Средняя и мгновенная скорость при прямолинейном движении. Мгновенная и средняя скорость

Это векторная физическая величина, численно равная пределу, к которому стремится средняя скорость за бесконечно малый промежуток времени:

Другими словами, мгновенная скорость – это радиус-вектора по времени.

Вектор мгновенной скорости всегда направлен по касательной к траектории тела в сторону движения тела.

Мгновенная скорость дает точную информацию о движении в определенный момент времени. Например, при езде в автомобиле в некоторый момент времени водитель смотрит на спидометр и видит, что прибор показывает 100 км/ч. Через некоторое время стрелка спидометра указывает на величину 90 км/ч, а еще спустя несколько минут – на величину 110 км/ч. Все перечисленные показания спидометра – это значения мгновенной скорости автомобиля в определенные моменты времени. Скорость в каждый момент времени и в каждой точке траектории необходимо знать при стыковке космических станций, при посадке самолетов и т.д.

Имеет ли понятие «мгновенной скорости» физический смысл? Скорость – это характеристика изменения в пространстве. Однако, для того, чтобы определить, как изменилось перемещение, необходимо наблюдать за движением в течение некоторого времени. Даже самые совершенные приборы для измерения скорости такие как радарные установки, измеряют скорость за промежуток времени – пусть достаточно малый , однако это все-таки конечный временной интервал, а не момент времени. Выражение «скорость тела в данный момент времени» с точки зрения физики не является корректным. Однако, понятие мгновенной скорости очень удобно в математических расчетах, и им постоянно пользуются.

Примеры решения задач по теме «Мгновенная скорость»

ПРИМЕР 1

ПРИМЕР 2

Задание Закон движения точки по прямой задается уравнением . Найти мгновенную скорость точки через 10 секунд после начала движения.
Решение Мгновенная скорость точки – это радиус-вектора по времени. Поэтому для мгновенной скорости можно записать:

Через 10 секунд после начала движения мгновенная скорость будет иметь значение:

Ответ Через 10 секунд после начала движения мгновенная скорость точки м/с.

ПРИМЕР 3

Задание Тело движется по прямой так, что его координата (в метрах) изменяется по закону . Через сколько секунд после начала движения тело остановится?
Решение Найдем мгновенную скорость тела:

