспорядочно. Значит, повы-шение температуры стекла лишь увеличивает размах колебаний его молекул, дает им постепенно все большую и большую свободу перемещения. Поэтому стекло размягчается постепенно и не обнаруживает резкого перехода «твердое—жидкое», характерного для перехода от расположения молекул в строгом порядке к беспорядочному.

Теплота плавления.

Теплота плавления — это количество теплоты, которое необходимо сообщить веществу при постоянном давлении и постоянной температуре, равной температуре плавления, чтобы полностью перевести его из твердого кристаллического состояния в жидкое. Теплота плавления равна тому количеству теплоты , которое выделяется при кристалли-зации вещества из жидкого состояния. При плавлении вся подводимая к веществу теплота идет на увеличение потенциальной энер-гии его молекул. Кинетическая энергия не меняется, поскольку плавление идет при постоянной температуре.

Изучая на опыте плавление различных веществ одной и той же массы, можно заметить, что для превращения их в жидкость требуется разное количество теплоты. Например, для того чтобы расплавить один килограмм льда, нужно затратить 332 Дж энергии, а для того чтобы расплавить 1 кг свинца — 25 кДж .

Количество теплоты, выделяемое телом, считается отрицательным. Поэтому при расчете количества теплоты, выделяющегося при кристаллизации вещества массой m , следует пользоваться той же формулой, но со знаком «минус»:

Теплота сгорания.

Теплота сгорания (или теплотворная способность , калорийность ) — это количество теплоты, выделяющейся при полном сгорании топлива.

Для нагревания тел часто используют энергию, выделяющуюся при сгорании топлива. Обыч-ное топливо (уголь, нефть, бензин) содержит углерод . При горении атомы углерода соединяются с атомами кислорода , содержащегося в воздухе, в результате чего образуются молекулы углекислого газа . Кинетическая энергия этих молекул оказывается большей, чем у исходных частиц. Увеличение кинетической энергии молекул в процессе горения называют выделением энергии. Энергия, выделяющаяся при полном сгорании топлива, и есть теплота сгорания этого топлива.

Теплота сгорания топлива зависит от вида топлива и его массы. Чем больше масса топлива, тем больше количество теплоты, выделяющейся при его полном сгорании.

Физическая величина , показывающая, какое количество теплоты выделяется при полном сгорании топлива массой 1 кг, называется удельной теплотой сгорания топлива. Удельную теплоту сгорания обозначают буквой q и измеряют в джоулях на килограмм (Дж/кг).

Количество теплоты Q , выделяющееся при сгорании m кг топлива, определяют по формуле:

Чтобы найти количество теплоты, выделяющееся при полном сгорании топлива произвольной массы, нужно удельную теплоту сгорания этого топлива умножить на его массу.

Процесс преобразования, а точнее, перехода вещества из субстанции жидкости в состояние твердого тела называется кристаллизация . Наиболее ярким примером подобной химической реакции является лед. Результат процесса называется кристаллом.

Чтобы запустить процесс, в растворе, над которым производится опыт, необходимо создать состояние перенасыщенности. Фазовый переход жидкости протекает следующим образом:

  1. Меняется уровень температуры жидкости.
  2. Удаляется часть растворителя.
  3. Происходит комбинирование двух предыдущих действий.
  4. Из получившихся расплавов происходит процесс кристаллизации.

Кристаллизация и методы получения кристаллов из жидкости

Существует два метода кристаллизации: изотермический и политермический.

При первом способе раствор подвергается интенсивному охлаждению, при этом начинают выделяться кристаллы, а количество жидкости растворителя остается прежним.

При изотермической кристаллизации, появление кристаллов происходит путем выпаривания. Процесс получил названия, поскольку вся реакция происходит при постоянной температуре, являющейся точкой кипения раствора. На практике, оба способа используются совместно. В этом случае, часть растворителя испаряется путем кипячения, при этом в это же время происходит охлаждение жидкости.

