Степенная функция с целым показателем. Степенная функция, ее свойства и график Демонстрационный материал Урок-лекция Понятие функции

Функции у = ах, у = ax 2 , у = а/х - являются частными видами степенной функции при n = 1, n = 2, n = -1 .

В случае если n дробное число p / q с четным знаменателем q и нечетным числителем р , то величина может иметь два знака , а у графика появляется еще одна часть внизу оси абсцисс х , причем она симметрична верхней части.

Видим график двузначной функции у = ±2х 1/2 , т. е. представленный параболой с горизонтальной осью.

Графики функций у = х n при n = -0,1; -1/3; -1/2; -1; -2; -3; -10 . Эти графики проходят через точку (1; 1).

Когда n = -1 получаем гиперболу . При n < - 1 график степенной функции располагается сначала выше гиперболы, т.е. между х = 0 и х = 1 , а потом ниже (при х > 1 ). Если n > -1 график проходит наоборот. Отрицательные значений х и дробные значения n аналогичны для положительных n .

Все графики неограниченно приближаются как к оси абсцисс х, так и к оси ординат у , не соприкасаясь с ними. Вследствие сходства с гиперболой эти графики называют гиперболами n -го порядка.

Для удобства рассмотрения степенной функции будем рассматривать 4 отдельных случая: степенная функция с натуральным показателем, степенная функция с целым показателем, степенная функция с рациональным показателем и степенная функция с иррациональным показателем.

Степенная функция с натуральным показателем

Для начала введем понятие степени с натуральным показателем.

Определение 1

Степенью действительного числа $a$ с натуральным показателем $n$ называется число, равное произведению $n$ множителей, каждый из которых равняется числу $a$.

Рисунок 1.

$a$ - основание степени.

$n$ - показатель степени.

Рассмотрим теперь степенную функцию с натуральным показателем, её свойства и график.

Определение 2

$f\left(x\right)=x^n$ ($n\in N)$ называется степенной функцией с натуральным показателем.

Для дальнейшего удобства рассмотрим отдельно степенную функцию с четным показателем $f\left(x\right)=x^{2n}$ и степенную функцию с нечетным показателем $f\left(x\right)=x^{2n-1}$ ($n\in N)$.

Свойства степенной функции с натуральным четным показателем

    $f\left(-x\right)={(-x)}^{2n}=x^{2n}=f(x)$ -- функция четна.

    Область значения -- $ \

    Функция убывает, при $x\in (-\infty ,0)$ и возрастает, при $x\in (0,+\infty)$.

    $f{""}\left(x\right)={\left(2n\cdot x^{2n-1}\right)}"=2n(2n-1)\cdot x^{2(n-1)}\ge 0$

    Функция выпукла на всей области определения.

    Поведение на концах области определения:

    \[{\mathop{lim}_{x\to -\infty } x^{2n}\ }=+\infty \] \[{\mathop{lim}_{x\to +\infty } x^{2n}\ }=+\infty \]

    График (рис. 2).

Рисунок 2. График функции $f\left(x\right)=x^{2n}$

Свойства степенной функции с натуральным нечетным показателем

    Область определения -- все действительные числа.

    $f\left(-x\right)={(-x)}^{2n-1}={-x}^{2n}=-f(x)$ -- функция нечетна.

    $f(x)$ - непрерывна на всей области определения.

    Область значения -- все действительные числа.

    $f"\left(x\right)=\left(x^{2n-1}\right)"=(2n-1)\cdot x^{2(n-1)}\ge 0$

    Функция возрастает на всей области определения.

    $f\left(x\right)0$, при $x\in (0,+\infty)$.

    $f{""\left(x\right)}={\left(\left(2n-1\right)\cdot x^{2\left(n-1\right)}\right)}"=2\left(2n-1\right)(n-1)\cdot x^{2n-3}$

    \ \

    Функция вогнута, при $x\in (-\infty ,0)$ и выпукла, при $x\in (0,+\infty)$.

    График (рис. 3).

Рисунок 3. График функции $f\left(x\right)=x^{2n-1}$

Степенная функция с целым показателем

Для начала введем понятие степени с целым показателем.

Определение 3

Степень действительного числа $a$ c целым показателем $n$ определяется формулой:

Рисунок 4.

Рассмотрим теперь степенную функцию с целым показателем, её свойства и график.

Определение 4

$f\left(x\right)=x^n$ ($n\in Z)$ называется степенной функцией с целым показателем.

Если степень больше нуля, то мы приходим к случаю степенной функции с натуральным показателем. Его мы уже рассмотрели выше. При $n=0$ мы получим линейную функцию $y=1$. Её рассмотрение оставим читателю. Осталось рассмотреть свойства степенной функции с отрицательным целым показателем

Свойства степенной функции с отрицательным целым показателем

    Область определения -- $\left(-\infty ,0\right)(0,+\infty)$.

    Если показатель четный, то функция четна, если нечетный, то функция нечетна.

    $f(x)$ - непрерывна на всей области определения.

    Область значения:

    Если показатель четный, то $(0,+\infty)$, если нечетный, то $\left(-\infty ,0\right)(0,+\infty)$.

    При нечетном показателе функция убывает, при $x\in \left(-\infty ,0\right)(0,+\infty)$. При четном показателе функция убывает при $x\in (0,+\infty)$. и возрастает, при $x\in \left(-\infty ,0\right)$.

    $f(x)\ge 0$ на всей области определения

Степенной называется функция вида y=x n (читается как y равно х в степени n), где n – некоторое заданное число. Частными случаями степенных функций является функции вида y=x, y=x 2 , y=x 3 , y=1/x и многие другие. Расскажем подробнее о каждой из них.

Линейная функция y=x 1 (y=x)

График прямая линия, проходящая через точку (0;0) под углом 45 градусов к положительному направлению оси Ох.

График представлен ниже.

Основные свойства линейной функции:

  • Функция возрастающая и определена на всей числовой оси.
  • Не имеет максимального и минимального значений.

Квадратичная функция y=x 2

Графиком квадратичной функции является парабола.

Основные свойства квадратичной функции:

  • 1. При х =0, у=0, и у>0 при х0
  • 2. Минимальное значение квадратичная функция достигает в своей вершине. Ymin при x=0; Следует также заметить, что максимального значения у функции не существует.
  • 3. Функция убывает на промежутке (-∞;0] и возрастает на промежутке }

Понравилась статья? Поделитесь с друзьями!