Ни одно тело не движется все время с постоянной скоростью. Трогаясь с места, автомобиль начинает двигаться все быстрее и быстрее. Некоторое время он может двигаться равномерно, но рано или поздно замедляет движение и останавливается. При этом он проходит различные расстояния за одни и те же интервалы времени.
Что же надо понимать под скоростью, если тело движется неравномерно?
Средняя скорость
Введем понятие средней скорости неравномерного движения за интервал времени At.
Средней (по времени) скоростью неравномерного движения точки называется отношение изменения ее координаты Ах к интервалу времени At, в течение которого это изменение произошло:
По форме определение средней скорости неравномерного движения не отличается от определения скорости равномерного движения. Но содержание его будет иным. Теперь отноше- V, м/с
10 8 6 4 2 В А 1 / / / 1 0 5 10 15 Рис. 1.14
20 t, с
2 мин от 2-й
До
Ах „
ние - уже не постоянно. Оно зависит как от значения интервала времени At = t2 - tv так и от выбора начального момента времени tv Например, соглас-но таблице 1 (см. с. 34), средняя ско-рость автомобиля на интервале времени от 2-й до 4-й минуты равна
2130 м- 1050 м,
540 м/мин, на интер-
3-й минуты равна
вале 1840 м - 1050 м = 290 м/мин.
2130 м - 1840 м
ты мы получаем значение
2 мин
Средняя скорость характеризует движение в течение интервала времени At именно в среднем и ничего не говорит о том, как же движется автомобиль в различные моменты времени этого интервала.
"Другой пример. На рисунке 1.14 показан график скорости спринтера при забеге на 200 м. Проанализируем этот забег. Будем считать беговую дорожку прямолинейной. С точки зрения результата нас, конечно, интересует время забега (Ai = 20 с), и поэтому бег спортсмена можно характеризовать средней скоро-стью. Если координатную ось X совместить с беговой дорожкой (за начало отсчета можно принять точку на линии старта), то
Ах = 200 м. Тогда vx = ^ = ^о ™ = М/С- споРтсмена и
его тренера интересуют и детали забега: сколько времени длился разбег, какую скорость развил спортсмен в конце разбега (точка В на графике). Ведь этим и будет определяться время забега. Но скорость спортсмена, соответствующая точке В графика, это уже не средняя скорость, а скорость спортсмена в момент времени t = 4 с.
Мгновенная скорость
Мгновенную скорость естественно было бы определить как скорость тела в данный момент времени или в данной точке траектории. На первый взгляд определение очень простое и понятное. Но так ли это? Как надо, например, понимать следующее утверждение: «Скорость автомобиля в момент начала торможения была 90 км/ч»? Перефразировка этого утверждения«В момент начала торможения автомобиль за 1 ч прошел 90 км » бессмысленна.
Утверждение это, видимо, понимать надо так: если бы начи-ная с указанного момента времени автомобиль не стал бы тор-мозить, а продолжал бы двигаться так же, т. е. с той же быстротой, то за 1 ч он прошел бы 90 км, за 0,5 ч - 45 км, за 1 мин - 1,5 км, за 1 с - 25 м и т. д.
Результат последнего рассуждения весьма важен, ибо показывает, как в принципе можно определить мгновенную скорость автомобиля в момент t начала торможения (или любого другого тела, движущегося прямолинейно и неравномерно). Надо измерить среднюю скорость автомобиля на интервале времени от t до t + At и согласиться, что мгновенная скорость автомобиля в момент времени t приблизительно равна этой средней скорости. Приближение будет тем лучше и, следовательно, мгновенная скорость будет определена тем точнее, чем меньше промежуток времени At. Ведь надо, чтобы на этом промежутке скорость менялась незначительно, а лучше, чтобы этим изменением вообще можно было пренебречь. Последнее замечание заставляет нас брать величину At все меньше и меньше, не ставя ограничения этому уменьшению. В математике это называют «стремление интервала времени At к нулю» и обозначают «At -»0».
За очень малый промежуток времени от t до t + At координата тела изменится также на малую величину Ах. Чтобы найти мгновенную скорость в момент времени t, надо малую величину Ах разделить на малую величину At и посмотреть, чему будет равно частное, если промежуток At неограниченно уменьшать, т. е. стремить к нулю. В математике говорят: «Найти
Ах. .
предел отношения при стремлении At к нулю» и записывают: vr = lim ^ , где знак lim означает «предел».
Af -> 0 А*
Поясним сказанное на примере, когда движение тела описывается аналитически (формулой). Ведь по формуле можно найти положение тела в любой момент времени.
Пусть при движении тела вдоль оси X его координата изменяется согласно уравнению
* = kt ,
где k - постоянный коэффициент.
Примем k = 5 м/с2 и вычислим изменения координаты тела за интервалы времени, равные 0,1, 0,01, 0,001 с..., отсчитываемые, например, с момента времени tt = 1 с:
А*! = 5^ (1,1 с)2-5^ (1с)2 = 1,05 м,
с с
Дх2 = 5^ (1,01 с)2 - 5^ (1 с)2 = 0,1005 м,
с с
Найдем теперь отношения изменений координаты к тем промежуткам времени, за которые эти изменения произошли:
Д*1 1,05 м 1ft _ . А?7 ="0ДТ =10"5м/с"
а*2 0,1005 м 1ПЛС. Щ =-07ГПГ -10,06 м/с,
Еезультаты вычислений приведены в таблице 2.
Таблица 2 At, С Ax, M Ax , ~At " C 0,1 1,05 10,5 0,01 0,1005 10,05 0,001 0,010005 10,005 0,0001 0,00100005 10,0005
Из таблицы видно, что по мере приближения интервала времени At к нулю отношение ~ приближается к определенному
значению (пределу), равному 10 м/с; это и есть скорость в мо-мент времени t1 = 1 с.
Если тело движется по закону х = kt2, то предел ^ при
At -> 0 {lim ^) нетрудно вычислить. В начальный момент
\U-»0 At S
времени t xl = kt2, а в момент t + At х2 = k(t + At)2, следовательно, Ах = х2 - xl = k(t + At)2 - kt2 = 2ktAt + k(At)2.
Тогда для отношения ~ получим:
- = 2kt + kAt.
At
Предел этого отношения при At -> 0 (мгновенная скорость) равен
= lim ~ = 2kt.
х At -> о At
Для данных нашего примера vx = 10 м/с.
Таким образом, для любого момента времени отношение изменения координаты тела к промежутку времени, за который это изменение произошло, стремится к определенному значению при стремлении самого промежутка времени к нулю. Полученный вывод справедлив для любого неравномерного движения.
Мгновенной скоростью при прямолинейном движении называется предел, к которому стремится отношение изменения координаты точки к интервалу времени, за которое это изменение произошло, если интервал времени стремится к нулю.
По определению имеем:
lim^. (1.7.1)
м ->0
т, Ах _ dx
В математике выражение lim - принято обозначать -=- .
ді -»о At dt
Тогда формулу (1.7.1) можно записать так:
... dx = dt ¦
Выражение ^ называется производной координаты по времени.
dx
Иногда производную обозначают иначе: vx(t) = = х" (читается «икс-штрих»).
Когда мы говорим, что скорость в данный момент времени равна 10 м/с, то это означает следующее: если бы начиная с этого момента тело продолжало двигаться равномерно целую секунду, то оно прошло бы 10 м. При равномерном движении средняя скорость за любой момент времени равна мгновенной.
В дальнейшем вы убедитесь, что именно мгновенная, а не средняя скорость играет в механике основную роль.
Как измерить мгновенную скорость І
Измерить мгновенную скорость, осуществив экспериментально предель-
Ах. . „ ныи переход при At -> О, практически невозможно. Используя стробоскопические фотографии (рис. 1.15), можно измерить координаты тела в очень близкие моменты времени и вычислить средние скорости между этими моментами. Но мгновенную скорость так определить нельзя.
Для измерения (разумеется, при-ближенного) используют различные явления, которые зависят от мгновен-ной скорости. Так, в спидометре авто-мобиля гибкий тросик передает вра-щение от ведомого вала коробки пере-дач к маленькому постоянному магниту. Вращение магнита возбуждает электрический ток в катушке, в ре-зультате чего происходит поворот стрелки спидометра.
Чтобы узнать скорость самолета, измеряют давление встречного потока воздуха. В радарах используют изменение частоты радиоволн при отражении от движущихся тел.
При неравномерном движении скорость изменяется. Некоторое представление о движении дает средняя скорость. Но главную роль играет скорость в любой точке в данный момент времени. Это - мгновенная скорость.
Ж
Рис. 1.15
Рисунок с фотографии двух падающих шариков различной массы. Фотографию получили, открывая объектив и чередуя вспышки света каждые 1/30 с. Заметьте, что маленький шарик достигает пола одновременно с большим. Оба шарика начинают падать одновременно.