Есть еще один вариант кристаллизации, при котором в раствор добавляют вещества, обладающие хорошей способностью впитывать воду и уменьшающие восприимчивость содержащейся в жидкости соли к растворению. Вариант такого развития событий называется высаливанием. В этом случае используются препараты, способные «связать воду» (таким способом производится кристаллизация сульфата натрия, в процессе которой добавляется аммиак либо спирт), либо у них имеется одинаковый с используемой солью ион. Примером может служить химическая реакция, направленная на кристаллизацию медного купороса либо хлористого натрия.

Чтобы вырастить кристалл , начинают с мелкой частицы, называемой «зародышем». Иначе говоря, это своеобразный центр, вокруг которого, в процессе химической реакции начинает образовываться кристалл. В этом случае, процесс, при котором протекает образование зародышей, и сам процесс кристаллизации происходит в одно и то же время. В случае если это не так, например, зародыши образуются быстрее, появляется много слишком мелких кристалликов, а вот в обратном случае их получается мало, но большего размера.

Благодаря этому свойству, можно контролировать величину и скорость, с которой происходит кристаллизация. Осуществляется это с помощью следующих факторов:

  1. Раствор, должен быстро охлаждаться.
  2. Жидкости нельзя находиться в состоянии покоя.
  3. Нужна повышенная температура.
  4. Молекулярная масса кристаллов должна быть низкой.

Все вышеперечисленные нюансы способствуют появлению в результате продукции небольшого калибра, чтобы получить кристаллы большего размера требуется:

  1. Медленное охлаждение.
  2. Жидкость в состоянии покоя.
  3. Значительно пониженная температура.
  4. Высокая молекулярная масса.

Чтобы облегчить сам момент, когда начинают формироваться зародыши, в раствор вносят элементы кристаллического вещества, в виде мелкоизмельченного порошка. При этом сам процесс кристаллизации происходит за счет последующего ввода частиц того же элемента. Количество вводимого вещества, зависит от величины желаемого кристалла, например, для более крупного, используется небольшое количество затравочного материала.

Размеры кристаллов имеют значение при их дальнейшей обработке, например, большие кристаллы способны отдавать большое количество влаги в процессе мытья и фильтрации. Они быстрее сохнут, отстаиваются, легче отфильтровываются.

Поскольку основное назначение кристаллизации – получение конечного вещества, идеально чистого и без примесей, то обычно, полученные кристаллы подвергают процессы перекристаллизации, с удалением излишних примесей и повторной промывкой и сушкой.

Плазмы, а также из аморфных веществ или кристаллов другой структуры. В процессе кристаллизации атомы, молекулы или ионы вещества выстраиваются в кристаллическую решётку. Кристаллизация является неравновесным фазовым переходом 1-го рода. Условия равновесия кристалла со средой (расплавом, паром, раствором и др.) определяются как фазовое равновесие агрегатных состояний вещества при фазовых переходах 1-го рода: равенство температуры, давления и химического потенциала. Необходимое условие роста кристалла - отклонение от равновесия, определяемое переохлаждением (отличием температуры от равновесной) и пересыщением (отличием давления или концентрации от равновесных значений). Термодинамическая движущая сила фазового перехода тем выше, чем больше отклонение от равновесия. Переход вещества в кристаллическую фазу сопровождается выделением скрытой теплоты кристаллизации, и при неполном отводе этой теплоты возможно уменьшение отклонения от равновесия и замедление процесса. Как фазовый переход 1-го рода кристаллизации сопровождается скачком удельного объёма по отношению к исходной фазе, и это может приводить к изменению давления в кристаллизующейся системе. Таким образом, кристаллизация - это сложный процесс тепломассопереноса, который управляется термодинамическими и кинетическими факторами. Многие из них трудно контролировать. Уровень чистоты, температура и концентрация компонентов в непосредственной близости к фазовой границе, перемешивание, теплообмен могут быть главными факторами, определяющими размер, число и форму возникающих кристаллов.

