Свойство биссектрисы прямоугольного треугольника проведенной к катету. Основные элементы треугольника abc

ТЕМА:

Свойства элементов прямоугольного треугольника. Свойство биссектрисы угла треугольника.

учитель математики муниципального общеобразовательного учреждения

средней общеобразовательной школы №13

КОСТРОМА 2009

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

При составлении данных дидактических материалов, были поставлены следующие цели:

Помочь учителю организовать учебный процесс при изучении тем « Свойство биссектрисы угла треугольника» и «Свойство высоты, опущенной из вершины прямого угла на гипотенузу»,

Дополнить учебник по геометрии по данным темам задачами для самостоятельной работы учащихся;

Выделение задач для подготовки к ЕГЭ по математике.

Данные дидактические материалы помогают закрепить навыки решения заданий по применению свойств, вытекающих из подобия прямоугольных треугольников. Подборку задач можно использовать для текущего и итогового контроля, для проведения самостоятельной работы, для индивидуального задания на дом, как в 9 классе, так и в 10-11 классах при повторении материала и подготовке к ЕГЭ. В материалах представлено 22 задачи, к половине из них прилагаются решения. Задачи, решения которых аналогичны рассмотренным, предлагаются или для самостоятельного решения в классе, или в качестве домашней работы. Задачи расположены по степени повышения трудности.

Почему у меня, как у учителя возникла потребность в подборке задач именно по этой теме? Ответов здесь несколько. Во-первых, в учебнике по которому я работаю, задач по этой теме практически нет (только две задачи: №40 п.106 и ещё несколько задач в дидактических материалах), но они однотипны и в целом не отражают различных ситуаций на применение свойств. Задач на применение свойств биссектрисы угла треугольника вообще нет.

Во- вторых отражение этой темы не раз имело место быть в материалах ЕГЭ, и поэтому я считаю необходимым эту тему более подробно обозначить и для учащихся. В экзамене по математике увеличилось количество задач по геометрии

Литература:

«Экзаменационные вопросы и ответы на 5»

«Справочник для поступающих в вузы» г

Зеленский И. И. «Геометрия в задачах». Серия математика: «Перезагрузка»

«Сборник задач по геометрии»

Зив А. Г. «Задачи по геометрии»

Гусев А. И. «Дидактические материалы по геометрии»

Заголовок

Свойство № 1

Высота прямоугольного треугольника, проведенная из вершины прямого угла, есть среднее пропорциональное между проекциями катетов на гипотенузу

Свойство № 2

Катет прямоугольного треугольника есть среднее пропорциональное между гипотенузой и его проекцией на гипотенузу

Свойство № 3

Биссектриса треугольника делит противолежащую сторону на отрезки, пропорциональные двум другим сторонам

УровеньА

А1 Периметр треугольника равен 25 см, а его биссектриса делит противолежащую сторону на отрезки, равные 7,5 см и 2,5 см. Найдите стороны треугольника.

А2 Периметр треугольника равен 35 см. Найдите отрезки, на которые биссектриса треугольника делит противоположную сторону.

А3 Один из катетов прямоугольного треугольника равен 10 дм, а его проекция на гипотенузу – 8 дм. Найдите второй катет и гипотенузу.

А4 Найдите катеты прямоугольного треугольника, если их проекции на гипотенузу равны 36 см 64 см.

А5 Найдите высоту прямоугольного треугольника, проведенную из вершины прямого угла, если её основание делит гипотенузу на отрезки 4 см и 9 см.

А6 Высота прямоугольного треугольника, проведенная из вершины прямого угла к гипотенузе равна 4. Найдите гипотенузу, если один из катетов равен 8.

УровеньВ

В1 В прямоугольном треугольнике высота, проведенная к гипотенузе, равна 36 см и делит её на отрезки в отношении 9:16. Найти РАВС

https://pandia.ru/text/78/060/images/image003_197.gif" width="71" height="23">; СК2= АК ∙ КВ;

362 = 9х∙16х; 1296 = 144х2 ; х2 = 9; х = 3

АК=27см; ВК=48см; АВ=75см.