Еще по теме § 1.7. СРЕДНЯЯ СКОРОСТЬПРИ НЕРАВНОМЕРНОМ ПРЯМОЛИНЕЙНОМДВИЖЕНИИ. МГНОВЕННАЯ СКОРОСТЬ:

  1. 3.2.1 Средняя скорость распространения пламени в основной фазе сгорания.
  2. 3.2.2 Средняя скорость распространения пламени во второй фазе сгорания.
  3. 3.2.3 Средняя скорость распространения пламени в третьей фазе сгорания
  4. 4.2.3 Полуэмпирическая зависимость средней скорости распространения пламени во второй фазе сгорания
  5. 4.2.2 Полуэмпирическая формула средней скорости распространения пламени в основной фазе сгорания
  6. Теорема 27. Третье правило. Если два тела равны по массе, но В движется немного скорее А, то не только А отразится в противоположном направлении, но и В перенесет на А половину своего излишка скорости, и оба будут продолжать движение с равной скоростью в одном направлении.

Скатывание тела по наклонной плоскости (рис. 2);

Рис. 2. Скатывание тела по наклонной плоскости ()

Свободное падение (рис. 3).

Все эти три вида движения не являются равномерными, то есть в них изменяется скорость. На этом уроке мы рассмотрим неравномерное движение.

Равномерное движение механическое движение, при котором тело за любые равные отрезки времени проходит одинаковое расстояние (рис. 4).

Рис. 4. Равномерное движение

Неравномерным называется движение , при котором тело за равные промежутки времени проходит неравные пути.

