Сверхпроводники и их применение. Сверхпроводимость металлов: значение и применение в физике

Чудо сверхпроводимости (авт. Валерий Старощук)

Немного теории

Уже первые опыты с электричеством показали, что серебро, медь и алюминий хорошо проводят электрический ток, а фарфор, стекло, резина и шелк его практически не проводят. Соответственно, из первых материалов люди стали делать проводники, а из вторых - изоляцию для проводов и защиту от поражения электрическим током. На фото вы видите современный сетевой двужильный провод. Каждая жила состоит из семи медных проволочек заключенных в пластиковую изоляцию. Учитывая, что провод работает при опасном напряжении 220В, две изолированные жилы покрыты еще одним общим слоем пластиковой изоляции.

Когда по проводнику проходит электрический ток, он разогревается. Это свойство используют в нагревательных приборах, таких как утюг, чайник, в электробатареях, а также в лампах накаливания. На фото вы видите вольфрамовую нить, которая так разогрелась под действием тока, что начала излучать свет.

Сейчас все чаще применяют энергосберегающие люминесцентные лампы, но и в них есть маленькая нить накала для излучения электронов.

Если по проводнику идет ток, он не только нагревается, но и создает вокруг себя магнитное поле. Это свойство первым заметил и описал в 1820 году датский ученый Ганс Христиан Эрстед. На фото вы видите, как под действием магнитного поля железные опилки выстраиваются вокруг медного проводника с током.

Магнитное поле тока используют в работе электродвигателя, генератора и электромагнита.

Итак, если по проводнику идет ток, то энергия источника тока превращается в тепловую и энергию электромагнитного поля. Иногда это нужно и полезно, а иногда просто вредно. Например, зачем нам нагревание и магнитное поле провода, которым мы подключили утюг к розетке? Греются также провода, по которым электрический ток от электростанции идет к нашим домам. Чтобы уменьшить эти потери энергии, сопротивление проводника стараются сделать как можно меньше.

Так как электрическое сопротивление образца сильно зависит от материала, из которого он сделан, температуры и геометрических размеров, решили измерять удельное сопротивление , то есть сопротивление образца из данного материала длиной 1м, площадью поперечного сечения 1мм 2 при 20 0 С. Например, удельное сопротивление меди равно r = 0,0125 Ом·мм 2 /м. Это значит, что если вы возьмете проводник из меди (Cu) длинной 1 м и площадью сечения 1мм 2 , то его сопротивление электрическому току будет 0,0125 Ом. Сопротивление дает возможность узнать, какой ток пройдет по проводнику для данного напряжения. Например, если напряжение на концах нашего образца будет равно 0,1В, то через него пойдет ток I = U/R= 0,1/0,0125 = 8A. Для наглядности представим электроны в виде бегущих синих человечков.

Тогда при токе 8А за одну секунду их забежит в проводник 5·10 19 (50 миллиард миллиардов!). Это почти в 70 миллиардов раз больше, чем людей на планете Земля. Обратите внимание, что выбежит из проводника их за секунду столько же. Договорились, что направление тока определяют по движению положительно заряженных частиц. Но в металлах ток проводят отрицательные электроны, поэтому направление тока показано противоположно скорости электронов. В проводнике находятся положительные ионы меди, с которыми наши электроны-человечки играются, хватая руками. Ведь между отрицательными электронами и положительными ионами существуют силы притяжения. Забрать ион с собой человечку-электрону не удастся, так как ионы намного тяжелее электронов и крепко связаны силами между собой в кристаллической решетке. А вот раскачать ионы нашим «человечкам» будет под силу. При этом электроны теряют свою скорость, а значит и энергию движения, а проводник соответственно нагревается.

История открытия


Голландский ученый Хейке Камерлинг Оннес (Heike Kammerlingh Onnes) (на фото справа) решил первым в мире достичь в своих экспериментах абсолютный ноль по шкале Кельвина (примерно минус 273 градуса по Цельсию). Как вы знаете, в природе не существует температуры ниже. Сорокалетний ученый, используя свои связи с голландскими промышленниками в 1893 году начинает строительство в Лейденском университете одной из лучших лабораторий в мире, которую оснастил самым современным оборудованием. Первый успех пришел 10 июля 1908 года, когда удалось получить жидкий гелий при 5К (это минус 268 градусов Цельсия!). Через 2 года напряженного труда они получают температуру 1К! И тут ученый понимает, что это предел, который можно достичь на данном оборудовании, поэтому принимается решение изменить направление научной работы. Теперь все силы были направлены на изучение физических свойств разных материалов при низких температурах. Естественно, один из пунктов программы включал измерение удельного электрического сопротивления материала. Многие ученые того времени высказывали предположение, что при очень низких температурах металлы должны стать диэлектриками. Якобы свободные электроны настолько замедлят свое движение, что «приклеятся» к ионам и не смогут переносить электричество. Но физика - наука, прежде всего экспериментальная! Опыты Хейке Камерлинг Оннеса показали, что у платины с понижением температуры сопротивление не растет, а падает, и после 4К остается постоянным. Ученый сделал предположение, что сопротивление должно стремиться к нулю, потому что ионы прекращают колебательное движение и «не мешают» двигаться свободным электронам. Понимая, что в платине есть малые примеси, он решил проверить ртуть, самый очищенный металл, который у него был.

8 апреля 1911 года группа Хейке Камерлинг Оннес, с ассистентами Корнелисом Дорсманом (Cornelis Dorsman) и Гиллесом Хольстом (Gilles Holst) проверяли работу нового криостастата (устройство для поддержания низких температур в данном объеме). Сначала думали только заправить жидким гелием, но потом установили газовый термометр и два образца из золота и ртути, чтобы измерить их удельное сопротивление. Измерив сопротивление металлов при 4,3К, решили уменьшить давление в криостате над гелием. Гелий начал быстро испаряться, и температура упала до 3К. Эксперимент длился уже 9 часов! При повторном измерении сопротивление ртути оказалось равным нулю! Так была открыта сверхпроводимость!

На фото вы видите историческую запись ученого, сделанную в тот день. В рамку взята голландская фраза Kwik nagenoeg nul — «Сопротивление ртути практически нулевое» (3 К). Следующее предложение Herhaald met goud означает «Повторено с золотом».

Критическая температура перехода ртути в сверхпроводящее состояние в тот день не была определена, да такой задачи и не ставилось. Ее выяснили в следующем эксперименте, проведенном 11 мая. Камерлинг-Оннес тогда пришел к выводу, что ртуть делается сверхпроводником при охлаждении до 4,2 К.

В дальнейшем открытия пошли одно за другим. В 1912 году открыли еще два сверхпроводника - свинец и олово. В 1914 понимают, что сильное магнитное поле разрушает сверхпроводимость. В том же году проводят эффектный эксперимент со сверхпроводящим кольцом из свинца. В нем кратковременно индуцировали ток, а потом наблюдали его циркуляцию на протяжении нескольких часов без малейшего затухания. Само кольцо становится магнитом.

В 1919 году из Лейдена пришла весть, что сверхпроводниками становятся также таллий и уран.