Центры кристаллизации . Процесс кристаллизации состоит из двух стадий: зарождение центров кристаллизации и рост кристаллов. Начальная стадия - зарождение центров кристаллизации - представляет собой образование кластеров с характерной для кристалла упорядоченностью. Но иногда их структура может отличаться от структуры устойчивого макроскопического кристалла. Образование таких кластеров в чистых жидкостях или газах происходит ниже температуры плавления массивного кристалла в результате случайных столкновений при тепловом движении атомов или молекул. При температурах ниже равновесной объединение частиц в кристаллический кластер термодинамически выгодно, но появление его новой поверхности требует затраты энергии, что является препятствующим фактором при зарождении центров кристаллизации. Чем меньше кластер, тем большая доля частиц составляет его поверхность. Поэтому при малых размерах большинство кластеров распадается вследствие флуктуаций колебательной энергии частиц. С ростом кластера доля поверхностной энергии уменьшается по отношению к объёмной энергии объединения частиц, что повышает устойчивость кластера. При заданном пересыщении существует критический размер, при превышении которого кластеры способны к дальнейшему росту и становятся центрами кристаллизации.

Численной характеристикой интенсивности зарождения центров кристаллизации является частота зародышеобразования (нуклеации) - число центров, возникающих в единицу времени в единице объёма среды. Существующая теория объясняет температурную зависимость частоты нуклеации и связывает её с параметрами среды, в которой идёт образование центров кристаллизации. Для жидкостей с малой вязкостью, например для большинства расплавленных металлов, теория предсказывает большие переохлаждения, при которых должно наблюдаться спонтанное зарождение центров кристаллизации. При дальнейшем увеличении переохлаждения частота нуклеации быстро возрастает, достигая максимума при температуре, приблизительно равной одной трети температуры равновесия кристалла с расплавом. Быстрый спад частоты зарождения центров кристаллизации при ещё более низких температурах обусловлен замедлением теплового движения и сильным возрастанием вязкости. Для более вязких жидкостей максимум частоты сдвинут в сторону более низких переохлаждений и сами значения частоты значительно ниже.

Поскольку многие параметры теории известны с недостаточной для расчётов точностью, важную роль играют экспериментальные данные. Приближение к идеальным условиям достигается использованием в опытах малых капель жидкостей диаметром от нескольких микрометров до нанометров. При спонтанном зарождении требуются большие отклонения от равновесия, а центры кристаллизации характеризуются критическим размером порядка одного нанометра. Например, для расплавов чистых металлов наблюдаемая в опытах температура спонтанного зарождения центров кристаллизации составляет 30-50% от температуры плавления. Многие силикатные расплавы при охлаждении вообще затвердевают без кристаллизации, образуя стёкла. Экспериментально показано, что в вязких жидкостях процесс зарождения центров кристаллизации нестационарен. Это означает, что характерная для заданного отклонения от равновесия частота зарождения центров кристаллизации появляется только по истечении времени запаздывания, которое может быть достаточно большим, сравнимым или даже превышающим время охлаждения образца. Металлические расплавы характеризуются значительно меньшей вязкостью, и подавление спонтанного зарождения центров кристаллизации для некоторых сплавов возможно лишь при очень быстром охлаждении (со скоростью свыше 10 6 К/с). Это лежит в основе технологии получения аморфных металлов. Стабильность аморфного состояния обеспечивается сильным замедлением обмена атомами между кристаллом и средой при низких температурах. Наблюдать кристаллизацию полученного таким образом аморфного состояния можно при нагревании, увеличивая интенсивность теплового движения, а выделяющаяся при этом скрытая теплота фазового перехода может существенно интенсифицировать процесс, дополнительно повышая температуру. Для некоторых веществ (германий, кремний, аморфный лёд) наблюдается взрывная кристаллизация аморфного состояния.