Рис. 5. Неравномерное движение

Основная задача механики – определить положение тела в любой момент времени. При неравномерном движении скорость тела меняется, следовательно, необходимо научиться описывать изменение скорости тела. Для этого вводятся два понятия: средняя скорость и мгновенная скорость.

Факт изменения скорости тела при неравномерном движении не всегда необходимо учитывать, при рассмотрении движении тела на большом участке пути в целом (нам не важна скорость в каждый момент времени) удобно ввести понятие средней скорости.

Например, делегация школьников добирается из Новосибирска в Сочи поездом. Расстояние между этими городами по железной дороге составляет приблизительно 3300 км. Скорость поезда, когда он только выехал из Новосибирска составляла , значит ли это, что посередине пути скорость была такой же, а на подъезду к Сочи [М1] ? Можно ли, имея только эти данные, утверждать, что время движения составит (рис. 6). Конечно нет, так как жители Новосибирска знают, что до Сочи ехать приблизительно 84 ч.

Рис. 6. Иллюстрация к примеру

Когда рассматривается движение тела на большом участке пути в целом, удобнее ввести понятие средней скорости.

Средней скоростью называют отношение полного перемещения, которое совершило тело, ко времени, за которое совершено это перемещение (рис. 7).

Рис. 7. Средняя скорость

Данное определение не всегда является удобным. Например, спортсмен пробегает 400 м – ровно один круг. Перемещение спортсмена равно 0 (рис. 8), однако мы понимаем, что его средняя скорость нулю равна быть не может.

Рис. 8. Перемещение равно 0

На практике чаще всего используется понятие средней путевой скорости.

Средняя путевая скорость – это отношение полного пути, пройденного телом, ко времени, за которое путь пройден (рис. 9).

Рис. 9. Средняя путевая скорость

Существует еще одно определение средней скорости.

Средняя скорость – это та скорость, с которой должно двигаться тело равномерно, чтобы пройти данное расстояние за то же время, за которое оно его прошло, двигаясь неравномерно.

Из курса математики нам известно, что такое среднее арифметическое. Для чисел 10 и 36 оно будет равно:

Для того чтобы узнать возможность использования этой формулы для нахождения средней скорости, решим следующую задачу.

Задача

Велосипедист поднимается со скоростью 10 км/ч на склон, затрачивая на это 0,5 часа. Далее со скоростью 36 км/ч спускается вниз за 10 минут. Найдите среднюю скорость велосипедиста (рис. 10).

Рис. 10. Иллюстрация к задаче

Дано: ; ; ;

Найти:

Решение:

Так как единица измерения данных скоростей – км/ч, то и среднюю скорость найдем в км/ч. Следовательно, данные задачи не будем переводить в СИ. Переведем в часы.

Средняя скорость равна:

Полный путь () состоит из пути подъема на склон () и спуска со склона ():

Путь подъема на склон равен:

Путь спуска со склона равен:

Время, за которое пройден полный путь, равно:

Ответ: .

Исходя из ответа задачи, видим, что применять формулу среднего арифметического для вычисления средней скорости нельзя.

Не всегда понятие средней скорости полезно для решения главной задачи механики. Возвращаясь к задаче про поезд, нельзя утверждать, что если средняя скорость на всем пути поезда равна , то через 5 часов он будет находиться на расстоянии от Новосибирска.

Среднюю скорость, измеренную за бесконечно малый промежуток времени, называют мгновенной скоростью тела (для примера: спидометр автомобиля (рис. 11) показывает мгновенную скорость).

Рис. 11. Спидометр автомобиля показывает мгновенную скорость

Существует еще одно определение мгновенной скорости.

Мгновенная скорость – скорость движения тела в данный момент времени, скорость тела в данной точке траектории (рис. 12).

Рис. 12. Мгновенная скорость

Для того чтобы лучше понять данное определение, рассмотрим пример.

Пусть автомобиль движется прямолинейно по участку шоссе. У нас есть график зависимости проекции перемещения от времени для данного движения (рис. 13), проанализируем данный график.