2) Из ∆ АКС по теореме Пифагора: АС= https://pandia.ru/text/78/060/images/image006_144.gif" width="49" height="24 src=">=45 (см)

Из ∆ АВС по теореме Пифагора: ВС===60 (см)

3) Р АВС = АС+АВ+ВС; РАВС= 180см.

Ответ 180см

В2 В прямоугольном треугольнике высота, проведенная к гипотенузе, делит её на отрезки в отношении 16:9. Больший катет треугольника равен 60см. найти длину этой высоты. (эта задача аналогична предыдущей и поэтому её решение не рассмотрено)

Ответ: 36см

В3 Из точки окружности к диаметру проведен перпендикуляр, который делит диаметр на отрезки, длины которых относятся как 9:4. Найти длину окружности, если длина перпендикуляра равна 24см.

https://pandia.ru/text/78/060/images/image010_107.gif" width="12" height="19">АО = 26 см

3) Для нахождения длины окружности применим формулу: L = 2https://pandia.ru/text/78/060/images/image011_97.gif" width="15" height="15 src="> см

Ответ: 52https://pandia.ru/text/78/060/images/image012_89.gif" width="208" height="172 src=">Решение

1) Применим свойство высоты, проведенной

из вершины прямого угла ∆АВС на гипотенузу АС: ВК= https://pandia.ru/text/78/060/images/image014_72.gif" width="83" height="27">см,АК=4см, КС=16см.

2)Из ∆АКВ по теореме Пифагора:

3)Из ∆ВКС по теореме Пифагора:

4) SАВСД =АВ ∙ ; S АВСД = 160 см2

Ответ:160см2

В6 Из вершин противолежащих углов прямоугольника к диагонали проведены перпендикуляры, расстояние между основаниями которых 16см. Найти площадь прямоугольника, если длины этих перпендикуляров по 6см. (Задача похожа на предыдущую, поэтому её решение не представлено)

Ответ:120см2

Задачи В7, В8, В9 можно предложить учащимся или в качестве домашней работы или вынести на самостоятельное решение в классе

В7 Площадь прямоугольного треугольника равна 150, один из катетов равен 15. Найти длину высоты, опущенной из вершины прямого угла

В8 Высота прямоугольного треугольника, проведенная из вершины прямого угла к гипотенузе, равна Найти гипотенузу, если один из катетов 8.

В9 Высота прямоугольного треугольника, опущенная на гипотенузу, равна b, а один из острых углов 60○. Найти гипотенузу.

В10 Биссектриса острого угла прямоугольного треугольника делит катет 12см и15см. Найти площадь треугольника на отрезки.

https://pandia.ru/text/78/060/images/image022_49.gif" width="148" height="41">

Пусть х – коэффициент пропорциональности, тогда

5х – сторона АВ, 4х – сторона АС

2) Для ∆АСВ применим теорему Пифагора

АВ2 = АС2 + ВС2 ;

25х2 = 16х2 +729;

3) Применим формулу для площади треугольника: S∆ = АС∙ВС; АС = 36(см); ВС = 27(см)

S∆АСВ =486 см2

Ответ: 486 см2

В11, В12 подобны предыдущей задаче.

В11 Биссектриса прямого угла треугольника делит его гипотенузу на отрезки 15см и20см. Найти площадь треугольника.

Ответ: 294см2

В12 В прямоугольном треугольнике биссектриса острого угла делит противоположный катет на отрезки длиной 8см и10 см. Найти периметр этого треугольника.

Ответ: 72см

В13 Биссектриса прямого угла прямоугольного треугольника делит гипотенузу на отрезки 20см и 15см. Найти радиус вписанной окружности.

https://pandia.ru/text/78/060/images/image025_41.gif" width="148" height="41">

2) Пусть х- коэффициент пропорциональности, тогда АС -4х, СВ-3х

Для ∆АСВ применим теорему Пифагора:

АВ2 = АС2+СВ2

х=7 АС= 28см, СВ=21см

3)Для нахождения радиуса вписанной окружности применим формулу: r═ ; r=см

Ответ: 7см

В14 Биссектриса острого угла прямоугольного треугольника делит катет на отрезки 10см и 26см. Найти радиус окружности, описанной около этого треугольника.

