Теория по процентам в егэ. Материал для подготовки к ЕГЭ (ГИА) по алгебре (11 класс) на тему: Готовимся к ЕГЭ "Простые и сложные проценты"

Поговорим о задачах №19 ЕГЭ

Уже два года во вторую часть добавлена задача c экономическим содержанием, т. е. задачи на сложные банковские проценты.

Говорят, что имеем дело со «сложными процентами» в том случае, когда некоторая величина подвержена поэтапному изменению. При этом каждый раз ее изменение составляет определенное число процентов от значения, которое эта величина имела на предыдущем этапе.

В конце каждого этапа величина изменяется на одно и то же постоянное количество процентов – р%. Тогда в конце n -го этапа значение некоторой величины А , исходное значение которой равнялось А 0 , определяется формулой:

При увеличении и

При уменьшении

    Зная, что годовая процентная ставка депозита равна 12%, найти

эквивалентную ей месячную процентную ставку.

Решение:

Если положить в банк A рублей, то через год получим: A 1 = A 0 (1 +0,12)

Если проценты начислялись каждый месяц с процентной ставкой х , то по формуле сложных процентов через год (12 месяцев) А n = A 0 (1 + 0,01х) 12

Приравняв эти величины получим уравнение, решение которого позволит определить месячную процентную ставку A(1 +0,12) = A(1 +0,01x) 12

1.12 = (1 + 0,01x) 12

x = (-1)·100% ≈ 0.9488792934583046%

Ответ: месячная процентная ставка равна 0.9488792934583046%.

Из решения этой задачи можно видеть, что месячная процентная ставка не равна годовой ставке поделенной на 12.

    31 декабря 2013 года Сергей взял в банке 9 930 000 рублей в кредит под 10% годовых. Схема выплаты кредита следующая: 31 декабря каждого следующего года банк начисляет проценты на оставшуюся сумму долга (то есть увеличивает долг на 10%), затем Сергей переводит в банк определённую сумму ежегодного платежа. Какой должна быть сумма ежегодного платежа, чтобы Сергей выплатил долг тремя равными ежегодными платежами?

Решение:

Пусть сумма кредита равна а , ежегодный платеж равен х рублей, а годовые составляют k % . Тогда 31 декабря каждого года оставшаяся сумма долга умножается на коэффициент m =1+ 0,01 k . После первой выплаты сумма долга составит : а 1 = am - х. После второй выплаты сумма долга

составит:

а 2 = a 1 m – х=(ат-х)т-х=а 2 -тх-х=ат 2 -(1+т)х


По условию тремя выплатами Сергей должен погасить кредит полностью, поэтому

откуда

При а = 9930000 и k =10 , получаем т =1,1 и

Ответ : 3993 000 рублей.

Теперь когда мы разобрались с этим предложенным во всех решебниках решением, давайте посмотрим на другое решение.

Пусть F = 9 930 000 – величина кредита, x – искомая величина ежегодного платежа.

Первый год:

Долг: 1,1F ;

Платеж: х ;

Остаток: 1,1F-х .

Второй год:

Долг: 1,1(1,1F-х) ;

Платеж: х ;

Остаток: 1,1(1,1F-х)-х .

Третий год:

Долг: 1,1(1,1F-х)-х );

Платеж: х ;

Остаток: 0, потому что по условию было всего три платежа.

Единственное уравнение

1,1(1,1(1,1F-х)-х)-х=0 . 1,331 F =3,31х, х=3993000

Ответ: 3 993 000 рублей.

Однако-1 ! Если предположить, что процентная ставка не красивые 10%, а страшные 13,66613%. Шансы где-то умереть по ходу умножений или сойти с ума при подробном расписывании множителя при величине долга за каждый год резко увеличились. Добавим к этому еще и не маленькие 3 года, а лет 25. Такое решение не сработает.

    31 декабря 2014 года Андрей взял в банке некоторую сумму в кредит под 10% годовых. Схема выплаты кредита следующая: 31 декабря каждого следующего года банк начисляет проценты на оставшуюся сумму долга (то есть увеличивает долг на 10%), а затем Андрей переводит в банк 3 460 600 рублей. Какую сумму взял Андрей в банке, если он выплатил долг тремя равными платежами (то есть за 3 года)?

Решение.

Пусть а – искомая величина, k% – процентная ставка по кредиту, х – ежегодный платеж. Тогда 31 декабря каждого года оставшаяся сумма долга будет умножаться на коэффициент m = 1 + 0,01k . После первой выплаты сумма долга составит: а 1 = аm – х . После второй выплаты сумма долга составит:

а 2 = a 1 m – х=(ат-х)т-х=а 2 -тх-х=ат 2 -(1+т)х

После третьей выплаты сумма оставшегося долга:

По условию Андрей выплатил долг за три года,

то есть а 3 = 0 , откуда.

При x = 3 460 600, k% = 10% , получаем: m = 1,1 и =8 606 000 (рублей).

Ответ: 8 606 000 рублей.

    31 декабря 2013 года Игорь взял в банке 100 000 рублей в кредит. Схема выплаты кредита следующая: 31 декабря каждого следующего года банк начисляет проценты на оставшуюся сумму долга (то есть увеличивает долг на некоторое количество процентов), затем Игорь переводит очередной транш. Игорь выплатил кредит за два транша, переведя в первый раз 51 000 рублей, во второй 66 600 рублей. Под какой процент банк выдал кредит Игорю?