Рис. 13. График зависимости проекции перемещения от времени

На графике видно, что скорость автомобиля не постоянная. Допустим, необходимо найти мгновенную скорость автомобиля через 30 секунд после начала наблюдения (в точке A ). Пользуясь определением мгновенной скорости, найдем модуль средней скорости за промежуток времени от до . Для этого рассмотрим фрагмент данного графика (рис. 14).

Рис. 14. График зависимости проекции перемещения от времени

Для того чтобы проверить правильность нахождения мгновенной скорости, найдем модуль средней скорости за промежуток времени от до , для этого рассмотрим фрагмент графика (рис. 15).

Рис. 15. График зависимости проекции перемещения от времени

Рассчитываем среднюю скорость на данном участке времени:

Получили два значения мгновенной скорости автомобиля через 30 секунд после начала наблюдения. Точнее будет то значение, где интервал времени меньше, то есть . Если уменьшать рассматриваемый интервал времени сильнее, то мгновенная скорость автомобиля в точке A будет определяться более точно.

Мгновенная скорость – это векторная величина. Поэтому, кроме ее нахождения (нахождения ее модуля), необходимо знать, как она направлена.

(при ) – мгновенная скорость

Направление мгновенной скорости совпадает с направлением перемещения тела.

Если тело движется криволинейно, то мгновенная скорость направлена по касательной к траектории в данной точке (рис. 16).

Задание 1

Может ли мгновенная скорость () изменяться только по направлению, не изменяясь по модулю?

Решение

Для решения рассмотрим следующий пример. Тело движется по криволинейной траектории (рис. 17). Отметим на траектории движения точку A и точку B . Отметим направление мгновенной скорости в этих точках (мгновенная скорость направлена по касательной к точке траектории). Пусть скорости и одинаковы по модулю и равны 5 м/с.

Ответ: может.

Задание 2

Может ли мгновенная скорость меняться только по модулю, не меняясь по направлению?

Решение

Рис. 18. Иллюстрация к задаче

На рисунке 10 видно, что в точке A и в точке B мгновенная скорость направлена одинаково. Если тело движется равноускоренно, то .

Ответ: может.

На данном уроке мы приступили к изучению неравномерного движения, то есть движения с изменяющейся скоростью. Характеристиками неравномерного движения являются средняя и мгновенная скорости. Понятие о средней скорости основано на мысленной замене неравномерного движения равномерным. Иногда понятие средней скорости (как мы увидели) является очень удобным, но для решения главной задачи механики оно не подходит. Поэтому вводится понятие мгновенной скорости.

Список литературы

  1. Г.Я. Мякишев, Б.Б. Буховцев, Н.Н. Сотский. Физика 10. - М.: Просвещение, 2008.
  2. А.П. Рымкевич. Физика. Задачник 10-11. - М.: Дрофа, 2006.
  3. О.Я. Савченко. Задачи по физике. - М.: Наука, 1988.
  4. А.В. Перышкин, В.В. Крауклис. Курс физики. Т. 1. - М.: Гос. уч.-пед. изд. мин. просвещения РСФСР, 1957.
  1. Интернет-портал «School-collection.edu.ru» ().
  2. Интернет-портал «Virtulab.net» ().

Домашнее задание

  1. Вопросы (1-3, 5) в конце параграфа 9 (стр. 24); Г.Я. Мякишев, Б.Б. Буховцев, Н.Н. Сотский. Физика 10 (см. список рекомендованной литературы)
  2. Можно ли, зная среднюю скорость за определенный промежуток времени, найти перемещение, совершенное телом за любую часть этого промежутка?
  3. Чем отличается мгновенная скорость при равномерном прямолинейном движении от мгновенной скорости при неравномерном движении?
  4. Во время езды на автомобиле через каждую минуту снимались показания спидометра. Можно ли по этим данным определить среднюю скорость движения автомобиля?
  5. Первую треть трассы велосипедист ехал со скоростью 12 км в час, вторую треть - со скоростью 16 км в час, а последнюю треть - со скоростью 24 км в час. Найдите среднюю скорость велосипеда на протяжении всего пути. Ответ дайте в км/час

Изменяются ее координаты. Координаты могут изменяться быстро или медленно. Физическая величина, которая характеризует быстроту изменения координаты, называется скоростью.