Решение
44" height="28" bgcolor="white" style="vertical-align:top;background: white">
2) Пусть х - коэффициент пропорциональности, тогда сторона

АВ - 13х, АС – 5х

3) Применим для ∆ АСВ теорему Пифагора:

АВ2= АС2 + ВС2

169х2= 1396+25х2https://pandia.ru/text/78/060/images/image030_35.gif">4) Т. к. центр окружности, описанной около прямоугольного треугольника, является серединой гипотенузыR= R=19,5см

Ответ:19,5см

В15, В16, В17 можно задать на дом, с последующей проверкой в классе.

Задача№15 Биссектриса прямого угла прямоугольного треугольника делит гипотенузу на отрезки в отношении 4:3. Найти эти отрезки, если радиус вписанной окружности равен 7.

Ответ: 32см и 24см

В16 Биссектриса, проведенная из вершины прямоугольника, делит его диагональ на отрезки 65 см и 156 см. Найти площадь прямоугольника.

Ответ 17340см2

В17Длина окружности, описанной около прямоугольного треугольника равна 39https://pandia.ru/text/78/060/images/image023_47.gif" width="16" height="41">DВ∙DК; ВD - ? DК - ?

2) Найдем S∆АВС по формуле Герона: p = 21, S∆АВС = 84.

3) С другой стороны S ∆АВС = АС∙DВ АС∙DВ = 2S; DВ = ; DВ = 12;

4) Примем АК = х, тогда СК = 14 – х; Применим свойство биссектрисы угла треугольника: =https://pandia.ru/text/78/060/images/image036_29.gif" width="21" height="41 src=">.gif" width="20" height="16 src="> х = 6,5: АК = 6,5

5) DК = АК – АD..gif" width="16" height="41 src=">∙12∙1,5 = 9.

С2 В прямоугольном треугольнике из вершины прямого угла проведены биссектриса и высота. Найти тангенс острого угла между ними, если тангенс острого угла треугольника равен 3.

Средний уровень

Биссектриса треугольника. Подробная теория с примерами (2019)

Биссектриса треугольника и ее свойства

Знаешь ли ты, что такое середина отрезка? Конечно же знаешь. А центр круга? Тоже. А что такое середина угла? Ты можешь сказать, что такого не бывает. Но почему же, отрезок можно разделить пополам, а угол нельзя? Вполне можно - только не точкой, а…. линией.

Помнишь шутку: биссектриса это крыса, которая бегает по углам и делит угол пополам. Так вот, настоящее определение биссектрисы очень похоже на эту шутку:

Биссектриса треугольника - это отрезок биссектрисы угла треугольника, соединяющий вершину этого угла с точкой на противолежащей стороне.

Когда-то древние астрономы и математики открыли очень много интересных свойств биссектрисы. Эти знания сильно упростили жизнь людей. Стало легче строить, считать расстояния, даже корректировать стрельбу из пушек… Нам же знание этих свойств поможет решить некоторые задания ГИА и ЕГЭ!

Первое знание, которое поможет в этом - биссектриса равнобедренного треугольника.

Кстати, а помнишь ли ты все эти термины? Помнишь чем они отличаются друг от друга? Нет? Не страшно. Сейчас разберемся.

Итак, основание равнобедренного треугольника - это та сторона, которая не равна никакой другой. Посмотри на рисунок, как ты думаешь, какая это сторона? Правильно - это сторона.

Медиана - это линия, проведенная из вершины треугольника и делящая противоположную сторону (это снова) пополам.

Заметь, мы не говорим: «Медиана равнобедренного треугольника». А знаешь почему? Потому что медиана, проведенная из вершины треугольника, делит противоположную сторону пополам в ЛЮБОМ треугольнике.

Ну, а высота - это линия, проведенная из вершины и перпендикулярная основанию. Ты заметил? Мы опять говорим о любом треугольнике, а не только о равнобедренном. Высота в ЛЮБОМ треугольнике всегда перпендикулярна основанию.

Итак, разобрались? Ну почти. Чтобы еще лучше понять и навсегда запомнить что такое биссектриса, медиана и высота, их нужно сравнить друг с другом и понять в чем они похожи и чем они отличаются друг от друга. При этом, чтобы лучше запомнить, лучше описать все «человеческим языком». Потом ты легко будешь оперировать языком математики, но сначала ты этот язык не понимаешь и тебе нужно осмыслить все на своем языке.