Решение

Пусть k % – искомая ставка по кредиту; m = (1 + 0,01 k ) – множитель оставшегося долга; a = 100 000 – сумма, взятая в банке; x 1 = 51 000, x 2 = 66 600 – размеры первого и последнего трáншей.

После первой выплаты сумма долга составит: a 1 = ma – x 1 .

После второй выплаты сумма долга составит: a 2 = ma 1 x 2 = a m 2 – m x 1 x 2 . По условию, a 2 = 0 . Уравнение надо будет решить сначала относительно m , разумеется взяв только положительный корень:

100 000m 2 – 51 000m – 66 600 = 0; 500m 2 – 255m – 333 = 0.

Вот где начинаются трудности.

D = 255 2 + 4∙500∙333= 15 2 ∙ 17 2 + 15 2 ∙37∙80= 15 2 (289+ 2 960) = 15 2 ∙3249=15 2 ∙3 2 ∙19 2 .

Тогда.

Ответ: 11%.

    31 декабря 2013 года Маша взяла в банке некоторую сумму в кредит под некоторый процент годовых. Схема выплаты кредита следующая: 31 декабря каждого следующего года банк начисляет проценты на оставшуюся сумму долга (то есть увеличивает долг на некоторое количество процентов), затем Маша переводит очередной транш. Если она будет платить каждый год по 2 788 425 рублей, то выплатит долг за 4 года. Если по 4 991 625, то за 2 года. Под какой процент Маша взяла деньги в банке?

Решение

После двух лет выплаты сумма взятого кредита вычисляется по формуле:

После четырех лет выплаты сумма взятого кредита вычисляется по формуле:

Откуда

тогда.

Ответ: 12,5%.

    31 декабря 2013 года Ваня взял в банке 9 009 000 рублей в кредит под 20% годовых. Схема выплаты кредита следующая: 31 декабря каждого следующего года банк начисляет проценты на оставшуюся сумму долга (то есть увеличивает долг на 20%), затем Ваня переводит в банк платеж. Весь долг Ваня выплатил за 3 равных платежа. На сколько рублей меньше он бы отдал банку, если бы смог выплатить долг за 2 равных платежа?

Решение

Воспользуемся результатом из задачи 2.

Искомая разность х 3 2 =34 276 800 – 25896800= 1 036 800 рублей.

Ответ: 1 036 00 рублей.

    1 июня 2013 года Всеволод Ярославович взял в банке 900 000 рублей в кредит. Схема выплаты кредита следующая: 1 числа каждого следующего месяца банк начисляет 1 процент на оставшуюся сумму долга (то есть увеличивает долг на 1%), затем Всеволод Ярославович переводит в банк платеж. На какое минимальное количество месяцев Всеволод Ярославович может взять кредит, чтобы ежемесячные выплаты были не более 300 000 рублей?

Надо понять простую истину – чем больше будет платеж по кредиту, тем меньше будет долг. Меньше будет долг – быстрее его выплатишь. Максимальный ежемесячный платеж, который может себе позволить кредитор, равен 300 000 рублей согласно условию. Если Всеволод Ярославович будет платить максимальный платеж, то он быстрее всего погасит долг. Другими словами, сможет взять кредит на наименьший период времени, что и требуется условием.

Попробуем решать задачу в лоб.

Прошел месяц. 1 июля 2013 года: долг (1 + 0,01)900 000 – 300 000 = 609 000.

Прошел месяц. 1 августа 2013 года: долг (1+ 0,01)609 000 – 300 000 = 315 090.

Прошел месяц. 1 сентября 2013 года: долг (1 +0,01)315 090 – 300 000= 18 240,9. Прошел месяц. 1 октября 2013 года: долг (1 0,01)1 240,9 = 18 423,309<300 000, кредит погашен. Итого прошло 4 месяца.

Ответ: 4 месяца.

Решим задачу стандартным методом.

Воспользуюсь результатами задачи 3 с учётом следующего рассуждения: неравенство оставшейся части долга имеет вид a x ≤ 0 .

Пусть x – искомая величина, a = 900 000 – сумма, взятая в банке, k% = 1% – ставка по кредиту, y = 300 000 – ежемесячный платеж, m = (1 + 0,01k) – ежемесячный множитель оставшегося долга. Тогда, по уже известной формуле, получим неравенство: ≤0 ;

Получили неприятное неравенство, но верное.

Целую часть числа берем потому, что число платежей не может быть числом не целым. Берем ближайшее большее целое, меньшее взять не можем (потому что тогда останется долг) и видно, что полученный логарифм число не целое. Получается 4 платежа, 4 месяца.

    Фермер получил кредит в банке под определённый процент годовых. Через год фермер в счёт погашения кредита вернул в банк от всей суммы, которую он был должен банку к этому времени, а ещё через год в счёт полного погашения кредита он внёс в банк сумму, на 21% превышающую величину полученного кредита. Каков процент годовых по кредиту в данном банке?

Решение:

Сумма кредита на ситуацию не влияет. Возьмём у банка 4 рубля (делится на 4).

Через год долг банку увеличится ровно в х раз и станет равным рублей.