Объяснение сверхпроводимости

Объяснить явление сверхпроводимости с точки зрения классической электродинамики невозможно. Только с развитием квантовой физики в 1957 году (спустя 46 лет после открытия!) три американских физика - Бардин, Купер и Шриффер, объяснили сверхпроводимость спариванием электронов, то есть образованием куперовских пар, которое осуществляется за счет обмена колебаниями кристаллической ячейки - фононами.

Чтобы понять, как образуются куперовские пары, рассмотрим очень упрощенную модель прохождения тока в сверхпроводнике.

Красными кружками обозначены положительные ионы кристаллической решетки.

Когда электрон А под действием электрического поля движется в пространстве решетки, он немного искривляет её. В результате концентрация положительных ионов за ним возрастает. Скопление положительных ионов притягивает отрицательный электрон В с силой F. В результате энергия, которую потратил электрон А на прохождение ионной кристаллической решетки, передается через колебания решетки электрону В. Получается, что электроны А и В связаны между собой через ионную решетку, образуют пару и вместе не тратят энергии при движении. Сопротивление току в этом случае равно нулю.

Применение сверхпроводников

Современная наука уже получила материалы, которые обладают сверхпроводимостью при 165К (минус 107 0 С). Если будут получены материалы обладающие сверхпроводимостью при комнатной температуре, это будет огромный скачок в развитии человечества. Ведь одну треть электроэнергии мы тратим во время её передачи от источника потребителю. Пока же сверхпроводники приходится охлаждать жидким азотом.

С другой стороны, без них уже трудно представить работу Большого адронного коллайдера в ЦЕРНе, и строительство термоядерного реактора ITER в Кадараше.

Сверхпроводимость характеризуется также эффектом Мейснера , заключающемся в полном вытеснении магнитного поля из объема сверхпроводника. В результате образец, как видно на фото, зависает над магнитом.

На основе этого явления уже созданы поезда на магнитной подушке, которые могут разгоняться до скорости 500 км/ч.

Мощные магниты на сверхпроводниках используют в медицине при создании томографов, использующем принцип ядерно-магнитного резонанса (ЯМР). Сканирование тканей человека позволяет врачам увидеть на экране компьютера срез внутренностей, не оперируя больного. Такой метод позволяет быстро поставить правильный диагноз, а значит быстрее вылечить пациента.

Современная квантовая теория сверхпроводимости принципиально не ограничивает значение температуры, при которой наблюдается этот эффект. Значит дело за созданием новых материалов и соединений, которые, возможно, в скором будущем откроете вы.

Сверхпроводи́мость - свойство некоторых материалов обладать строго нулевым электрическим сопротивлением при достижении ими температуры ниже определённого значения (критическая температура). Известны несколько десятков чистых элементов, сплавов и керамик, переходящих в сверхпроводящее состояние. Сверхпроводимость - квантовое явление. Оно характеризуется также эффектом Мейснера, заключающемся в полном вытеснении магнитного поля из объема сверхпроводника. Существование этого эффекта показывает, что сверхпроводимость не может быть описана просто как идеальная проводимость в классическом понимании.

Открытие в 1986-1993 гг. ряда высокотемпературных сверхпроводников (ВТСП) далеко отодвинуло температурную границу сверхпроводимости и позволило и практически использовать сверхпроводящие материалы не только при температуре жидкого гелия (4.2 К), но и при температуре кипения жидкого азота (77 К), гораздо более дешевой криогенной жидкости.

Видео YouTube

История открытия

Основой для открытия явления сверхпроводимости стало развитие технологий охлаждения материалов до сверхнизких температур. В 1877 году французский инженер Луи Кайете и швейцарский физик Рауль Пикте (англ.) независимо друг от друга охладили кислород до жидкого состояния. В 1883 году Зигмунт Врублевски (англ.) и Кароль Ольшевски (англ.) выполнили сжижение азота. В 1898 году Джеймсу Дьюару удалось получить и жидкий водород.

В 1893 году проблемой сверхнизких температур стал заниматься голландский физик Хейке Камерлинг-Оннес. Ему удалось создать лучшую в мире криогенную лабораторию, в которой 10 июля 1908 года им был получен жидкий гелий. Позднее ему удалось довести его температуру до 1 градуса Кельвина. Камерлинг-Оннес использовал жидкий гелий для изучения свойств металлов, в частности, для измерения зависимости их электрического сопротивления от температуры. Согласно существовавшим тогда классическим теориям, сопротивление должно было плавно падать с уменьшением температуры, однако существовало также мнение, что при слишком низких температурах электроны практически остановятся и совсем перестанут проводить ток. Эксперименты, проводимые Камерлингом-Оннесем со своими ассистентами Корнелисом Дорсманом и Гиллесом Хольстом, вначале подтверждали вывод о плавном спадании сопротивления. Однако 8 апреля 1911 года он неожиданно обнаружил, что при 3 градусах Кельвина (около −270 °C) электрическое сопротивление ртути практически равно нулю. Следующий эксперимент, проведённый 11 мая, показал, что резкий скачок сопротивления до нуля происходит при температуре около 4,2 К (позднее, более точные измерения показали, что эта температура равна 4,15 К). Этот эффект был совершенно неожиданным и не мог быть объяснён существовавшими тогда теориями.

В 1912 году были обнаружены ещё два металла, переходящие в сверхпроводящее состояние при низких температурах: свинец и олово. В январе 1914 года было показано, что сверхпроводимость разрушается сильным магнитным полем. В 1919 году было установлено, что таллий и уран также являются сверхпроводниками.

Нулевое сопротивление - не единственная отличительная черта сверхпроводимости. Одним из главных отличий сверхпроводников от идеальных проводников является эффект Мейснера, открытый Вальтером Мейснером и Робертом Оксенфельдом в 1933 году.

Первое теоретическое объяснение сверхпроводимости было дано в 1935 году Фрицем (англ.) и Хайнцем Лондоном (англ.). Более общая теория была построена в 1950 году Л. Д. Ландау и В. Л. Гинзбургом. Она получила широкое распространение и известна как теория Гинзбурга - Ландау. Однако эти теории имели феноменологический характер и не раскрывали детальные механизмы сверхпроводимости. Впервые сверхпроводимость получила объяснение на микроскопическом уровне в 1957 году в работе американских физиков Джона Бардина, Леона Купера и Джона Шриффера. Центральным элементом их теории, получившей название теории БКШ, являются так называемые куперовские пары электронов.

Позднее было установлено, что сверхпроводники делятся на два больших семейства: сверхпроводников I типа (к ним, в частности, относится ртуть) и II типа (которыми обычно являются сплавы разных металлов). В открытии сверхпроводимости II типа значительную роль сыграли работы Л. В. Шубникова в 1930-е годы и А. А. Абрикосова в 1950-е.

Для практического применения в мощных электромагнитах большое значение имело открытие в 1950-х годах сверхпроводников, способных выдерживать сильные магнитные поля и пропускать большие плотности тока. Так, в 1960 году под руководством Дж. Кюнцлера был открыт материал Nb3Sn, проволока из которого способна при температуре 4,2 К, находясь в магнитном поле величиной 8,8 Тл, пропускать ток плотностью до 100 кА/см².