В загрязнённых средах центры кристаллизации возникают на посторонних кристаллических частицах при гораздо меньших отклонениях от равновесия. Частота зарождения центров кристаллизации в таких случаях зависит также от материала стенок сосуда, действия излучений. Зародышевые кристаллы на хорошо смачивающейся ориентирующей поверхности имеют приблизительно куполообразную форму, затратная доля поверхностной энергии у них меньше по сравнению с объёмным выигрышем при агрегировании частиц в такой кристаллик. Поэтому такое гетерогенное зарождение центров кристаллизации происходит при меньших переохлаждениях. Контролируемое гетерогенное зарождение центров кристаллизации используется, например, при эпитаксиальном получении монокристаллических плёнок. При выращивании на затравочном центре кристаллизации крупных совершенных монокристаллов, содержащих минимально возможное число дефектов, необходимо избегать появления спонтанных зародышей. Для этого используют небольшое отклонение от условий равновесия. В металлургии при получении кристаллических материалов стремятся получить максимальное число центров кристаллизации, для чего создают глубокое переохлаждение расплавов.


Механизмы роста кристаллов.
В зависимости от того, какой является поверхность кристалла в атомном масштабе - гладкой или шероховатой, различают два механизма роста кристаллов: послойный и нормальный. Атомно-гладким поверхностям обычно отвечают наиболее развитые грани с простыми кристаллографическими индексами. Они содержат сравнительно небольшое число дефектов: вакансий и адсорбированных атомов. Края незавершённых атомных плоскостей образуют ступени (рис. 1), которые, в свою очередь, имеют небольшое число изломов. Элементарный акт роста кристалла состоит в присоединении новой частицы к излому и не меняет поверхностную энергию. Последовательное присоединение частиц к излому приводит к его движению вдоль ступени, а ступени по поверхности - такой рост называется послойным. Плотность ступеней при послойном росте зависит от механизма их генерации. Ступени могут возникать в результате образования и роста двумерных зародышей. Процесс образования двумерных зародышей, способных к дальнейшему росту на атомно-гладкой поверхности, имеет некоторую аналогию с образованием центров кристаллизации в жидкости. Двумерный зародыш также имеет критический размер, начиная с которого он способен к дальнейшему росту. При агрегировании двумерного зародыша препятствующим фактором его развития при малых размерах является затрата работы на линейную энергию его периметра. Но с ростом размера доля линейной энергии периметра становится всё меньше, и, начиная с некоторого критического размера, двумерный зародыш становится центром роста новой ступени. Частота образования двумерных зародышей очень мала при малых отклонениях от равновесия, соответственно мала и скорость роста, определяемая двумерным зародышеобразованием. Заметные скорости роста при таком механизме образования ступеней начинаются при ощутимом переохлаждении и очень сильно (экспоненциально) возрастают при его увеличении. Другой механизм генерации ступеней связан с винтовыми дислокациями. Если кристалл содержит винтовую дислокацию, то его рост происходит путём присоединения атомов к торцу ступени, оканчивающейся на дислокации (рис. 2, а). При росте на винтовой дислокации ступень приобретает спиральную форму (рис. 2, б), а заметная скорость роста увеличивается с переохлаждением по квадратичному закону и наблюдается уже при малых отклонениях от равновесия.

На атомно-шероховатых поверхностях (рис. 3) плотность изломов велика и присоединение новых частиц к кристаллу происходит практически в любой точке его поверхности. Такой рост называется нормальным. Его скорость линейно увеличивается с переохлаждением. Теория роста кристалла связывает плотность упаковки поверхности кристалла с энергией связи между частицами поверхности кристалла и теплотой кристаллизации. Считается, что если энергия связи достаточно велика, все плотноупакованные грани - гладкие. Это характерно для кристаллов, растущих из пара. Теплота кристаллизации расплавов, как правило, значительно ниже, чем теплота кристаллизации из пара, поэтому и энергия связи частиц в кристалле по сравнению с расплавом меньше, чем по сравнению с паром. В связи с этим поверхность кристалла, растущего из расплава, обычно шероховатая, что определяет нормальный рост и формирование округлённых граней. Переход от шероховатости к огранению возможен при изменении концентрации в двухкомпонентных системах при росте кристалла из раствора. В кристаллах германия и кремния, растущих из расплава, можно наблюдать сосуществование плоских и округлённых граней.