Поделим его на 4 части, вернём рублей и останемся должны х рублей.

Известно, что к концу следующего года придётся выплатить 4·1,21 рублей.

Известно, что и сумма долга за год превратилась из числа х в число х 2 .

Так как долг через два года фермером был полностью погашен, то

х 2 = 4·1,21 х = 2·1,1 х = 2,2

Коэффициент х означает то, что 100% за год превращаются в 220%.

А это означает, что процент годовых у банка такой: 220% - 100%

Ответ: 120%

    В банк помещена сумма 3900 тысяч рублей под 50% годовых. В конце каждого из первых четырех лет хранения после вычисления процентов вкладчик дополнительно вносил на счет одну и ту же фиксированную сумму. К концу пятого года после начисления процентов оказалось, что размер вклада увеличился по сравнению с первоначальным на 725%. Какую сумму вкладчик ежегодно добавлял к вкладу?

Решение:

Пусть фиксированная вносимая сумма х рублей.

Тогда после проведения всех операций, попрошестию первого года, сумма на вкладе стала

После 2 года

После 3 года

После 4 года

После 5 года

Так как к концу пятого года после начисления процентов оказалось, что размер вклада увеличился по сравнению с первоначальным на 725%, то составим уравнение:

3900 ·8,25=3900·1,5 5 +х·(1,5 4 +1,5 3 +1,5 2 +1,5) /:1,5

3900·5,5=3900·1,5 4 +х(1,5 3 +1,5 2 +1,5+1)

Ответ: 210рублей.

    Банк под определенный процент принял некоторую сумму. Через год четверть накопленной суммы была снята со счета. Но банк увеличил процент годовых на 40%. К концу следующего года накоплена сумма в 1,44 раза превысила первоначальный вклад. Каков процент новых годовых?

Решение:

От суммы вклада ситуация не изменится. Положим в банк 4 рубля (делится на 4).

Через год сумма на счету увеличится ровно в p раз и станет равной 4p рублей.

Поделим её на 4 части, унесём домой p рублей, оставим в банке 3p рублей.

Известно, что к концу следующего года в банке оказалось 4·1,44 = 5,76 рублей.

Итак, число 3p превратилось в число 5,76. Во сколько раз оно увеличилось?

Таким образом, найден второй повышающий коэффициент x банка.

Интересно, что произведение обоих коэффициентов равно 1,92:

Из условия следует, что второй коэффициент на 0,4 больше первого.

p · x = p ·( p +0,4)=1,92

Уже сейчас коэффициенты можно подобрать: 1,2 и 1,6.

Но продолжим, однако, решать уравнение:

10p ·(10p+4)=192 пусть 10p=k

k ·(k+4)=192

k =12, т.е. р=1,2; а х=1,6

Ответ: 60%

В этом уроке мы разберём, как решаются самые сложные задачи про кредиты из ЕГЭ по математике — в них неизвестно время. В первую очередь запомните формулу, связывающую общую сумму кредита, процент, срок и ежемесячные платежи:

$C\cdot {{x}^{n}}=P\cdot \frac{{{x}^{n}}-1}{x-1}$.

Где $C$ — общая сумма кредита, $x$ — процент, $P$ — ежемесячный платёж, а число $n$ — это срок, на который берётся кредит. Именно его мы сегодня и будем искать, для чего нам потребуется выполнить два шага:

  1. Примерно оценить срок. Для этого достаточно разделить кредит на платёж, а полученное число округлить в большую сторону. Если при делении получилось целое число, просто увеличиваем его на единицу.
  2. Убедиться, что это число и есть ответ. Для этого придётся посчитать несколько степеней от довольно некрасивых чисел: 1,1; 1,03 и т.д.

Решая эту задачу, всегда помните связь между сроком и размером ежемесячного платежа:

Чем больше срок, тем меньше ежемесячный платёж. И наоборот: чем меньше срок, тем больше платёж.

Кроме того, есть важное правило, которое позволит существенно сократить объём выкладок. Вместо того, чтобы искать значение, скажем${{1,03}^{7}}$, можно найти какую-нибудь промежуточную степень (всё, что больше куба, для этого числа уже считается проблематично), а затем продолжить работу с верхними и нижними оценками этого числа. Что это за оценки и как с помощью них решить задачу 17 вдвое быстрее — смотрите в видеоуроке.:)

Самая сложная задача про кредиты из ЕГЭ

Сегодня мы разберем то, о чем я обещал поговорить еще в прошлом учебном году, когда мы впервые познакомились с задачами с экономическим содержанием из ЕГЭ по математике. Вообще, с момента появления этой задачи в Едином государственном экзамене прошло довольно много времени, и с тех пор такие задачи стали более разнообразными, чем изначально, однако самая сложная и часто встречающаяся задача осталась неизменной. Именно о ней мы сегодня и поговорим. А точнее, речь пойдет о самом сложном варианте этой задачи — о задаче на выплаты и кредиты, когда работает универсальная формула сложных процентов, выведенная в предыдущем видеоуроке, однако неизвестно в этот раз не кредит и не платеж, а именно время, на который взят этот самый кредит.

Формула сложных процентов в математике

Откуда берется эта формула расчета сложных процентов и как вообще все это работает, я подробно объяснял на предыдущем видеоуроке, поэтому если вы его не смотрели, очень рекомендую посмотреть. Однако из того же самого видеоурока возникла куча вопросов и, в частности, разбор самой сложной задачи мы оставили на потом. Именно этим мы сегодня и займемся.