В 1962 году английским физиком Брайаном Джозефсоном был открыт эффект, получивший его имя.

В 1986 году Карл Мюллер и Георг Беднорц открыли новый тип сверхпроводников, получивших название высокотемпературных. В начале 1987 года было показано, что соединения лантана, стронция, меди и кислорода (La-Sr-Cu-O) испытывают скачок проводимости практически до нуля при температуре 36 К. В начале марта 1987 года был впервые получен сверхпроводник при температуре, превышающей температуру кипения жидкого азота (77,4 К): было обнаружено, что таким свойством обладает соединение иттрия, бария, меди и кислорода (Y-Ba-Cu-O). По состоянию на 1 января 2006 года рекорд принадлежит керамическому соединению Hg-Ba-Ca-Cu-O(F), открытому в 2003 году, критическая температура для которого равна 138 К. Более того, при давлении 400 кбар то же соединение является сверхпроводником при температурах до 166 К.

Видео YouTube


Фазовый переход в сверхпроводящее состояние

Температурный интервал перехода в сверхпроводящее состояние для чистых образцов не превышает тысячных долей Кельвина и поэтому имеет смысл определённое значение Тс - температуры перехода в сверхпроводящее состояние. Эта величина называется критической температурой перехода. Ширина интервала перехода зависит от неоднородности металла, в первую очередь - от наличия примесей и внутренних напряжений. Известные ныне температуры Тс изменяются в пределах от 0,0005 К у магния (Mg) до 23,2 К у интерметаллида ниобия и германия (Nb3Ge, в плёнке) и 39 К у диборида магния (MgB2) у низкотемпературных сверхпроводников (Тс ниже 77 К, температуры кипения жидкого азота), до примерно 135 К у ртутьсодержащих высокотемпературных сверхпроводников. В настоящее время фаза HgBa2Ca2Cu3O8+d (Hg−1223) имеет наибольшее известное значение критической температуры - 135 К, причем при внешнем давлении 350 тысяч атмосфер температура перехода возрастает до 164 К, что лишь на 19 К уступает минимальной температуре, зарегистрированной в природных условиях на поверхности Земли. Таким образом, сверхпроводники в своём развитии прошли путь от металлической ртути (4.15 К) к ртутьсодержащим высокотемпературным сверхпроводникам (164 К).

Переход вещества в сверхпроводящее состояние сопровождается изменением его тепловых свойств. Однако, это изменение зависит от рода рассматриваемых сверхпроводников. Так, для сверхпроводников Ι рода в отсутствие магнитного поля при температуре перехода Тc теплота перехода (поглощения или выделения) обращается в нуль, а следовательно терпит скачок теплоёмкость, что характерно для фазового перехода ΙΙ рода. Такая температурная зависимость теплоемкости электронной подсистемы сверхпроводника свидетельствует о наличии энергетической щели в распределении электронов между основным состоянием сверхпроводника и уровнем элементарных возбуждений. Когда же переход из сверхпроводящего состояния в нормальное осуществляется изменением приложенного магнитного поля, то тепло должно поглощаться (например, если образец теплоизолирован, то его температура понижается). А это соответствует фазовому переходу Ι рода. Для сверхпроводников ΙΙ рода переход из сверхпроводящего в нормальное состояние при любых условиях будет фазовым переходом ΙΙ рода.


Эффект Мейснера

Даже более важным свойством сверхпроводника, чем нулевое электрическое сопротивление, является так называемый эффект Мейснера, заключающийся в выталкивании сверхпроводником магнитного потока rotB = 0 . Из этого экспериментального наблюдения делается вывод о существовании незатухающих токов внутри сверхпроводника, которые создают внутреннее магнитное поле, противоположнонаправленное внешнему, приложенному магнитному полю и компенсирующее его.

Достаточно сильное магнитное поле при данной температуре разрушает сверхпроводящее состояние вещества. Магнитное поле с напряжённостью Нc, которое при данной температуре вызывает переход вещества из сверхпроводящего состояния в нормальное, называется критическим полем. При уменьшении температуры сверхпроводника величина Нc возрастает. Зависимость величины критического поля от температуры с хорошей точностью описывается выражением


где Hc0 - критическое поле при нулевой температуре. Сверхпроводимость исчезает и при пропускании через сверхпроводник электрического тока с плотностью, большей, чем критическая jc, поскольку он создаёт магнитное поле, большее критического.

Момент Лондона

Вращающийся сверхпроводник генерирует магнитное поле, точно выровненное с осью вращения, возникающий магнитный момент получил название «момент Лондона». Он применялся, в частности, в научном спутнике «Gravity Probe B», где измерялись магнитные поля четырёх сверхпроводящих гироскопов, чтобы определить их оси вращения. Поскольку роторами гироскопов служили практически идеально гладкие сферы, использование момента Лондона было одним из немногих способов определить их ось вращения.

Применение сверхпроводимости

Достигнуты значительные успехи в получении высокотемпературной сверхпроводимости. На базе металлокерамики, например, состава YBa2Cu3Ox, получены вещества, для которых температура Тc перехода в сверхпроводящее состояние превышает 77 К (температуру сжижения азота).

Явление сверхпроводимости используется для получения сильных магнитных полей, поскольку при прохождении по сверхпроводнику сильных токов, создающих сильные магнитные поля, отсутствуют тепловые потери. Однако в связи с тем, что магнитное поле разрушает состояние сверхпроводимости, для получения сильных магнитных полей применяются т. н. сверхпроводники II рода, в которых возможно сосуществование сверхпроводимости и магнитного поля. В таких сверхпроводниках магнитное поле вызывает появление тонких нитей нормального металла, пронизывающих образец, каждая из которых несёт квант магнитного потока. Вещество же между нитями остаётся сверхпроводящим. Поскольку в сверхпроводнике II рода нет полного эффекта Мейснера, сверхпроводимость существует до гораздо больших значений магнитного поля Hc2.
Существуют детекторы фотонов на сверхпроводниках. В одних используется наличие критического тока, используют также эффект Джозефсона, андреевское отражение и т. д. Так, существуют сверхпроводниковые однофотонные детекторы (SSPD) для регистрации единичных фотонов ИК диапазона, имеющие ряд преимуществ перед детекторами аналогичного диапазона (ФЭУ и др.), использующими другие способы регистрации.
Вихри в сверхпроводниках второго рода можно использовать в качестве ячеек памяти. Подобное применение уже нашли некоторые магнитные солитоны. Существуют и более сложные дву- и трёхмерные магнитные солитоны, напоминающие вихри в жидкостях, только роль линий тока в них играют линии, по которым выстраиваются элементарные магнитики (домены).

Электроны в металлах
Открытие изотопического эффекта означало, что сверхпроводимость, вероятно, вызывается взаимодействием между электронами проводимости и атомами кристаллической решетки. Чтобы выяснить, как это приводит к сверхпроводимости, нужно рассмотреть структуру металла. Как и все кристаллические твердые тела, металлы состоят из положительно заряженных атомов, расположенных в пространстве в строгом порядке. Порядок, в котором размещены атомы, можно сравнить с повторяющимся рисунком на обоях, но только рисунок должен повторяться в трех измерениях. Электроны проводимости движутся среди атомов кристалла со скоростями от 0,01 до 0,001 скорости света; их движение и есть электрический ток.