Формы роста кристаллов определяются анизотропией их свойств и условиями тепломассопереноса в процессе кристаллизации. Кристаллы с шероховатыми поверхностями имеют обычно округлую форму. При выращивании таких кристаллов из-за большой скорости поверхностных процессов переохлаждение на границе с расплавом мало и растущая поверхность повторяет форму изотермы температурного поля в системе при температуре равновесия. Атомно-гладкие поверхности проявляются в виде граней. Равновесная форма кристаллического многогранника такова, что расстояние от центра до каждой грани пропорционально величине её поверхностной энергии. Равновесная форма является и стационарной формой роста, но в реальном процессе роста она может быть сильно искажена из-за неустойчивости поверхности роста при конечном (а не бесконечно малом) переохлаждении, влиянии примесей.

Если расплав сильно переохлаждён и температура в расплаве убывает по мере удаления от фронта роста, то рост неустойчив: случайно возникший на поверхности кристалла выступ попадает в область большего переохлаждения, и скорость его роста увеличивается. Такая неустойчивость для плоского фронта кристаллизации ведёт к образованию полосчатой или ячеистой структуры кристалла (рис. 4). При росте маленького кристалла эта неустойчивость проявляется, начиная с некоторого размера кристалла. На нём развиваются выступы, и он приобретает скелетную или дендритную форму, которая характеризуется появлением вторичных ветвей после достижения первичным выступом критической длины (рис. 5). Рост больших огранённых кристаллов из неподвижного раствора может быть также неустойчив. Пересыщение в этом случае выше у вершин и рёбер кристалла и меньше в центральных частях грани. Поэтому вершины становятся ведущими источниками роста слоёв. При большой разности пересыщений на вершинах и в центрах граней вершины обгоняют центры граней, и возникает скелетная форма кристалла (рис. 6). При заданной температуре в двухкомпонентной системе равновесие может существовать при разных составах кристалла и расплава. При росте кристалла один из компонентов скапливается перед фронтом, вызывая концентрационное переохлаждение, и это часто приводит к неустойчивости фронта роста.

Разные грани кристалла при росте захватывают разные количества примесей, содержащихся в среде. Так возникает его секториальное строение. Если кристалл плохо захватывает примесь, происходит её накопление перед фронтом роста. Периодический захват этого пограничного слоя растущим кристаллом приводит к формированию зонарной структуры (рис. 7). Захват примесей приводит к изменению параметров кристаллической решётки, и на границах областей разного состава возникают внутренние напряжения, что приводит к образованию дислокаций и трещин. Дислокации возникают в результате релаксации упругих напряжений в неравномерно нагретом кристалле или могут переходить из затравки в выращиваемый кристалл.

Массовая кристаллизация - одновременный рост множества кристаллов, широко используемый в промышленности. Свойства слитков и отливок при кристаллизации металлургических расплавов в сильной степени зависят от количества центров кристаллизации и условий их роста. При затвердевании отливок металлов центры кристаллизации появляются вначале на охлаждаемых стенках изложницы, куда заливают расплавленный металл. Из хаотически ориентированных кристаллов выживают те, которые растут перпендикулярно стенке. Они формируют столбчатую зону вблизи стенки. Конвекционные потоки в расплаве могут обламывать ветви дендритов, поставляя в расплав вторичные центры кристаллизации. Массовая кристаллизация в растворах начинается на гетерогенных центрах кристаллизации или на специально введённых затравочных кристаллах. Столкновения этих кристалликов между собой и со стенками сосуда в перемешиваемом растворе дают начало вторичным центрам кристаллизации. Для создания дополнительных центров кристаллизации используют УЗ-дробление растущих кристаллов или добавки поверхностно-активных веществ. Массовая кристаллизация используется также для очистки веществ от примесей.