Прежде чем решать эту задачу, давайте запишем нашу классическую формулу расчета сложных процентов, а именно:

Эту формулу мы выводили на одном из предыдущих видеоуроков, ее можно без всяких сомнений использовать на настоящем экзамене, при этом предварительно обосновав примерно так же, как это сделано в предыдущем видеоуроке.

Задача № 1

Итак, экономическая задача, в которой неизвестной искомой величиной является время:

1 января 2015 года пенсионерка взяла в банке 1,5 млн. рублей в кредит. Схема выплаты кредита следующая: 1 числа каждого следующего месяца банк начисляет 10 процентов на оставшуюся сумму долга (то есть увеличивает долг на 10%), а затем пенсионерка переводит в банк платеж. На какое минимальное количество месяцев пенсионерка может взять кредит, чтобы ежемесячные платежи составили не более 350 тыс. рублей?

Итак, начинаем решать нашу задачу. Во-первых, выпишем все, что нам известно. Прежде всего, нам дан общий объем кредита:

Кредит = 1 500 000

Известно, что ежемесячный платеж не должен превышать 350 тыс. рублей. Давайте так и запишем:

Платеж = 350 000

Кроме того, известен процент. Мы знаем, что если 10% записать в виде коэффициента, то это будет:

Шаг второй: составляем уравнение, используя формулу вычисления сложных процентов

А то, что нам неизвестно, так это число $n$ в данном уравнении. Давайте подставим все, что мы знаем в формулу сложных процентов и посмотрим, что получится:

Давайте введем замену:

\[{{1,1}^{n}}=t\]

В этом случае получим:

Вспоминаем, что такое $t$. Нам предстоит решить следующее уравнение:

\[{{1,1}^{n}}=1,75\]

Шаг третий: находим наименьшее значение

Если вы попытаетесь решить данное уравнение с помощью калькулятора, то у вас ничего не получится — числа будут либо больше, либо меньше, но точного значения вы не получите. Поэтому давайте еще раз вернемся к условию задачи и прочитаем, что ежемесячные платежи должны составить не более 350 тыс. рублей. Давайте задумаемся: чем на больший срок берется один и тот же кредит, тем меньшими являются ежемесячные платежи. А поскольку нам требуется, чтобы ежемесячные платежи были не более 350 тысяч рублей, то это значит, что срок должен быть не менее чем указанный. На самом деле, с учетом того, что точно этому сроку наше значение не может быть равно, мы получаем, что нам нужно решить не уравнение, а неравенство вида

\[{{1,1}^{n}}>1,75\]

Еще раз внимательно посмотрите на этот переход — это принципиально важный момент во всей задачи. Мы не можем подобрать точное натуральное значение $n$ такое, чтобы $1,1$ в этой степени давала $1,75$, поэтому теперь наша задача — найти минимальное натуральное $n$ такое, чтобы выполнялось это неравенство. Спрашивается: а почему минимальное? Ведь можно взять кредит на 100 лет и тогда уж точно все получится, т.е. ${{1,1}^{n}}$ будет больше, чем $1,75$. Однако нам в задаче требуется найти именно минимальное количество. Поэтому из всех таких $n$, которые удовлетворяют этому неравенству, мы выберем наименьшее, а, по сути, мы сейчас сами найдем это самое наименьшее.

Составим небольшую таблицу.

месяц $\left(n \right)$ ${{1,1}^{n}}$
1 1,1
2 1,21
3 1,331
4 1,4641
5 1,61051
6 1,771561

И вот мы впервые превзошли искомые ограничения — $1,75$. Обратите внимание: пяти месяцев нам еще недостаточно, потому что коэффициент не достигнет желаемой величины, а шести месяцев уже достаточно, потому что он не только достигнет, но и превзойдет желаемую величину. Поэтому окончательный ответ — шесть месяцев.

Нюансы решения

Как видите, в этом нет ничего сложного, даже если от нас требуется найти именно срок. Единственное, что нас могло смутить — довольно большой объем вычислений в самом конце, когда мы считали степени $1,1$. Однако неудивительно, так как это одна из самых последних и самых сложных задач из ЕГЭ по математике, поэтому если бы здесь было совсем все просто, то за нее не давали бы три первичных балла.

Кроме того, хотел бы обратить ваше внимание на окончательное обоснование ответа. Напоминаю, что мы решаем задачу из второй части: здесь недостаточно написать ответ, а нужно предоставить полное и грамотное обоснование. Итак, возводя в степени, мы в определенный момент получаем такие значения: $1,61051$ и $1,771561$. Возникает вопрос: а почему мы выбрали второе число? Мы решаем данное неравенство, которое было обосновано ранее, и второе значение под наше неравенство уже подходит, потому что

\[{{1,1}^{6}}=1,771561\]

А в $1,75$во втором знаке стоит «пять», т.е. цифра меньше и, следовательно, это число меньше. А вот если мы попытаемся выбрать в качестве ответа пять месяцев и связанный с этим значением коэффициент $1,61051$, то нас этот вариант точно не устроит. Почему? Потому что если мы подставим его в исходную формулу сложных процентов и попытаемся по этим данным посчитать итоговый ежемесячный платеж, то он окажется больше, чем требуемые 350 тыс. рублей.