(77 К), гораздо более дешевой криогенной жидкости.

Энциклопедичный YouTube

    1 / 5

    ✪ Сверхпроводимость. Электрический ток в различных средах. Учебный фильм

    ✪ Сверхпроводимость (рассказывает физик Андрей Варламов)

    ✪ Сверхпроводимость (рассказывает физик Борис Файн)

    ✪ Урок 296. Температурная зависимость сопротивления металлов. Сверхпроводимость

    ✪ Высокотемпературная сверхпроводимость (левитация)

    Субтитры

История открытия

Основой для открытия явления сверхпроводимости стало развитие технологий охлаждения материалов до сверхнизких температур. В 1877 году французский инженер Луи Кайете и швейцарский физик Рауль Пикте независимо друг от друга охладили кислород до жидкого состояния. В 1883 году Зигмунт Врублевски и Кароль Ольшевски выполнили сжижение азота . В 1898 году Джеймсу Дьюару удалось получить и жидкий водород .

В 1893 году проблемой сверхнизких температур стал заниматься голландский физик Хейке Камерлинг-Оннес . Ему удалось создать лучшую в мире криогенную лабораторию, в которой 10 июля 1908 года им был получен жидкий гелий . Позднее ему удалось довести его температуру до 1 Кельвина . Камерлинг-Оннес использовал жидкий гелий для изучения свойств металлов , в частности, для измерения зависимости их электрического сопротивления от температуры. Согласно существовавшим тогда классическим теориям , сопротивление должно было плавно падать с уменьшением температуры, однако существовало также мнение, что при слишком низких температурах электроны практически остановятся и металл совсем перестанет проводить ток. Эксперименты, проводимые Камерлингом-Оннесом со своими ассистентами Корнелисом Дорсманом и Гиллесом Хольстом, вначале подтверждали вывод о плавном спадании сопротивления. Однако 8 апреля 1911 года он неожиданно обнаружил, что при 3 Кельвинах (около −270 °C) электрическое сопротивление практически равно нулю. Следующий эксперимент, проведённый 11 мая, показал, что резкий спад сопротивления до нуля происходит при температуре около 4,2 К (позднее, более точные измерения показали, что эта температура равна 4,15 К). Этот эффект был совершенно неожиданным и не мог быть объяснён существовавшими тогда теориями.

Нулевое сопротивление - не единственная отличительная черта сверхпроводников. Одним из главных отличий сверхпроводников от идеальных проводников является эффект Мейснера , открытый Вальтером Мейснером и Робертом Оксенфельдом в 1933 году .

Позднее было установлено, что сверхпроводники делятся на два больших семейства: сверхпроводников I типа (к ним, в частности, относится ртуть) и II типа (которыми обычно являются сплавы разных металлов). В открытии сверхпроводимости II типа значительную роль сыграли работы Л. В. Шубникова в 1930-е годы и А. А. Абрикосова в 1950-е.

Для практического применения в мощных электромагнитах большое значение имело открытие в 1950-х годах сверхпроводников, способных выдерживать сильные магнитные поля и пропускать большие плотности тока . Так, в 1960 году под руководством Дж. Кюнцлера был открыт материал Nb 3 Sn, проволока из которого способна при температуре 4,2 К, находясь в магнитном поле величиной 8,8 Тл , пропускать ток плотностью до 100 кА/см².

В 2015 году был установлен новый рекорд температуры, при которой достигается сверхпроводимость. Для H 2 S (сероводород) при давлении 100 ГПа был зафиксирован сверхпроводящий переход при температуре 203 К (-70°C) .

Классификация

Существует несколько критериев для классификации сверхпроводников. Вот основные из них:

Свойства сверхпроводников

Нулевое электрическое сопротивление

Для постоянного электрического тока электрическое сопротивление сверхпроводника равно нулю. Это было продемонстрировано в ходе эксперимента, где в замкнутом сверхпроводнике был индуцирован электрический ток, который протекал в нём без затухания в течение 2,5 лет (эксперимент был прерван забастовкой рабочих, подвозивших криогенные жидкости).

Сверхпроводники в высокочастотном поле

Строго говоря, утверждение о том, что сопротивление сверхпроводников равно нулю справедливо только для постоянного электрического тока . В переменном электрическом поле сопротивление сверхпроводника отлично от нуля и растёт с увеличением частоты поля. Этот эффект на языке двухжидкостной модели сверхпроводника объясняется наличием наравне со сверхпроводящей фракцией электронов также и обычных электронов, число которых, однако, невелико. При помещении сверхпроводника в постоянное поле, это поле внутри сверхпроводника обращается в нуль, поскольку иначе сверхпроводящие электроны ускорялись бы до бесконечности, что невозможно. Однако в случае переменного поля поле внутри сверхпроводника отлично от нуля и ускоряет в том числе и нормальные электроны, с которыми связаны и конечное электрическое сопротивление, и джоулевы тепловые потери. Данный эффект особо ярко выражен для таких частот света, для которых энергии кванта h ν {\displaystyle h\nu } достаточно для перевода сверхпроводящего электрона в группу нормальных электронов. Эта частота обычно лежит в инфракрасной области (около 10 11 Гц), поэтому в видимом диапазоне сверхпроводники практически ничем не отличаются от обычных металлов .

Фазовый переход в сверхпроводящее состояние

Температурный интервал перехода в сверхпроводящее состояние для чистых образцов не превышает тысячных долей Кельвина и поэтому имеет смысл определённое значение Т с - температуры перехода в сверхпроводящее состояние. Эта величина называется критической температурой перехода . Ширина интервала перехода зависит от неоднородности металла, в первую очередь - от наличия примесей и внутренних напряжений. Известные ныне температуры Т с изменяются в пределах от 0,0005 К у магния (Mg) до 23,2 К у интерметаллида ниобия и германия (Nb 3 Ge, в плёнке) и 39 К у диборида магния ( 2) у низкотемпературных сверхпроводников (Т с ниже 77 К, температуры кипения жидкого азота), до примерно 135 К у ртутьсодержащих высокотемпературных сверхпроводников.

В настоящее время фаза HgBa 2 Ca 2 Cu 3 O 8+d (Hg−1223) имеет наибольшее известное значение критической температуры - 135 К, причем при внешнем давлении 350 тысяч атмосфер температура перехода возрастает до 164 К, что лишь на 19 К уступает минимальной температуре, зарегистрированной в природных условиях на поверхности Земли. Таким образом, сверхпроводники в своём развитии прошли путь от металлической ртути (4.15 К) к ртутьсодержащим высокотемпературным сверхпроводникам (164 К). В 2000 г. было показано, что небольшое фторирование упомянутой выше ртутной керамики позволяет поднять критическую температуру при обычном давлении до 138 К .