Пример

Средняя скорость -- это вектор ная величина, численно равная перемещению в единицу времени, и сонаправленная с вектором перемещения:$\left\langle v\right\rangle =\frac{\triangle r}{\triangle t}$ ; $\left\langle v\right\rangle \uparrow \uparrow \triangle r$

Рисунок 1. Средняя скорость сонаправлена перемещению

Mодуль средней скорости по пути равен: $\left\langle v\right\rangle =\frac{S}{\triangle t}$

Мгновенная скорость дает точную информацию о движении в определенный момент времени. Выражение «скорость тела в данный момент времени» с точки зрения физики не является корректным. Однако понятие мгновенной скорости очень удобно в математических расчетах, и им постоянно пользуются.

Мгновенная скорость (или просто скорость) есть предел, к которому стремится средняя скорость $\left\langle v\right\rangle $ при стремлении промежутка времени $\triangle t$ к нулю:

$v={\mathop{lim}_{\triangle t} \frac{\triangle r}{\triangle t}\ }=\frac{dr}{dt}=\dot{r}$ (1)

Вектор $v$ направлен по касательной к криволинейной траектории, так как бесконечно малое (элементарное) перемещение dr совпадает с бесконечно малым элементом траектории ds.

Рисунок 2. Вектор мгновенной скорости $v$

В декартовых координатах уравнение (1) эквивалентно трем уравнениям

$\left\{ \begin{array}{c} v_x=\frac{dx}{dt}=\dot{x} \\ v_y=\frac{dy}{dt}=\dot{y} \\ v_z=\frac{dz}{dt}=\dot{z} \end{array} \right.$ (2)

Модуль вектора $v$ в этом случае равен:

$v=\left|v\right|=\sqrt{v^2_x+v^2_y+v^2_z}=\sqrt{x^2+y^2+z^2}$ (3)

Переход от декартовых прямоугольных координат к криволинейным осуществляется по правилам дифференцирования сложных функций. Пусть радиус-вектор r есть функция криволинейных координат: $r=r\left(q_1,q_2,q_3\right)\ $. Тогда скорость $v=\frac{dr}{dt}=\sum^3_{i=1}{\frac{\partial r}{\partial q_i}\frac{\partial q_i}{\partial t}}=\sum^3_{i=1}{\frac{\partial r}{\partial q_i}}\dot{q_i}$

Рисунок 3. Перемещение и мгновенная скорость в системах криволинейных координат

В сферических координатах, полагая $q_1=r;\ \ q_2=\varphi ;\ \ q_3=\theta $, получаем представление $v$ в следующий форме:

$v=v_re_r+v_{\varphi }e_{\varphi }+v_{\theta }e_{\theta }$, где $v_r=\dot{r};\ \ v_{\varphi }=r\dot{\varphi }sin\theta ;;\ \ v_{\theta }=r\dot{\theta }\ ;;$ \[\dot{r}=\frac{dr}{dt};;\ \ \dot{\varphi }=\frac{d\varphi }{dt};;\ \ \dot{\theta }=\frac{d\theta }{dt}; v=r\sqrt{1+{\varphi }^2sin^2\theta +{\theta }^2}\]

Мгновенная скорость - это значение производной от функции перемещения по времени в заданный момент времени, и связана с элементарным перемещением следующим соотношением: $dr=v\left(t\right)dt$

Задача 1

Закон движения точки по прямой: $x\left(t\right)=0,15t^2-2t+8$. Найти мгновенную скорость точки через 10 секунд после начала движения.

Мгновенная скорость точки -- это первая производная радиус-вектора по времени. Поэтому для мгновенной скорости можно записать:

Ответ: Через 10 с после начала движения мгновенная скорость точки 1 м/с.

Задача 2

Движение материальной точки задано уравнением~ $x=4t-0,05t^2$. Определить момент времени $t_{ост.}$, в который точка остановится, и среднюю путевую скорость $\left\langle v\right\rangle $.

Найдем уравнение мгновенной скорости: $v\left(t\right)=\dot{x}\left(t\right)=4-0,1t$

Ответ: Точка остановится через 40 секунд после начала движения. Средняя скорость её движения 0,1 м/с.

Скатывание тела по наклонной плоскости (рис. 2);

Рис. 2. Скатывание тела по наклонной плоскости ()

Свободное падение (рис. 3).

Все эти три вида движения не являются равномерными, то есть в них изменяется скорость. На этом уроке мы рассмотрим неравномерное движение.