Для того, чтобы успешно решить эту задачу, в том числе, когда требуется найти срок необходимо учесть два момента:

  1. Помнить формулу решения сложных процентов и желательно уметь выводить ее на экзамене.
  2. Помнить зависимость между сроками и размерами платежей. Зависимость обратно пропорциональная: чем больше срок, тем меньше ежемесячный платеж и наоборот — чем больше ежемесячный платеж, тем меньше срок, в течение которого придется выплачивать один и тот же кредит.

Задача № 2

1 января 2015 года пенсионерка взяла в банке 1,1 млн. рублей в кредит. Схема выплаты кредита следующая: 1 числа каждого следующего месяца банк начисляет 3 процента на оставшуюся сумму долга (то есть увеличивает долг на 3%), а затем пенсионерка переводит в банк платеж. На какое минимальное количество месяцев пенсионерка может взять кредит, чтобы ежемесячные платежи составили не более 220 тыс. рублей?

На первый взгляд задача ничем не отличается от предыдущей. Разве что пенсионерка стала более разумной, поэтому взяла лишь 1,1 млн. и, кроме того, процент в месяц составляет лишь 3%, а не 10%, и ежемесячные платежи должны составлять не более 220 тыс. рублей.

Шаг первый: выписываем известные данные

Вновь запишем нашу формулу сложных процентов:

Где $C$ — общая сумма кредита, $x$ — процент, $P$ — ежемесячный платеж, $n$ — срок, на который берется кредит.

Давайте запишем известные данные:

Кредит = 1100000

Платеж = 220000

Шаг второй: составляем уравнение, используя формулу расчета сложных процентов

Подставляем все эти данные в формулу. Вновь нам неизвестен срок, т.е. $n$:

\[{{1,3}^{n}}=2\cdot \left(1,03-1 \right)\cdot \frac{10}{3}\left| 3 \right.\]

Введем замену:

\[{{1,03}^{n}}=t\]

И вот тут мы натыкаемся на первую проблему, которой в предыдущей задачи не было: $\frac{20}{17}$ не переводится в «красивую» десятичную дробь, а нам нужна именно десятичная дробь, потому что когда мы сделаем таблицу, то будем возводить $1,03$ в разные степени, а она, будучи десятичной дробью в разных степенях, тоже будет давать десятичные дроби. На самом деле выход просто: просто разделим и оставим первые четыре знака:

\[\frac{20}{17}=1,17647...\]

Возвращаясь к нашей задаче, мы получим следующее:

Приравняем обе части:

\[{{1,03}^{n}}=1,17647...\]

По аналогии с предыдущей задачей несложно заметить, что нет такого натурального $n$, чтобы $1,03$ в этой степени давало нам $1,17647...$, поэтому мы спокойно заменяем наше равенство знаком неравенства:

\[{{1,03}^{n}}>1,17647...\]

При этом при решении данного неравенства в ответ пойдет наименьшее $n$. Давайте снова составим таблицу, где слева мы снова будем писать месяцы, а справа — коэффициент:

месяц $\left(n \right)$ ${{1,03}^{n}}$
1 1,03
2 1,0609
3 1,092727
4
5
6

Шаг четвертый: находим верхнюю и нижнюю оценку, используя «метод оценок»

Мы столкнулись с еще одной проблемой: по мере роста номера месяца объем вычислений становится просто катастрофическим, поэтому дальнейшие вычисления нужно выполнять с помощью какого-то другого инструмента, иначе мы просто утонем в объеме выкладок. Эта проблема характерна для всех задач, в которых процент меньше десяти. Поэтому как только вы видите маленькие проценты, не думайте, что вам попалась легкая задача, наоборот — будут проблемы. Однако все эти проблемы легко решаются при помощи замечательного инструмента под названием «метод оценок». Сейчас я вам расскажу, что это такое и как его применять на примере данной задачи.

Итак, нам необходимо найти четвертую, пятую и шестую степень числа $1,03$. Мы находили при помощи предыдущей, умножая ее на $1,03$. Однако уже на третьем шаге объем вычислений оказался достаточно большим. Поэтому чтобы не утонуть в вычислениях, выполним следующую манипуляцию: давайте посмотрим на числа, которые у нас получились при возведении в квадрат и в третью степень. Сначала рассмотрим, что получилось в квадрате:

\[{{1,03}^{2}}=1,0609\]

Давайте отсечем два знака после запятой и запишем просто $1,06$. То же самое сделаем с третьей степенью, в которой мы получили такое выражение:

\[{{1,03}^{3}}=1,092727\]

Отсечем два знака после запятой и получим $1,09$. В обоих случаях мы берем лишь первые два знака. Что нам это даст? Дело в том, что в любом случае $1,0609$, т.е. истинное значение второй степени будет больше, чем только что найденное значение:

Аналогично можно сказать и про третью степень:

А теперь возьмем и к этим числам в последнем разряде прибавим «единицу». Получим:

Замечательное свойство этих чисел состоит в том, что в первом случае

А вот втором случае будет следующее неравенство:

Давайте запишем вот так:

Полученные значения называются верхней и нижней оценкой или округлением с недостатком и округлением с избытком. И вместо того, чтобы мучится с огромным объемом вычислений, мы будем просто перемножать эти числа. Каким образом и на каком основании? Давайте заметим следующее:

\[{{1,03}^{4}}={{1,03}^{2}}\cdot {{1,03}^{2}}\]

\[{{1,03}^{5}}={{1,03}^{3}}\cdot {{1,03}^{2}}\]

\[{{1,03}^{6}}={{1,03}^{3}}\cdot {{1,03}^{3}}\]

Шаг пятый: находим наименьшее значение

Давайте заполним таблицу до конца:

месяц $\left(n \right)$ ${{1,03}^{n}}$
1 1,03
2 1,0609
3 1,092727
4 $1,06\cdot 1,06<*<1,07\cdot 1,07$
5 $1,06\cdot 1,09<*<1,07\cdot 1,1$
6 ${{1,09}^{2}}<*<{{1,1}^{2}}$

Что дают нам все эти верхние и нижние оценки? Во-первых, существенно сокращается объем вычислений, а, во-вторых, давайте посмотрим на последние значения:\[{{1,1}^{2}}=1,21\]

\[{{1,09}^{2}}=1,1881\]

Что это значит? А то, что для $n=6$ мы уже точно превзойдем искомую величину. Мы уже знаем, что

\[{{1,03}^{n}}=1,17647<1,1881<{{1,03}^{6}}<1,21\]

В принципе, «шесть» нас уже устраивает — это кандидат в ответ. Но проблема в том, что в задаче от нас требуется найти минимальное количество месяцев. А что, если минимальное количество месяцев будет «пять»? Давайте посчитаем и повторим все те же вычисления для «пяти»:

Но такие оценки нам ничего не дадут. Почему? Потому что если мы начертим числовую прямую и отметим на ней нижнюю и верхнюю оценки, то получим следующее: между $1,1554$ и $1,177$ находится ${{1,03}^{5}}$. Но также между ними есть и $1,17647$, которое мы должны превзойти. Если это число лежит правее $1,17647$, то нас все устраивает, и ответом будет «пять». Однако если оно будет левее, то «пять» нас не устраивает и ответом будет «шесть». Как же проверить, какое из чисел нас устраивает? К сожалению, в рамках верхних и нижних оценок, которые мы записали, ответить на этот вопрос невозможно – нам просто не хватает точности. Поэтому давайте еще раз выпишем значения для $n=2$ и $n=3$.

Таким образом, какой бы не было $n$ в выражение ${{1,03}^{n}}$, оно в любом случае будет больше, чем $1,06\cdot 1,092$, но в любом случае меньше, чем $1,061\cdot 1,093$.

Запишем вычисления:

Это значит, что наши предположения верны. Искомое значение, если вновь попытаться начертить его на числовой прямой, будет снизу ограничено $1,1554$, а сверху —$1,159673$. Т.е. ${{1,03}^{5}}$ будет заведомо меньше, чем $1,159673$ и уж тем более меньше, чем $1,17647...$А это значит, что наше исходное предположение о том, что при $n=5$ мы уже превзойдем величину $1,17647...$ неверно. А это значит, что пятый месяц нас все еще не устроит. А вот шестой месяц, о котором мы сначала и подумали, действительно является таковым. Итого, окончательный ответ — шесть. Задача решена и полностью обоснована.

Полезные советы при решении задач с использованием формулы сложных процентов

Самое главное в это задаче — это понять, чем оценки отличаются от округления. Мы берем две цифры после запятой, отсекаем все, что идет после них, и записываем эти числа слева. Очевидно, что поскольку дальше идут какие-то цифры в настоящем числе, это число будет то, что мы получили слева (см. таблицу). Эти числа, которые находятся слева, и называются меньшими оценками. Затем к ним мы в самом последнем разряде (к последней цифре) прибавляем «единицу», и получаем число, на единицу большее в конце, например, было $1,06$ стало $1,07$ и т.д. Это будут верхние оценки. И далее, что бы мы не делали, какую бы степень и номер месяца не считали, все равно истинное значение нашей величины будет заключено между степенями верхней и нижней оценок.

Но есть одна проблема: в определенный момент мы получаем, что и число, и искомая величина лежат в одних и тех же пределах. Пределы получены, разумеется, при вычислении степеней оценок. В нашей ситуации такая проблема возникла в вычислениях значения для пятого месяца: левая оценка дала нам $1,1554$, а правая — $1,177$. Между этими двумя числами лежит как искомая величина, которую мы не знаем, так и наше искомое значение, т.е. ${{1,03}^{n}}$. Выход из такой ситуации напрашивается сам собой: если нам не хватает точности, то необходимо просто увеличить точность исходных оценок, т.е. после запятой мы берем не две, а три цифры. Но поскольку нас интересуют, прежде всего, верхние оценки, мы увеличим каждое из этих чисел на единицу в разряде, запишем и перемножим. В результате мы получим следующее: новая верхняя оценка для нашего числа, для пятого месяца, будет лежать между $1,1554$ и $1,159673$.

На самом деле, пятый месяц даст коэффициент, который будет находиться в вышеуказанном диапазоне, что явно меньше, чем искомая величина $1,174647...$ На первый взгляд может показаться, что сложность и объем всех этих вычислений будет существенно больше, чем если бы мы просто возвели числа в степень квадрат, куб и т.д. На самом деле это не так. Уже на третьей и четвертой степенях возникают большие числа, а до пятого и шестого месяца вы просто не дойдете.