Переход вещества в сверхпроводящее состояние сопровождается изменением его тепловых свойств. Однако, это изменение зависит от рода рассматриваемых сверхпроводников. Так, для сверхпроводников Ι рода в отсутствие магнитного поля при температуре перехода Т c теплота перехода (поглощения или выделения) обращается в нуль, а следовательно терпит скачок теплоёмкость , что характерно для фазового перехода ΙΙ рода . Такая температурная зависимость теплоемкости электронной подсистемы сверхпроводника свидетельствует о наличии энергетической щели в распределении электронов между основным состоянием сверхпроводника и уровнем элементарных возбуждений. Когда же переход из сверхпроводящего состояния в нормальное осуществляется изменением приложенного магнитного поля, то тепло должно поглощаться (например, если образец теплоизолирован, то его температура понижается). А это соответствует фазовому переходу Ι рода. Для сверхпроводников ΙΙ рода переход из сверхпроводящего в нормальное состояние при любых условиях будет фазовым переходом ΙΙ рода.

Эффект Мейснера

Даже более важным свойством сверхпроводника, чем нулевое электрическое сопротивление, является так называемый эффект Мейснера , заключающийся в вытеснении постоянного магнитного поля из сверхпроводника. Из этого экспериментального наблюдения делается вывод о существовании незатухающих токов внутри сверхпроводника, которые создают внутреннее магнитное поле, противоположно направленное внешнему, приложенному магнитному полю и компенсирующее его.

Изотопический эффект

Изотопический эффект у сверхпроводников заключается в том, что температуры Т с обратно пропорциональны квадратным корням из атомных масс изотопов одного и того же сверхпроводящего элемента . Как следствие моноизотопные препараты несколько отличаются по критическим температурам от природной смеси и от друг друга .

Момент Лондона

Вращающийся сверхпроводник генерирует магнитное поле , точно выровненное с осью вращения, возникающий магнитный момент получил название «момент Лондона ». Он применялся, в частности, в научном спутнике «Gravity Probe B », где измерялись магнитные поля четырёх сверхпроводящих гироскопов , чтобы определить их оси вращения. Поскольку роторами гироскопов служили практически идеально гладкие сферы , использование момента Лондона было одним из немногих способов определить их ось вращения .

Теоретическое объяснение эффекта сверхпроводимости

Полностью удовлетворительная микроскопическая теория сверхпроводимости в настоящее время отсутствует .

Уже на относительно ранней стадии изучения сверхпроводимости, во всяком случае после создания теории Гинзбурга - Ландау , стало очевидно, что сверхпроводимость является следствием объединения макроскопического числа электронов проводимости в единое квантово-механическое состояние. Особенностью связанных в такой ансамбль электронов является то, что они не могут обмениваться энергией с решёткой малыми порциями, меньшими, чем их энергия связи в ансамбле. Это означает, что при движении электронов в кристаллической решётке не изменяется энергия электронов, и вещество ведёт себя как сверхпроводник с нулевым сопротивлением. Квантово-механическое рассмотрение показывает, что при этом не происходит рассеяния электронных волн на тепловых колебаниях решётки или примесях. А это и означает отсутствие электрического сопротивления. Такое объединение частиц невозможно в ансамбле фермионов. Оно характерно для ансамбля тождественных бозонов. То, что электроны в сверхпроводниках объединены в бозонные пары, следует из экспериментов по измерению величины кванта магнитного потока, который «замораживается» в полых сверхпроводящих цилиндрах. Поэтому уже в середине XX века основной задачей создания теории сверхпроводимости стала разработка механизма спаривания электронов. Первой теорией, претендующей на микроскопическое объяснение причин возникновения сверхпроводимости, была теория Бардина - Купера - Шриффера , созданная ими в 50-е годы XX столетия. Эта теория получила под именем БКШ всеобщее признание и была удостоена в 1972 году Нобелевской премии . При создании своей теории авторы опирались на изотопический эффект , то есть влияние массы изотопа на критическую температуру сверхпроводника. Считалось, что его существование прямо указывает на формирование сверхпроводящего состояния за счет работы фононного механизма.

Теория БКШ оставила без ответа некоторые вопросы. На её основе оказалось невозможно решить главную задачу - объяснить, почему конкретные сверхпроводники имеют ту или иную критическую температуру. К тому же дальнейшие эксперименты с изотопическими замещениями показали, что из-за ангармоничности нулевых колебаний ионов в металлах существует прямое воздействие массы иона на межионные расстояния в решетке, а значит и прямо на значение энергии Ферми металла. Поэтому стало понятно, что существование изотопического эффекта не является доказательством фононного механизма, как единственно возможного ответственного за спаривание электронов и возникновение сверхпроводимости. Неудовлетворенность теорией БКШ в более поздние годы привела к попыткам создать другие модели, например, модель спиновых флуктуаций и биполяронную модель. Однако, хотя в них рассматривались различные механизмы объединения электронов в пары, к прогрессу в понимании явления сверхпроводимости эти разработки тоже не привели.

Основную проблему для теории БКШ представляет существование , которую этой теорией описать не получается.

Применение сверхпроводимости

Достигнуты значительные успехи в получении высокотемпературной сверхпроводимости . На базе металлокерамики, например, состава YBa 2 Cu 3 O x , получены вещества, для которых температура Т c перехода в сверхпроводящее состояние превышает 77 К (температуру сжижения азота). К сожалению, практически все высокотемпературные сверхпроводники не технологичны (хрупки, не обладают стабильностью свойств и т. д.), вследствие чего в технике до сих пор применяются в основном сверхпроводники на основе сплавов ниобия.

Явление сверхпроводимости используется для получения сильных магнитных полей (например, в циклотронах), поскольку при прохождении по сверхпроводнику сильных токов, создающих сильные магнитные поля, отсутствуют тепловые потери. Однако в связи с тем, что магнитное поле разрушает состояние сверхпроводимости, для получения сильных магнитных полей применяются т. н. сверхпроводники II рода, в которых возможно сосуществование сверхпроводимости и магнитного поля. В таких сверхпроводниках магнитное поле вызывает появление тонких нитей нормального металла, пронизывающих образец, каждая из которых несёт квант магнитного потока (вихри Абрикосова). Вещество же между нитями остаётся сверхпроводящим. Поскольку в сверхпроводнике II рода нет полного эффекта Мейснера, сверхпроводимость существует до гораздо больших значений магнитного поля H c 2 . В технике применяются, в основном, следующие сверхпроводники:

Важное применение находят миниатюрные сверхпроводящие приборы-кольца - сквиды , действие которых основано на связи изменения магнитного потока и напряжения. Они входят в состав сверхчувствительных магнитометров, измеряющих магнитное поле Земли , а также используемых в медицине для получения магнитограмм различных органов .

Сверхпроводники также применяются в маглевах .

Явление зависимости температуры перехода в сверхпроводящее состояние от величины магнитного поля используется в криотронах - управляемых сопротивлениях.

См. также

Примечания

  1. Открытие сверхпроводимости - глава из книги Дж. Тригг «Физика ХХ века: Ключевые эксперименты»
  2. Dirk van Delft and Peter Kes. The discovery of superconductivity (англ.) // Physics Today . - 2010. - Vol. 63. - P. 38-43 .
  3. Алексей Левин. Сверхпроводимость отмечает столетний юбилей (неопр.) . Элементы.ру (8 апреля 2011). Проверено 8 апреля 2011.