Итак, в чем они похожи ? Биссектриса, медиана и высота - все они «выходят» из вершины треугольника и упираются в противоположную сторону и «что-то делают» либо с углом из которого выходят, либо с противоположной стороной. По-моему просто, нет?

А чем они отличаются ?

  • Биссектриса делит угол, из которого выходит, пополам.
  • Медиана делит противоположную сторону пополам.
  • Высота всегда перпендикулярна противоположной стороне.

Теперь все. Понять - легко. А раз понял, можешь запомнить.

Теперь следующий вопрос. Почему же в случае с равнобедренным треугольником биссектриса оказывается одновременно и медианой и высотой?

Можно просто посмотреть на рисунок и убедиться, что медиана разбивает на два абсолютно равных треугольника. Вот и все! Но математики не любят верить своим глазам. Им нужно все доказывать. Страшное слово? Ничего подобного - все просто! Смотри: у и равны стороны и, сторона у них вообще общая и. (- биссектриса!) И вот, получилось, что два треугольника имеют по две равные стороны и угол между ними. Вспоминаем первый признак равенства треугольников (не помнишь, загляни в тему ) и заключаем, что, а значит = и.

Это уже хорошо - значит, оказалась медианой.

А вот что такое?

Посмотрим на картинку - . А у нас получилось, что. Значит, и тоже! Наконец, ура! и.

Показалось ли тебе это доказательство тяжеловатым? Посмотри на картинку - два одинаковых треугольника говорят сами за себя.

В любом случае твердо запомни:

Теперь сложнее: мы посчитаем угол между биссектрисами в любом треугольнике! Не бойся, все не так уж хитро. Смотри на рисунок:

Давай его посчитаем. Ты помнишь, что сумма углов треугольника равна ?

Применим этот потрясающий факт.

С одной стороны, из:

То есть.

Теперь посмотрим на:

Но биссектрисы, биссектрисы же!

Вспомним про:

Теперь через буквы

\angle AOC=90{}^\circ +\frac{\angle B}{2}

Не удивительно ли? Получилось, что угол между биссектрисами двух углов зависит только от третьего угла !

Ну вот, две биссектрисы мы посмотрели. А что, если их три??!! Пересекутся ли они все в одной точке?

Или будет так?

Как ты думаешь? Вот математики думали-думали и доказали:

Правда, здорово?

Хочешь знать, почему же так получается?

Итак…два прямоугольных треугольника: и. У них:

  • Общая гипотенуза.
  • (потому что - биссектриса!)

Значит, - по углу и гипотенузе. Поэтому и соответствующие катеты у этих треугольников - равны! То есть.

Доказали, что точка одинаково (или равно) удалена от сторон угла. С пунктом 1 разобрались. Теперь перейдём к пункту 2.

Почему же верно 2?

И соединим точки и.

Значит, то есть лежит на биссектрисе!

Вот и всё!

Как же все это применить при решении задач? Вот например, в задачах часто бывает такая фраза: «Окружность касается сторон угла….». Ну, и найти нужно что-то.

То быстро соображаешь, что

И можно пользоваться равенством.

3. Три биссектрисы в треугольнике пересекаются в одной точке

Из свойства биссектрисы быть геометрическим местом точек, равноудаленных от сторон угла, вытекает следующее утверждение:

Как именно вытекает? А вот смотри: две-то биссектрисы точно пересекутся, правда?

А третья биссектриса могла бы пройти так:

Но на самом деле-то всё гораздо лучше!

Давай рассмотрим точку пересечения двух биссектрис. Назовём её .

Что мы тут оба раза применяли? Да пункт 1 , конечно же! Если точка лежит на биссектрисе, то она одинаково удалена от сторон угла.

Вот и получилось и.

Но посмотри внимательно на эти два равенства! Ведь из них следует, что и, значит, .