Равномерное движение – механическое движение, при котором тело за любые равные отрезки времени проходит одинаковое расстояние (рис. 4).

Рис. 4. Равномерное движение

Неравномерным называется движение , при котором тело за равные промежутки времени проходит неравные пути.

Рис. 5. Неравномерное движение

Основная задача механики – определить положение тела в любой момент времени. При неравномерном движении скорость тела меняется, следовательно, необходимо научиться описывать изменение скорости тела. Для этого вводятся два понятия: средняя скорость и мгновенная скорость.

Факт изменения скорости тела при неравномерном движении не всегда необходимо учитывать, при рассмотрении движении тела на большом участке пути в целом (нам не важна скорость в каждый момент времени) удобно ввести понятие средней скорости.

Например, делегация школьников добирается из Новосибирска в Сочи поездом. Расстояние между этими городами по железной дороге составляет приблизительно 3300 км. Скорость поезда, когда он только выехал из Новосибирска составляла , значит ли это, что посередине пути скорость была такой же, а на подъезду к Сочи [М1] ? Можно ли, имея только эти данные, утверждать, что время движения составит (рис. 6). Конечно нет, так как жители Новосибирска знают, что до Сочи ехать приблизительно 84 ч.

Рис. 6. Иллюстрация к примеру

Когда рассматривается движение тела на большом участке пути в целом, удобнее ввести понятие средней скорости.

Средней скоростью называют отношение полного перемещения, которое совершило тело, ко времени, за которое совершено это перемещение (рис. 7).

Рис. 7. Средняя скорость

Данное определение не всегда является удобным. Например, спортсмен пробегает 400 м – ровно один круг. Перемещение спортсмена равно 0 (рис. 8), однако мы понимаем, что его средняя скорость нулю равна быть не может.

Рис. 8. Перемещение равно 0

На практике чаще всего используется понятие средней путевой скорости.

Средняя путевая скорость – это отношение полного пути, пройденного телом, ко времени, за которое путь пройден (рис. 9).

Рис. 9. Средняя путевая скорость

Существует еще одно определение средней скорости.

Средняя скорость – это та скорость, с которой должно двигаться тело равномерно, чтобы пройти данное расстояние за то же время, за которое оно его прошло, двигаясь неравномерно.

Из курса математики нам известно, что такое среднее арифметическое. Для чисел 10 и 36 оно будет равно:

Для того чтобы узнать возможность использования этой формулы для нахождения средней скорости, решим следующую задачу.

Задача

Велосипедист поднимается со скоростью 10 км/ч на склон, затрачивая на это 0,5 часа. Далее со скоростью 36 км/ч спускается вниз за 10 минут. Найдите среднюю скорость велосипедиста (рис. 10).

Рис. 10. Иллюстрация к задаче

Дано: ; ; ;

Найти:

Решение:

Так как единица измерения данных скоростей – км/ч, то и среднюю скорость найдем в км/ч. Следовательно, данные задачи не будем переводить в СИ. Переведем в часы.

Средняя скорость равна:

Полный путь () состоит из пути подъема на склон () и спуска со склона ():

Путь подъема на склон равен:

Путь спуска со склона равен:

Время, за которое пройден полный путь, равно:

Ответ: .

Исходя из ответа задачи, видим, что применять формулу среднего арифметического для вычисления средней скорости нельзя.

Не всегда понятие средней скорости полезно для решения главной задачи механики. Возвращаясь к задаче про поезд, нельзя утверждать, что если средняя скорость на всем пути поезда равна , то через 5 часов он будет находиться на расстоянии от Новосибирска.

Среднюю скорость, измеренную за бесконечно малый промежуток времени, называют мгновенной скоростью тела (для примера: спидометр автомобиля (рис. 11) показывает мгновенную скорость).

Рис. 11. Спидометр автомобиля показывает мгновенную скорость

Существует еще одно определение мгновенной скорости.

Мгновенная скорость – скорость движения тела в данный момент времени, скорость тела в данной точке траектории (рис. 12).

Рис. 12. Мгновенная скорость

Для того чтобы лучше понять данное определение, рассмотрим пример.

Пусть автомобиль движется прямолинейно по участку шоссе. У нас есть график зависимости проекции перемещения от времени для данного движения (рис. 13), проанализируем данный график.