Сверхпроводимость

Сверхпроводи́мость - свойство некоторых материалов обладать строго нулевым электрическим сопротивлением при достижении ими температуры ниже определённого значения (критическая температура). Известны несколько десятков чистых элементов, сплавов и керамик , переходящих в сверхпроводящее состояние. Сверхпроводимость - квантовое явление . Оно характеризуется также эффектом Мейснера , заключающимся в полном вытеснении магнитного поля из объема сверхпроводника. Существование этого эффекта показывает, что сверхпроводимость не может быть описана просто как идеальная проводимость в классическом понимании.

В 1893 году проблемой сверхнизких температур стал заниматься голландский физик Хейке Камерлинг-Оннес . Ему удалось создать лучшую в мире криогенную лабораторию, в которой 10 июля 1908 года им был получен жидкий гелий . Позднее ему удалось довести его температуру до 1 Кельвина . Камерлинг-Оннес использовал жидкий гелий для изучения свойств металлов , в частности, для измерения зависимости их электрического сопротивления от температуры. Согласно существовавшим тогда классическим теориям, сопротивление должно было плавно падать с уменьшением температуры, однако существовало также мнение, что при слишком низких температурах электроны практически остановятся и совсем перестанут проводить ток. Эксперименты, проводимые Камерлингом-Оннесем со своими ассистентами Корнелисом Дорсманом и Гиллесом Хольстом, вначале подтверждали вывод о плавном спадании сопротивления. Однако 8 апреля 1911 года он неожиданно обнаружил, что при 3 Кельвинах (около −270 °C) электрическое сопротивление практически равно нулю. Следующий эксперимент, проведённый 11 мая, показал, что резкий скачок сопротивления до нуля происходит при температуре около 4,2 К (позднее, более точные измерения показали, что эта температура равна 4,15 К). Этот эффект был совершенно неожиданным и не мог быть объяснён существовавшими тогда теориями.

Нулевое сопротивление - не единственная отличительная черта сверхпроводников. Одним из главных отличий сверхпроводников от идеальных проводников является эффект Мейснера , открытый Вальтером Мейснером и Робертом Оксенфельдом в 1933 году .

Позднее было установлено, что сверхпроводники делятся на два больших семейства: сверхпроводников I типа (к ним, в частности, относится ртуть) и II типа (которыми обычно являются сплавы разных металлов). В открытии сверхпроводимости II типа значительную роль сыграли работы Л. В. Шубникова в 1930-е годы и А. А. Абрикосова в 1950-е.

Для практического применения в мощных электромагнитах большое значение имело открытие в 1950-х годах сверхпроводников, способных выдерживать сильные магнитные поля и пропускать большие плотности тока . Так, в 1960 году под руководством Дж. Кюнцлера был открыт материал Nb 3 Sn, проволока из которого способна при температуре 4,2 К, находясь в магнитном поле величиной 8,8 Тл , пропускать ток плотностью до 100 кА/см².

Свойства сверхпроводников

Нулевое электрическое сопротивление

Сверхпроводники в высокочастотном поле

Строго говоря, утверждение о том, что сопротивление сверхпроводников равно нулю справедливо только для постоянного электрического тока . В переменном электрическом поле сопротивление сверхпроводника отлично от нуля и растёт с увеличением частоты поля. Этот эффект на языке двухжидкостной модели сверхпроводника объясняется наличием наравне со сверхпроводящей фракцией электронов также и обычных электронов, число которых, однако, невелико. При помещении сверхпроводника в постоянное поле, это поле внутри сверхпроводника обращается в нуль, поскольку иначе сверхпроводящие электроны ускорялись бы до бесконечности, что невозможно. Однако в случае переменного поля поле внутри сверхпроводника отлично от нуля и ускоряет в том числе и нормальные электроны, с которыми связаны и конечное электрическое сопротивление, и джоулевы тепловые потери. Данный эффект особо ярко выражен для таких частот света, для которых энергии кванта достаточно для перевода сверхпроводящего электрона в группу нормальных электронов. Эта частота обычно лежит в инфракрасной области (около 10 11 Гц), поэтому в видимом диапазоне сверхпроводники практически ничем не отличаются от обычных металлов .

Фазовый переход в сверхпроводящее состояние

Характер изменения теплоемкости (c v , синий график) и удельного сопротивления (ρ, зеленый), при фазовом переходе в сверхпроводящее состояние

Температурный интервал перехода в сверхпроводящее состояние для чистых образцов не превышает тысячных долей Кельвина и поэтому имеет смысл определённое значение Т с - температуры перехода в сверхпроводящее состояние. Эта величина называется критической температурой перехода . Ширина интервала перехода зависит от неоднородности металла, в первую очередь - от наличия примесей и внутренних напряжений. Известные ныне температуры Т с изменяются в пределах от 0,0005 К у магния (Mg) до 23,2 К у интерметаллида ниобия и германия (Nb 3 Ge, в плёнке) и 39 К у диборида магния ( 2) у низкотемпературных сверхпроводников (Т с ниже 77 К, температуры кипения жидкого азота), до примерно 135 К у ртутьсодержащих высокотемпературных сверхпроводников. В настоящее время фаза HgBa 2 Ca 2 Cu 3 O 8+d (Hg−1223) имеет наибольшее известное значение критической температуры - 135 К, причем при внешнем давлении 350 тысяч атмосфер температура перехода возрастает до 164 К, что лишь на 19 К уступает минимальной температуре, зарегистрированной в природных условиях на поверхности Земли. Таким образом, сверхпроводники в своём развитии прошли путь от металлической ртути (4.15 К) к ртутьсодержащим высокотемпературным сверхпроводникам (164 К).

Переход вещества в сверхпроводящее состояние сопровождается изменением его тепловых свойств. Однако, это изменение зависит от рода рассматриваемых сверхпроводников. Так, для сверхпроводников Ι рода в отсутствие магнитного поля при температуре перехода Т c теплота перехода (поглощения или выделения) обращается в нуль, а следовательно терпит скачок теплоёмкость , что характерно для фазового перехода ΙΙ рода . Такая температурная зависимость теплоемкости электронной подсистемы сверхпроводника свидетельствует о наличии энергетической щели в распределении электронов между основным состоянием сверхпроводника и уровнем элементарных возбуждений. Когда же переход из сверхпроводящего состояния в нормальное осуществляется изменением приложенного магнитного поля, то тепло должно поглощаться (например, если образец теплоизолирован, то его температура понижается). А это соответствует фазовому переходу Ι рода. Для сверхпроводников ΙΙ рода переход из сверхпроводящего в нормальное состояние при любых условиях будет фазовым переходом ΙΙ рода.

Эффект Мейснера

Даже более важным свойством сверхпроводника, чем нулевое электрическое сопротивление, является так называемый эффект Мейснера , заключающийся в выталкивании сверхпроводником магнитного потока . Из этого экспериментального наблюдения делается вывод о существовании незатухающих токов внутри сверхпроводника, которые создают внутреннее магнитное поле, противоположно направленное внешнему, приложенному магнитному полю и компенсирующее его.