Как определить кандидата в ответ, исходя из условия задачи

В качестве заключительного аккорда сегодняшнего видеоурока я хотел бы вам рассказать еще один довольно хитрый инструмент, который позволит еще с первого взгляда на задачу уже примерно оценить, какой месяц предстоит считать и какой месяц, скорее всего, является кандидатом в ответ.

Давайте посмотрим на исходную формулу. Всего объем кредит, который предстоит выплатить, составляет 1,1 млн. при этом ежемесячно нужно выплачивать по 220 тыс. рублей. Давайте разделим общий размер задолженности на ежемесячный платеж. В этом случае мы получим количество месяцев, которые необходимо будет потратить на выплату кредита, если бы на нас не начислялись проценты. Однако сами по себе проценты невелики — в нашем случае всего 3% в месяц. Это значит, что вряд ли накопится задолженность еще больше, чем на один месяц и, следовательно, нужно прибавить к полученной величине еще единицу, и мы получим наиболее вероятный кандидат на ответ.

В нашем случае, если 1,1млн. разделить на 220 тыс., то мы получим пять месяцев, но без учета начисленных процентов. Соответственно, еще один месяц потребуется на то, чтобы погасить проценты. И мы получим тот же самый ответ.

Однако хочу вас предупредить, что ни в коем случае нельзя использовать этот прием как единственно возможное обоснование того ответа, который у вас получается в задаче! Потому что мы решаем одну из самых сложных задач ЕГЭ: там требуется привести не только ответ, но и все подробные выкладки и обоснования. Такой прием — это лишь подсказка для нас самих, для того, чтобы понимать, какие именно месяцы, какие именно степени считать. Дальнейшим шагом нужно доказать, что, например, число, равное пяти месяцам, нас не устраивает, а шести месяцев точно устраивает. Каким образом можно это сделать. Например, с помощью числовой прямой, более точных вычислений, метода оценок или как вам будет удобнее. В любом случае, мы с учениками недавно убедились, что эта подсказка существенно облегчает выкладки и хотя бы дает представление о том, каким должен быть ответ.

Тренируйтесь, решайте задачи, оттачивайте навык с вычислением верхних и нижних оценок. Это далеко не последний урок на решение задач с экономическим содержанием, поскольку самих задач стало довольно много, и их условия стали более разнообразные. Поэтому оставайтесь с нами!

Решение задач по математике на применение основных понятий о процентах.

Задачи на проценты учат решать с 5 класса.

Решение задач этого типа тесно связано с тремя алгоритмами:

  1. нахождение процента от числа,
  2. нахождение числа по его проценту,
  3. нахождение процентного отношения.

На уроках с учениками разбирают, что сотая часть метра - это сантиметр, сотая часть рубля - копейка, сотая часть центнера - килограмм. Люди давно заметили, что сотые доли величин удобны в практической деятельности. Потому для них было придумано специальное название - процент.

Значит одна копейка - один процент от одного рубля, а один сантиметр - один процент от одного метра.

Один процент - это одна сотая доля числа. Математическими знаками один процент записывается так: 1%.

Определение одного процента можно записать равенством: 1 % = 0,01 . а

5%=0,05, 23%=0,23, 130%=1,3 и т. д.

Как найти 1% от числа?

Раз 1% это одна сотая часть, надо число разделить на 100. Деление на 100 можно заменить умножением на 0,01. Поэтому, чтобы найти 1% от данного числа, нужно умножить его на 0,01. А если нужно найти 5% от числа, то умножаем данное число на 0,05 и т.д.

Пример. Найти: 25% от 120.

  1. 25% = 0,25;
  2. 120 . 0,25 = 30.

Правило 1. Чтобы найти данное число процентов от числа, нужно проценты записать десятичной дробью, а затем число умножить на эту десятичную дробь.

Пример. Токарь вытачивал за час 40 деталей. Применив резец из более прочной стали, он стал вытачивать на 10 деталей в час больше. На сколько процентов повысилась производительность труда токаря?

Чтобы решить эту задачу, надо узнать, сколько, процентов составляют 10 деталей от 40. Для этого найдем сначала, какую часть составляет число 10 от числа 40. Мы знаем, что нужно разделить 10 на 40. Получится 0,25. А теперь запишем в процентах - 25%.

Ответ: производительность труда токаря повысилась на 25%.

Правило 2. Чтобы найти, сколько процентов одно число составляет от другого, нужно разделить первое число на второе и полученную дробь записать в виде процентов.

Пример. При плановом задании 60 автомобилей в день завод выпустил 66 автомобилей. На сколько процентов завод выполнил план?

66: 60 = 1,1 - такую часть составляют изготовленные автомобили от количества автомобилей по плану. Запишем в процентах =110%.

Ответ: 110%.

Пример. Бронза является сплавом олова и меди. Сколько процентов сплава составляет медь в куске бронзы, состоящем из 6 кг олова и 34 кг меди?

  1. 6+ 34 =40 (кг) - масса всего сплава.
  2. 34: 40 = 0,85 = 85 (%) - сплава составляет медь.

Ответ: 85%.