А вот теперь в дело пойдёт пункт 2 : если расстояния до сторон угла равны, то точка лежит на биссектрисе…какого же угла? Ещё раз смотри на картинку:

и - расстояния до сторон угла, и они равны, значит, точка лежит на биссектрисе угла. Третья биссектриса прошла через ту же точку! Все три биссектрисы пересеклись в одной точке! И, как дополнительный подарок -

Радиусы вписанной окружности.

(Для верности посмотри ещё тему ).

Ну вот, теперь ты никогда не забудешь:

Точка пересечения биссектрис треугольника - центр вписанной в неё окружности.

Переходим к следующему свойству… Ух и много же свойств у биссектрисы, правда? И это здорово, потому что, чем больше свойств, тем больше инструментов для решения задач про биссектрису.

4. Биссектриса и параллельность, биссектрисы смежных углов

Тот факт, что биссектриса делит угол пополам, в каких-то случаях приводит к совершенно неожиданным результатам. Вот, например,

Случай 1

Здорово, правда? Давай поймём, почему так.

С одной стороны, - мы же проводим биссектрису!

Но, с другой стороны, - как накрест лежащие углы (вспоминаем тему ).

И теперь выходит, что; выкидываем середину: ! - равнобедренный!

Случай 2

Представь треугольник (или посмотри на картинку)

Давай продолжим сторону за точку. Теперь получилось два угла:

  • - внутренний угол
  • - внешний угол - он же снаружи, верно?

Так вот, а теперь кому-то захотелось провести не одну, а сразу две биссектрисы: и для, и для. Что же получится?

А получится прямоугольный!

Удивительно, но это именно так.

Разбираемся.

Как ты думаешь, чему равна сумма?

Конечно же, - ведь они все вместе составляют такой угол, что получается прямая.

А теперь вспомним, что и -биссектрисы и увидим, что внутри угла находится ровно половина от суммы всех четырех углов: и - - то есть ровно. Можно написать и уравнением:

Итак, невероятно, но факт:

Угол между биссектрисами внутреннего и внешнего угла треугольника равен.

Случай 3

Видишь, что здесь все так же, как и для внутреннего и внешнего углов?

Или ещё раз подумаем, почему так получается?

Снова, как и для смежных углов,

(как соответственные при параллельных основаниях).

И опять, составляют ровно половину от суммы

Вывод: Если в задаче встретились биссектрисы смежных углов или биссектрисы соответственных углов параллелограмма или трапеции, то в этой задаче непременно участвует прямоугольный треугольник, а может даже и целый прямоугольник.

5. Биссектриса и противоположная сторона

Оказывается, биссектриса угла треугольника делит противоположную сторону не как-нибудь, а специальным и очень интересным образом:

То есть:

Удивительный факт, не правда ли?

Сейчас мы этот факт докажем, но приготовься: будет немного сложнее, чем раньше.

Снова - выход в «космос» - дополнительное построение!

Проведём прямую.

Зачем? Сейчас увидим.

Продолжим биссектрису до пересечения с прямой.

Знакомая картинка? Да-да-да, точно так же, как в пункте 4, случай 1 - получается, что (- биссектриса)

Как накрест лежащие

Значит, - это тоже.

А теперь посмотрим на треугольники и.

Что про них можно сказать?

Они…подобны. Ну да, у них и углы равны как вертикальные. Значит, по двум углам.

Теперь имеем право писать отношения соответствующих сторон.

А теперь в коротких обозначениях:

Ой! Что-то напоминает, верно? Не это ли самое мы хотели доказать? Да-да, именно это!

Видишь, как здорово проявил себя «выход в космос» - построение дополнительной прямой - без неё ничего бы не вышло! А так, мы доказали, что

Теперь можешь смело использовать! Разберём ещё одно свойство биссектрис углов треугольника - не пугайся, теперь самое сложное кончилось - будет проще.

Получаем, что

Теорема 1:

Теорема 2:

Теорема 3:

Теорема 4:

Теорема 5:

Теорема 6:

Здравствуйте, уважаемые читатели! Сегодня мы приступим к решению задач по свойствам биссектрисы и медианы треугольника . А для начала давайте вспомним, что такое биссектриса и медиана.
Биссектриса — это отрезок CD, который выходит из вершины угла треугольника, делит угол пополам и заканчивается на противоположной стороне.
Медиана – это отрезок СМ, который соединяет вершину треугольника с серединой противоположной стороны .
Поскольку в треугольнике вершин и сторон по три, то биссектрис медиан у него будет тоже три.