Изотопический эффект

Изотопический эффект у сверхпроводников заключается в том, что температуры Т с обратно пропорциональны квадратным корням из атомных масс изотопов одного и того же сверхпроводящего элемента .

Момент Лондона

Вращающийся сверхпроводник генерирует магнитное поле , точно выровненное с осью вращения, возникающий магнитный момент получил название «момент Лондона». Он применялся, в частности, в научном спутнике «Gravity Probe B », где измерялись магнитные поля четырёх сверхпроводящих гироскопов , чтобы определить их оси вращения. Поскольку роторами гироскопов служили практически идеально гладкие сферы , использование момента Лондона было одним из немногих способов определить их ось вращения .

Теоретическое объяснение эффекта сверхпроводимости

Уже на относительно ранней стадии изучения сверхпроводимости, во всяком случае после создания теории Гинзбурга - Ландау , стало очевидно, что сверхпроводимость является следствием объединения макроскопического числа электронов проводимости в единое квантово-механическое состояние. Особенностью связанных в такой ансамбль электронов является то, что они не могут обмениваться энергией с решёткой малыми порциями, меньшими, чем их энергия связи в ансамбле. Это означает, что при движении электронов в кристаллической решётке не изменяется энергия электронов, и вещество ведёт себя как сверхпроводник с нулевым сопротивлением. Квантово-механическое рассмотрение показывает, что при этом не происходит рассеяния электронных волн на тепловых колебаниях решётки или примесях. А это и означает отсутствие электрического сопротивления. Такое объединение частиц невозможно в ансамбле фермионов. Оно характерно для ансамбля тождественных бозонов. То, что электроны в сверхпроводниках объединены в бозонные пары, следует из экспериментов по измерению величины кванта магнитного потока, который «замораживается» в полых сверхпроводящих цилиндрах. Поэтому уже в середине прошлого века основной задачей создания теории сверхпроводимости стала разработка механизма спаривания электронов. Первой теорией, претендующей на микроскопическое объяснение причин возникновения сверхпроводимости, была теория Бардина - Купера - Шриффера , созданная ими в 50-е годы прошлого столетия. Эта теория получила под именем БКШ всеобщее признание и была удостоена в 1972 году Нобелевской премии . При создании своей теории авторы опирались на изотопический эффект, то есть влияние массы изотопа на критическую температуру сверхпроводника. Считалось, что его существование прямо указывает на формирование сверхпроводящего состояния за счет работы фононного механизма.

Теория БКШ оставила без ответа некоторые вопросы. На её основе оказалось невозможно решить главную задачу - объяснить, почему конкретные сверхпроводники имеют ту или иную критическую температуру. К тому же дальнейшие эксперименты с изотопическими замещениями показали, что из-за ангармоничности нулевых колебаний ионов в металлах существует прямое воздействие массы иона на межионные расстояния в решетке, а значит и прямо на значение энергии Ферми металла. Поэтому стало понятно, что существование изотопического эффекта не является доказательством фононного механизма, как единственно возможного ответственного за спаривание электронов и возникновение сверхпроводимости. Неудовлетворенность теорией БКШ в более поздние годы привела к попыткам создать другие модели, например, модель спиновых флуктуаций и биполяронную модель. Однако, хотя в них рассматривались различные механизмы объединения электронов в пары, к прогрессу в понимании явления сверхпроводимости эти разработки тоже не привели.

Сравнение вычисленных значений критических температур сверхпроводников с данными измерений.

Согласно одной из последних теорий, предложенной Б. В. Васильевым, спаривание электронов является необходимым, но недостаточным условием для существования сверхпроводящего состояния. Более того, какой конкретно механизм приводит к такому спариванию - не так уж важно. Важно, чтобы такой механизм существовал и был работоспособным во всем диапазоне температуры, где существует сверхпроводящее состояние.

Причина этого объясняется следующим образом: объединившись в пары, электроны создают бозоны, не объединенные в единый тождественный ансамбль. Их различают некоррелированные нулевые колебания. Для перехода бозонов в тождественное состояние необходимо упорядочить их нулевые колебания. По этой причине параметры, характеризующие механизм упорядочения нулевых колебаний в электронном газе, оказываются определяющими для свойств сверхпроводников.

Применение сверхпроводимости

Достигнуты значительные успехи в получении высокотемпературной сверхпроводимости . На базе металлокерамики, например, состава YBa 2 Cu 3 O x , получены вещества, для которых температура Т c перехода в сверхпроводящее состояние превышает 77 К (температуру сжижения азота).

Явление сверхпроводимости используется для получения сильных магнитных полей, поскольку при прохождении по сверхпроводнику сильных токов, создающих сильные магнитные поля, отсутствуют тепловые потери. Однако в связи с тем, что магнитное поле разрушает состояние сверхпроводимости, для получения сильных магнитных полей применяются т. н. сверхпроводники II рода, в которых возможно сосуществование сверхпроводимости и магнитного поля. В таких сверхпроводниках магнитное поле вызывает появление тонких нитей нормального металла, пронизывающих образец, каждая из которых несёт квант магнитного потока. Вещество же между нитями остаётся сверхпроводящим. Поскольку в сверхпроводнике II рода нет полного эффекта Мейснера, сверхпроводимость существует до гораздо больших значений магнитного поля H c 2 . В технике применяются, в основном, следующие сверхпроводники:

См. также

  • Сверхпроводимость и нулевые колебания

Примечания

  1. Dirk van Delft and Peter Kes The discovery of superconductivity (англ.) // Physics Today . - 2010. - Vol. 63. - С. 38-43.
  2. Алексей Левин Сверхпроводимость отмечает столетний юбилей . Элементы.ру (8 апреля 2011). Архивировано из первоисточника 23 августа 2011. Проверено 8 апреля 2011.
  3. В. Л. Гинзбург , Е. А. Андрюшин Глава 1. Открытие сверхпроводимости // Сверхпроводимость ISBN 5-98281-088-6
  4. В. Л. Гинзбург , Е. А. Андрюшин Глава 5. Звезда сверхпроводимости // Сверхпроводимость . - 2-е издание, переработанное и дополненное. - Альфа-М, 2006. - 112 с. - 3000 экз. -

Благодаря этим исследованиям у нас появились сверхбыстрые поезда, томографы, суперкомпьютеры и даже адронный коллайдер. Кроме того, в 2008 году в Нью-Йорке была запущена первая в мире сверхпроводящая линия электропередачи. Её пропускная способность в 10 раз больше по сравнению с обычными медными проводниками.

В чем же особен­ность этого явления и что рождает сверхпроводимость?

1. Неожиданное открытие

Всё началось более века назад — в 1911 году, когда нидерландский учёный Хейке Камерлинг-Оннес в ходе обычного эксперимента обратил внимание на странное поведение паров ртути. Учёный хотел выяснить, как меняется электрическое сопротивление вещества при низких температурах.

Хейке Камерлинг-Оннес

Нидерландский учёный, директор первой в мире криогенной лаборатории в Лейдене (Нидерланды), пионер в области криофизики, имевший среди современников прозвище «Господин Абсолютного Нуля». Известен своими работами по получению жидких форм веществ, в особенности гелия, кислорода и водорода при сверхнизких температурах.