Применение кристаллизации. В природе кристаллизация приводит к образованию минералов, льда, играет важную роль во многих биологических процессах. Кристаллизация происходит также при некоторых химических реакциях, в процессе электролиза. Она лежит в основе многих технологических процессов: в металлургии, при получении материалов для электроники, оптики. Путём кристаллизации получают массивные монокристаллы и тонкие плёнки. Кристаллизация широко используется в химической, пищевой, медицинской промышленности: в технологии очистки веществ, при производстве соли, сахара, лекарств.

Лит.: Шубников А. В. Образование кристаллов. М.; Л., 1947; Леммлейн Г. Г. Морфология и генезис кристаллов. М., 1973; Лодиз Р. А., Паркер Р. Л. Рост монокристаллов. М., 1974; Проблемы современной кристаллографии. М., 1975; Современная кристаллография. М., 1980. Т. 3; Чернов А. А. Физика кристаллизации. М., 1983; Гегузин Я. Е., Кагановский Ю. С. Диффузионные процессы на поверхности кристалла. М., 1984; Скрипов В. П., Коверда В. П. Спонтанная кристаллизация переохлажденных жидкостей. М., 1984; Проблемы кристаллографии. М., 1987; Чупрунов Е. В., Хохлов А. Ф., Фаддеев М. А. Кристаллография. М., 2000.

Когда вершина мощных кучевых облаков оказывается в области низких отрицательных температур, происходит замерзание капелек, что приводит к изменению условий роста частиц и электризации. Поэтому до рассмотрения особенностей роста ледяных частиц в облаках представляется целесообразным ознакомиться с процессами кристаллизации переохлажденных капелек и влиянием на них электрических сил.

Для лучшего понимания процессов кристаллизации рассмотрим сперва некоторые вопросы строения воды и льда.

1.6.1. Строение воды и льда

Строение молекул воды, так же как структура жидкой воды и льда, исследовалось с помощью различных методов - оптической спектроскопии, комбинационного рассеяния световых лучей,

дифракции рентгеновских лучей, электронов и нейтронов. Однако еще и сейчас нет полной ясности относительно структуры воды, особенно в жидкой фазе. Причиной этого являются необыкновенные свойства воды, являющейся аномальным веществом во многих отношениях.

В твердой фазе вода также обладает аномальными свойствами. Поражает огромное разнообразие форм ледяных кристаллов (снежинок) в атмосфере. В атмосферных условиях существует только одна из возможных кристаллических структур льда - гексагональная, тогда как при температурах ниже -70° С кристаллы льда приобретают кубическую структуру, при еще более низких температурах лед вообще теряет свою кристаллическую структуру - он становится аморфным.

Молекулярный вес обычной воды 18 молей. Однако из-за существования трех изотопов водорода и шести изотопов кислорода может образоваться большое число разновидностей воды, из которых в природных условиях встречается в очень небольших количествах практически только тяжелая вода с дейтерием или и . В природной воде (дождевой, речной и т. п.) содержится около 0,02% тяжелой воды. Поэтому на строение атмосферной воды присутствие тяжелой воды не оказывает какого-либо заметного влияния.

При объединении атомов в молекулы могут возникнуть ионные или полярные связи, а чаще всего те и другие одновременно ( Соколов ). В случае ионной связи атом, у которого на внешней орбите имеется избыток электронов, соединяется с атомом, на внешней орбите которого имеется недостаток электронов. Типичной является реакция соединения атомов с образованием ионов . В случае полярной связи происходит объединение орбит электронов вокруг протонов атомов, входящих в состав молекулы; к такому типу принадлежат и молекулы воды.