Задача 1. Дан прямоугольный треугольник АВС. Из вершины А к стороне ВС проведены медиана АД и биссектриса АМ. Угол между медианой и биссектрисой равен 17°. Найти острые углы треугольника.
Решение: Поскольку АМ — биссектриса, то угол ВАМ равен углу МАС и они равны 45°. Но угол ДАМ равен 17°. Отсюда, угол ВАД равен разности углов ВАМ и ДАМ, или 45-17 = 28°.
Мы знаем, что медиана, проведённая из вершины прямого угла прямоугольного треугольника, делит этот треугольник на 2 равнобедренных треугольника. А именно треугольники АВД и АДС.
И теперь, поскольку треугольник АВД равнобедренный, то углы при основании у него равны, т.е. угол ВАД равен углу АВД и они оба равны 28°.
А это значит, что в прямоугольном треугольнике угол В равен 28°.

Но сумма острых углов в прямоугольном треугольнике равна 90° . Отсюда, угол С будет равен 90 — 28 = 62°.
Ответ: острые углы в прямоугольном треугольнике равны 28° и 62°.

Задача 2. Докажите, что биссектрисы смежных углов перпендикулярны.
Решение: Мы знаем свойство измерения углов, которое гласит, что если внутри угла провести лучи, то они разобьют его на несколько углов и сумма градусных мер этих углов будет равна градусной мере первоначального угла .
Поэтому мы имеем: α+α+β+β = 180°.
Или 2α+2β = 180°.
Сокращаем правую и левую часть уравнения на 2, получим: α + β = 90°.
Т.е. угол ДВК между биссектрисами ВД и ВК смежных углов ВСЕГДА равен 90° независимо от величин смежных углов.

Задача 3. Дана трапеция АВСД. Биссектрисы углов А и В пересекаются в точке М.
Найти АВ, если АМ = 24, ВМ = 18.

Решение: Из предыдущей задачи мы узнали, что биссектрисы смежных углов всегда образуют угол 90°.
Биссектрисы, проведённые из углов трапеции, прилежащих к боковой стороне тоже образуют угол 90°.

В самом деле: углы А и В трапеции в сумме дают 180°, как односторонние углы при параллельных прямых АД и ВС и секущей АВ.
Значит, половины этих углов в сумме будут равны 90°.
А если в треугольнике 2 угла в сумме равны 90°, то третий угол будет равен 90°, ведь сумма внутренних углов треугольника равна 180 °.
Значит, это треугольник — прямоугольный. Нам известно в нём 2 катета, найти гипотенузу можно по теореме Пифагора.

АВ² = АМ² + ВМ² = 24² + 18² = 900. Отсюда, АВ = 30.
Ответ: АВ = 30.

Одной из основ геометрии является нахождение биссектрисы, луча, делящего угол пополам. Биссектриса треугольника представляет собой часть биссектрисы любого угла. Это отрезок от вершины угла до пересечения с противоположной стороной треугольника.

Если вывести биссектрисы из всех углов, то они пересекутся в одной точке, которая называется центр вписанного треугольника.

Вычислить биссектрису можно, если знать длину стороны, которую она делит пополам, или же величины углов треугольника.

Биссектриса равнобедренного треугольника

Поскольку в равнобедренном треугольнике две стороны равны друг другу, то и биссектрисы прилегающих углов будут равными. Т.к. углы треугольника также равны.

При проведении биссектрисы из одного из углов, она будет считаться высотой данного треугольника и его медианой.

Задачи, как найти биссектрису треугольника, решаются с применением формул.

Для решения данных формул в условии должны быть обозначены значения длин сторон, или величин углов треугольника. Зная их, можно вычислить биссектрису по косинусам, либо по периметру.

Например, берем равнобедренный треугольник ABC и проводим биссектрису AE к основанию BC. Полученный треугольник AEB – прямоугольный. Биссектриса – это его высота, сторона AB – гипотенуза прямоугольного треугольника, а BE и AE – катеты.