В то время считалось, что сопротивление металлов снижается пропорционально с понижением температуры, то есть имеет линейную зависимость. Сопротивление при достижении нуля Кельвин будет иметь хоть и малое, но ненулевое значение. Но тут природа подготовила сюрприз и к удивлению Камерлинг-Оннеса, а после и всего мирового научного сообщества, было выяснено, что уже при температуре 4,15 Кельвин (–269°C) электрическое сопротивление ртути достигает… нуля! Да, сопротивление исчезло полностью, то есть ток двигался беспрепятственно! Почему?

Что такое ток?

Ток — это упорядоченное движение отрицательно заряженных частиц, в основном в металлах. Их высокая проводимость связана с тем, что в них очень много свободных электронов, которые собираются в облако, называемое электронным газом. Оно беспорядочно «плавает» по металлической решётке. Но беспорядок продолжается лишь до тех пор, пока мы не подадим электрическое поле. Тут же электроны, которые хаотично двигались, становятся в строй и идут в направлении, которое укажем ему мы, создав разность потенциалов на концах проводника.

Слово «упорядоченное» в определении тока имеет далеко условный характер. Да, направление у электронного газа одно, но движутся они к нему беспорядочно.

Аналогия из жизни

Представьте вечерний час пик в вашем городе. У горожан закончился рабочий день, и они едут на своих автомобилях домой. Направление одно — дом, но кто-то кого-то подрежет, кто-то зазевается на перекрёстке, сломался светофор — и вот тебе километровый затор. Точно так же и свободно движущиеся электроны встречают на своём пути массу преград, например, другие электроны или атомы, или дефекты в проводнике. Одним словом, тормозных элементов достаточно.

Ударяясь, электроны теряют скорость и тем самым энергию, которая выделяется в виде тепла. Именно эта потеря энергии (в виде тепла) является самой большой головной болью электротехников. Ведь при передаче электрической энергии по проводам от станции до домов более 10% полезной энергии попросту «теряется». Эта проблема повсеместна. В масштабах всей планеты речь идёт об огромных цифрах впустую потраченных денег.

Движение электронов в проводнике

Плачевная картина, не правда ли? Сверхпроводимость же обещает нулевые потери. Для этого необходимо выполнить одно условие.

2. Что необходимо для сверхпроводимости

Условие следующее — надо «всего лишь» снизить температуру проводника до температуры жидкого гелия. Но почему именно это условие?

С 1911 года, когда была открыта сверхпроводимость, был собран огромный экспериментальный багаж, открыты десятки «чистых» сверхпроводников и их сплавов, появлялись даже идеи промышленного использования данного явления, но… стройной теории, объясняющей природу сверхпроводимости, всё не было. Такой беспорядок продолжался до 1957 года, когда американские физики Джон Бардин, Леон Купер и Джон Шрифф предложили теорию, названную впоследствии теорией БКШ (отгадайте почему?).

Для того, чтобы понять суть теории, снова вернёмся в микромир. Сверхпроводник изнутри — это куча положительно заряженных атомов, выстроенных по порядку и электронный газ, перемещающийся по этим атомам. Для объяснения нам понадобится самый главный принцип электростатики: разноимённые заряды притягиваются («+» «–»), одноимённые («+» «+»; «–» «–») — отталкиваются. В нашем проводнике ион — положительный, а электрон — отрицательный.

Поведение электронов при сверхнизкой температуре

Теория БКШ утверждает, что электроны в сверхпроводнике двигаются парами (Куперовская пара) — просто потому что так выгодно. Выгода состоит в следующем. Первый электрон, пролетая между положительными ионами, притягивает их и, как следствие, ионы подходят слишком близко друг к другу, поэтому в зоне между ними образуется область избыточного положительного заряда. Естественно, второй электрон, который идёт по пятам за первым, притянется к этой области, а затем и к первому электрону, с такой мощной силой, что никакие преграды ему нипочём.

Проведём мысленно эксперимент. Представьте, что у вас имеются два бильярдных шара, соединённых прочной пружиной. Удерживая первый шар на одном месте рукой, оттянем второй на максимальное расстояние. Потом, крепко удерживая оба шара, отпустим первый. Что случится? Первый шар просто улетит с большой скоростью ко второму, а затем унесёт его с собой. Такое движение происходит постоянно, один тянет другого за счёт натяжения пружины.

Тот же принцип и в теории БКШ. Натяжение пружины в случае проводника — это кулоновская сила притяжения между положительно заряженной зоной ионов и электронной парой. Не забывайте, что мы наблюдаем металл при сверхнизкой температуре. В таких условиях почти полностью отсутствуют какие-либо колебательные движения ионов (которые типичны при нормальной температуре) и хаотичное тепловое движение частиц. При температуре в паре Кельвин энергия — дефицит, а потому никто из участников проводимости не будет его тратить на такие «мелочи» как столкновение. Себе дороже. А значит преград никаких нет и электронные пары, также имеющие минимум энергии, двигаются за счёт «электростатической» пружинки.

3. В чём польза

Пора перейти из абстракций теоретиков к прагматичным практикам. В чём польза сверхпроводимости? Охлаждать провода жидким гелием на сегодняшний день всё равно что использовать спорткар для перевозки дров — абсурдно и дорого. Должно быть ещё что-то полезное в данном эффекте… Три слова: эффект Мейснера-­Оксенфельда.

Вальтер Мейснер

Немецкий учёный, основатель первой в Германии и третьей в мире криолаборатории. Основные работы посвящены физике низких температур. Открыл сверхпроводимость многих сплавов. В 1933 году наблюдал вытеснение магнитного поля из сверхпроводников.

Роберт Оксенфельд

Немецкий учёный, совместно с Вальтером Мейснером является основоположником немецкой криофизики.

В 1933 году немецкие учёные Вальтер Мейснер и Роберт Оксенфельд обнаружили, что сверхпроводники при низких температурах левитируют над магнитами. Всё дело в том, что обычные вещества при попадании в магнитное поле не сопротивляются и «пропускают» его сквозь себя. Сверхпроводники же создают собственное «ответное» магнитное поле, которое компенсирует также и силу тяжести образца. Результат — материал парит в воздухе.

Эффект Мейснера-­Оксенфельда

При наложении магнитного поля на обычный проводник появляется сопротивление, которое быстро затухает, и магнитное поле пронизывает проводник. Однако при охлаждении до критической температуры проводник становится сверхпроводником, и магнитное поле выталкивается.

Сверхпроводящие магниты (или сверхмагниты) впоследствии оказались крайне полезны для создания стабильного сильного магнитного поля, так как при создании такого поля обычными электромагнитами, устройство либо выходит из строя от нагрузок, либо полем невозможно управлять.

За счёт выталкивания магнитного поля сверхпроводником, последний обладает способностью левитировать над источником поля

Сверхпроводимость — далеко не полностью изученный природный феномен, обещающий огромные технологические перспективы. И хотя эффект открыт больше ста лет назад, новые исследования по поиску высокотемпературных сверхпроводников продолжаются до сих пор, а значит сверхпроводимость была и остаётся одной из самых перспективных тем для учёных.



Понравилась статья? Поделитесь с друзьями!