Вода является полярным веществом, т. е. ее молекулы представляют собой электрические диполи с моментом Вследствие этого расположение атомов водорода в молекуле воды не может быть линейным и симметричным относительно атома кислорода. Асимметричное линейное расположение атомов водорода также невозможно, ибо такая молекула воды оказывается неустойчивой. Поэтому необходимо предположить, что атомы расположены в вершинах равнобедренного треугольника с одинаковыми сторонами На основании экспериментальных исследований было установлено, что длина сторон в треугольнике равна а угол между этими сторонами составляет Длина стороны равна 1,52 А.

В газообразном состоянии вода содержит в основном отдельные молекулы, но какая-то часть их соединяется в комплексы по две молекулы или более. Так как электронное облачко атома водорода только частично захватывается своим атомом кислорода, то атом водорода со стороны открытого конца проявляется как слабый положительный заряд, который и притягивается к атому

кислорода другой молекулы (рис. 17). Эту связь называют протонной или водородной. Протонная связь много слабее полярной. Вследствие этого образование ассоциированных молекул воды носит статистический характер и длительность существования комплекса весьма мала - порядка Закономерности образования таких комплексов в атмосфере были исследованы В. Я. Никандровым .

В жидком состоянии плотность упаковки молекул воды весьма велика. Поэтому вероятность ассоциации молекул возрастает. Так как плотность жидкой воды мало зависит от давления, вероятность ассоциации молекул зависит только от температуры.

Рис. 17. Строение

Полярная связь - сплошная линня, водородная (протонная) связь - штриховая линня.

Рис. 18. Тетраэдрическая структура кристаллической решетки льда.

При температурах воды, близких к 0° С, образуются комплексы из пяти-шести молекул.

Исследования кристаллов льда рентгеновскими лучами показали, что в кристаллической решетке каждый атом кислорода окружен четырьмя другими атомами кислорода. При равном расстоянии «периферийных» атомов кислорода от «центрального» образуется тетраэдр (рис. 18); внутренние углы тетраэдра должны быть равны 109° 28. Каждый «периферийный» атом может играть роль «центрального», в результате чего образуется кристаллическая решетка льда. Надо полагать, что в жидкой фазе при температурах, близких к упомянутые комплексы из пяти молекул также образуют тетраэдры, своего рода жидкие кристаллы.

Из исследований дифракции нейтронов в кристаллах льда было получено, что атомы водорода располагаются на расстоянии 1 А от атомов кислорода. Энергия связи каждого атома водорода с ближайшим атомом кислорода совершенно одинакова, поэтому при переходе одного из атомов водорода на место, ранее занятое другим, их энергия не изменяется. Такой переход возможен только

в том случае, если появляется внешнее воздействие в виде электрического поля, нагревания и т. п. и атом получает необходимую энергию для перехода. Но возможны также спонтанные переходы вследствие так называемого «туннельного» эффекта, при которых дополнительная энергия может быть меньше энергии перехода атома водорода из одного положения в другое.

Пусть при наложении внешнего электрического поля произойдет перемещение одного из атомов водорода по линии связи из одного положения в другое. Тогда первый атом кислорода потеряет ион водорода, а второй приобретет. Вследствие этого появится диполь Восстановление равновесия произойдет в том случае, если в эту пару перескочит ион водорода из другой пары, и т. д. В результате появится электрический ток. Таким образом, электропроводность чистого льда можно объяснить переходом ионов водорода под действием внешнего электрического поля, т. е. лед имеет протонную проводимость.

На поверхности ледяных кристаллов молекулы находятся в несколько особом состоянии, чем во внутренних частях. У этих молекул некоторые связи отсутствуют, и у них дополнительно к колебательным появляется возможность совершать вращательные движения. Вследствие этого на поверхности ледяных кристаллов должен существовать молекулярный квазижидкий слой, проводимость которого должна быть выше проводимости собственно ледяного кристалла.