Применяется теорема Пифагора – квадрат гипотенузы равен сумме квадратов катетов. Исходя из нее BE = v (AB - AE). Поскольку AE – это медиана треугольника ABC, то катет BE = BC/2. Таким образом, BE = v (AB - (BC /4)).

В случае, если задан угол основания ABC, то биссектриса треугольника AEB, AE = AB/sin(ABC). Угол основания AEB, BAE = BAC/2. Поэтому биссектриса AE = AB/cos (BAC/2).

Как найти биссектрису треугольника, вписанного в другой треугольник?

В равнобедренном треугольнике ABC проведем к стороне АС сторону ВК. Этот отрезок не будет являться ни биссектрисой треугольника, ни его медианой. Здесь применятся формула Стюарта.

По ней вычисляется периметр треугольника – сумма длин всех его сторон. Для ABC вычисляем полупериметр. Это периметр треугольника, деленный пополам.

Р = (АВ+ ВС+ АС)/2. По этой формуле высчитываем биссектрису, проведенную к стороне. ВК = v(4*ВС*АС*Р (Р-АВ)/ (ВС+АС).

По теореме Стюарта можно также увидеть, что биссектриса, проведенная к другой стороне треугольника, будет равна ВК, т.к. эти две стороны треугольника равны между собой.

Биссектриса прямоугольного треугольника

Для того чтобы знать, как находиться биссектриса в прямоугольном треугольнике, нужно также пользоваться формулами. Не стоит забывать, что в прямоугольном треугольнике один угол обязательно прямой, т.е. равный 90 градусам. Таким образом, если биссектриса начинается из прямого угла, даже если в условии не будет указан синус или косинус угла, можно их узнать по величине угла.

  • Находится биссектриса по формуле Стюарта. Если имеется треугольник АВК, и его полупериметр высчитывается, как Р = (АВ+ ВК+ АК)/2. Исходя из полученного, высчитываем биссектрису АЕ = v(4*ВК*АК*Р (Р-АВ)/ (ВК+АК).
  • Длина биссектрисы определяется еще таким образом. АЕ = v (ВК*АК) – (ЕВ*ЕК), где ЕВ и ЕК – отрезки, на которые биссектриса АЕ делит сторону ВК.
  • Либо можно воспользоваться косинусами углов прямоугольного треугольника, если они известны. Биссектриса будет равна (2*аb*(cos c/2))/(a+b).
  • Либо находить биссектрису так. По формуле (cos а) – (cos b)/2, найдите необходимый в дальнейшем делитель. Далее высота, проведенная к стороне с, делится на полученное значение. Для получения косинусов нужно знать величину углов. Либо вычислить их, исходя из величины единственно известного угла – прямого, в 90 градусов.

Равносторонний треугольник

В таком треугольнике все стороны равны между собой, соответственно и углы. Поэтому все биссектрисы и медианы также будут равными. Если некоторые значения сторон будут неизвестными, то нужным будет значение одной стороны. Т.к. стороны равны. И величины углов также. Поэтому для нахождения биссектрисы по формуле косинусов, нужно знать либо вычислить значение лишь одного из углов.

Длина медианы и биссектриса треугольника равна - L.

Стороны треугольника равны - а.

В треугольнике АВС, биссектриса АЕ = (АВСv3)/2.

По этой же формуле вычисляются высота и медиана равностороннего треугольника.

Разносторонний треугольник

В таком треугольнике все стороны имеют разные значения, поэтому и биссектрисы не равны между собой.

Берется треугольник с произвольными значениями сторон. Если некоторые значения сторон неизвестны, то они вычисляются по формуле периметра треугольника.

После того, как биссектрисы углов будут проведены, стоит прибавить к их обозначениям нижний индекс1. Отрезки, на которые биссектриса делит противоположную сторону, обозначаются также с нижним индексом 1.

Длины этих отрезков вычисляются по теореме синусов.

Длина же биссектрисы вычисляется как L = v аb – а1b1, где аb – прилежащие к отрезкам стороны, а а1b1 – произведение отрезков. Формула применяется ко всем сторонам разностороннего треугольника. Главное, это знать длины сторон, либо вычислить их, зная величины прилегающих к ним углов.



Понравилась статья? Поделитесь с друзьями!