Рис. 13. График зависимости проекции перемещения от времени

На графике видно, что скорость автомобиля не постоянная. Допустим, необходимо найти мгновенную скорость автомобиля через 30 секунд после начала наблюдения (в точке A ). Пользуясь определением мгновенной скорости, найдем модуль средней скорости за промежуток времени от до . Для этого рассмотрим фрагмент данного графика (рис. 14).

Рис. 14. График зависимости проекции перемещения от времени

Для того чтобы проверить правильность нахождения мгновенной скорости, найдем модуль средней скорости за промежуток времени от до , для этого рассмотрим фрагмент графика (рис. 15).

Рис. 15. График зависимости проекции перемещения от времени

Рассчитываем среднюю скорость на данном участке времени:

Получили два значения мгновенной скорости автомобиля через 30 секунд после начала наблюдения. Точнее будет то значение, где интервал времени меньше, то есть . Если уменьшать рассматриваемый интервал времени сильнее, то мгновенная скорость автомобиля в точке A будет определяться более точно.

Мгновенная скорость – это векторная величина. Поэтому, кроме ее нахождения (нахождения ее модуля), необходимо знать, как она направлена.

(при ) – мгновенная скорость

Направление мгновенной скорости совпадает с направлением перемещения тела.

Если тело движется криволинейно, то мгновенная скорость направлена по касательной к траектории в данной точке (рис. 16).

Задание 1

Может ли мгновенная скорость () изменяться только по направлению, не изменяясь по модулю?

Решение

Для решения рассмотрим следующий пример. Тело движется по криволинейной траектории (рис. 17). Отметим на траектории движения точку A и точку B . Отметим направление мгновенной скорости в этих точках (мгновенная скорость направлена по касательной к точке траектории). Пусть скорости и одинаковы по модулю и равны 5 м/с.

Ответ: может.

Задание 2

Может ли мгновенная скорость меняться только по модулю, не меняясь по направлению?

Решение

Рис. 18. Иллюстрация к задаче

На рисунке 10 видно, что в точке A и в точке B мгновенная скорость направлена одинаково. Если тело движется равноускоренно, то .

Ответ: может.

На данном уроке мы приступили к изучению неравномерного движения, то есть движения с изменяющейся скоростью. Характеристиками неравномерного движения являются средняя и мгновенная скорости. Понятие о средней скорости основано на мысленной замене неравномерного движения равномерным. Иногда понятие средней скорости (как мы увидели) является очень удобным, но для решения главной задачи механики оно не подходит. Поэтому вводится понятие мгновенной скорости.

Список литературы

  1. Г.Я. Мякишев, Б.Б. Буховцев, Н.Н. Сотский. Физика 10. - М.: Просвещение, 2008.
  2. А.П. Рымкевич. Физика. Задачник 10-11. - М.: Дрофа, 2006.
  3. О.Я. Савченко. Задачи по физике. - М.: Наука, 1988.
  4. А.В. Перышкин, В.В. Крауклис. Курс физики. Т. 1. - М.: Гос. уч.-пед. изд. мин. просвещения РСФСР, 1957.
  1. Интернет-портал «School-collection.edu.ru» ().
  2. Интернет-портал «Virtulab.net» ().

Домашнее задание

  1. Вопросы (1-3, 5) в конце параграфа 9 (стр. 24); Г.Я. Мякишев, Б.Б. Буховцев, Н.Н. Сотский. Физика 10 (см. список рекомендованной литературы)
  2. Можно ли, зная среднюю скорость за определенный промежуток времени, найти перемещение, совершенное телом за любую часть этого промежутка?
  3. Чем отличается мгновенная скорость при равномерном прямолинейном движении от мгновенной скорости при неравномерном движении?
  4. Во время езды на автомобиле через каждую минуту снимались показания спидометра. Можно ли по этим данным определить среднюю скорость движения автомобиля?
  5. Первую треть трассы велосипедист ехал со скоростью 12 км в час, вторую треть - со скоростью 16 км в час, а последнюю треть - со скоростью 24 км в час. Найдите среднюю скорость велосипеда на протяжении всего пути. Ответ дайте в км/час


Понравилась статья? Поделитесь с друзьями!