Плавление

Плавление — это процесс превращения вещества из твёрдого состояния в жидкое.

Наблюдения показывают, что если измельчённый лёд, имеющий, например, температуру 10 °С, оставить в тёплой комнате, то его температура будет повышаться. При 0 °С лёд начнет таять, а температура при этом не будет изменяться до тех пор, пока весь лёд не превратится в жидкость. После этого температура образовавшейся изо льда воды будет повышаться.

Это означает, что кристаллические тела, к которым относится и лед, плавятся при определённой температуре, которую называют температурой плавления . Важно, что во время процесса плавления температура кристаллического вещества и образовавшейся в процессе его плавления жидкости остаётся неизменной.

В описанном выше опыте лёд получал некоторое количество теплоты, его внутренняя энергия увеличивалась за счёт увеличения средней кинетической энергии движения молекул. Затем лёд плавился, его температура при этом не менялась, хотя лёд получал некоторое количество теплоты. Следовательно, его внутренняя энергия увеличивалась, но не за счёт кинетической, а за счёт потенциальной энергии взаимодействия молекул. Получаемая извне энергия расходуется на разрушение кристаллической решетки. Подобным образом происходит плавление любого кристаллического тела.

Аморфные тела не имеют определённой температуры плавления. При повышении температуры они постепенно размягчаются, пока не превратятся в жидкость.

Кристаллизация

Кристаллизация — это процесс перехода вещества из жидкого состояния в твёрдое состояние. Охлаждаясь, жидкость будет отдавать некоторое количество теплоты окружающему воздуху. При этом будет уменьшаться её внутренняя энергия за счёт уменьшения средней кинетической энергии его молекул. При определённой температуре начнётся процесс кристаллизации, во время этого процесса температура вещества не будет изменяться, пока всё вещество не перейдет в твёрдое состояние. Этот переход сопровождается выделением определённого количества теплоты и соответственно уменьшением внутренней энергии вещества за счёт уменьшения потенциальной энергии взаимодействия его молекул.

Таким образом, переход вещества из жидкого состояния в твёрдое состояние происходит при определённой температуре, называемой температурой кристаллизации. Эта температура остаётся неизменной в течение всего процесса плавления. Она равна температуре плавления этого вещества.

На рисунке приведён график зависимости температуры твёрдого кристаллического вещества от времени в процессе его нагревания от комнатной температуры до температуры плавления, плавления, нагревания вещества в жидком состоянии, охлаждения жидкого вещества, кристаллизации и последующего охлаждения вещества в твёрдом состоянии.

Удельная теплота плавления

Различные кристаллические вещества имеют разное строение. Соответственно, для того, чтобы разрушить кристаллическую решётку твёрдого тела при температуре его плавления, необходимо ему сообщить разное количество теплоты.

Удельная теплота плавления — это количество теплоты, которое необходимо сообщить 1 кг кристаллического вещества, чтобы превратить его в жидкость при температуре плавления. Опыт показывает, что удельная теплота плавления равна удельной теплоте кристаллизации .

Удельная теплота плавления обозначается буквой λ . Единица удельной теплоты плавления — [λ] = 1 Дж/кг .

Значения удельной теплоты плавления кристаллических веществ приведены в таблице. Удельная теплота плавления алюминия 3,9*10 5 Дж/кг. Это означает, что для плавления 1 кг алюминия при температуре плавления необходимо затратить количество теплоты 3,9*10 5 Дж. Этому же значению равно увеличение внутренней энергии 1 кг алюминия.

Чтобы вычислить количество теплоты Q , необходимое для плавления вещества массой m , взятого при температуре плавления, следует удельную теплоту плавления λ умножить на массу вещества: Q = λm .

Эта же формула используется при вычислении количества теплоты, выделяющегося при кристаллизации жидкости.



Понравилась статья? Поделитесь с друзьями!