Пример. Слонёнок за весну похудел на 20%, потом поправился за лето на 30%, за осень опять похудел на 20% и за зиму прибавил в весе на 10%. Остался ли за этот год его вес прежним? Если изменился, то на сколько процентов и в какую сторону?

  1. 100 - 20 = 80 (%) - после весны.
  2. 80 + 80 . 0,3 = 104 (%) - после лета.
  3. 104 - 104 . 0,2 = 83,2 (%) - после осени.
  4. 83,2 + 83,2 . 0,1 = 91,52 (%) - после зимы.

Ответ: похудел на 8,48%.

Пример. Оставили на хранение 20 кг крыжовника, ягоды которого содержат 99% воды. Содержание воды в ягодах уменьшилось до 98%. Сколько крыжовника получится в результате?

  1. 100 - 99 = 1 (%) = 0,01 - доля сухого вещества в крыжовнике сначала.
  2. 20 . 0,01 = 0,2 (кг) - сухого вещества.
  3. 100 - 98 = 2 (%) = 0,02 - доля сухого вещества в крыжовнике после хранения.
  4. 0,2: 0,02 = 10 (кг) - стало крыжовника.

Ответ: 10 кг.

Пример. Что произойдет с ценой товара, если сначала ее повысить на 25%, а потом понизить на 25%?

Пусть цена товара х руб., тогда после повышения товар стоит 125% прежней цены, т.е. 1,25х, а после понижения на 25% , его стоимость составляет 75% или 0, 75 от повышенной цены, т.е.

0,75 .1,25х= 0,9375х,

тогда цена товара понизилась на 6, 25 %, т.к.

х - 0,9375х = 0,0625х;
0,0625 . 100% = 6,25%

Ответ: первоначальная цена товара снизилась на 6,25%.

Правило 3. Чтобы найти процентное отношение двух чисел А и В, надо отношение этих чисел умножить на 100%, то есть вычислить (А: В) . 100%.

Пример. Найти число, если 15% его равны 30.

  1. 15% = 0,15;
  2. 30: 0,15 = 200.

х - данное число;
0,15 . х = 300;
х = 200.

Ответ: 200.

Пример. Из хлопка-сырца получается 24% волокна. Сколько надо взять хлопка-сырца, чтобы получить 480кг волокна?

Запишем 24% десятичной дробью 0,24 и получим задачу о нахождении числа по известной ему части (дроби).
480: 0,24= 2000 кг = 2 т

Ответ: 2 т.

Пример. Сколько кг белых грибов надо собрать для получения 1 кг сушеных, если при обработке свежих грибов остается 50% их массы, а при сушке остается 10% массы обработанных грибов?

1 кг сушеных грибов - это 10% или 0, 01 часть обработанных, т.е.
1 кг: 0,1=10 кг обработанных грибов, что составляет 50% или 0,5 собранных грибов, т.е.
10 кг: 0,05=20 кг.

Ответ: 20 кг.

Пример. Свежие грибы содержали по массе 90% воды, а сухие 12%. Сколько получится сухих грибов из 22 кг свежих?

  1. 22 . 0,1 = 2,2 (кг) - грибов по массе в свежих грибах; (0,1 это 10% сухого вещества);
  2. 2,2: 0,88 = 2,5 (кг) - сухих грибов, получаемых из свежих (количество сухого вещества не изменилось, но изменилось его процентное содержание в грибах и теперь 2,2 кг это 88% или 0,88 сухих грибов).

Ответ: 2,5 кг.

Правило 4. Чтобы найти число по данным его процентам, надо выразить проценты в виде дроби, а затем значение процентов разделить на эту дробь.

В задачах на банковские расчёты обычно встречаются простые и сложные проценты. В чём же состоит разница простого и сложного процентного роста? При простом росте процент каждый раз исчисляется, исходя из начального значения, а при сложном росте он исчисляется из предыдущего значения. При простом росте 100% - начальная сумма, а при сложном 100% каждый раз новые и равны предыдущему значению.

Пример. Банк платит доход в размере 4% в месяц от величины вклада. На счет положили 300 тысяч рублей, доход начисляют каждый месяц. Вычислите величину вклада через 3 месяца.

  1. 100 + 4 = 104 (%) = 1,04 - доля увеличения вклада по сравнению с предыдущим месяцем.
  2. 300 . 1,04 = 312 (тыс. р) - величина вклада через 1 месяц.
  3. 312 . 1,04 = 324,48 (тыс. р) - величина вклада через 2 месяца.
  4. 324,48 . 1,04 = 337,4592 (тыс. р) = 337 459,2 (р)-величина вклада через 3 месяца.

Или можно пункты 2-4 заменить одним, повторив с детьми понятие степени: 300.1,043 =337,4592(тыс. р) = 337 459,2 (р) - величина вклада через 3 месяца.

Ответ: 337 459,2 рубля

Пример. Вася прочитал в газете, что за последние 3 месяца цены на продукты питания росли в среднем на 10% за каждый месяц. На сколько процентов выросли цены за 3 месяца?

Пример. Деньги, вложенные в акции известной фирмы, приносят ежегодно 20% дохода. Через сколько лет вложенная сумма удвоится?

Рассмотрим подобного плана задачи на конкретных примерах.

Пример. (Вариант 1 № 16. ОГЭ-2016. Математика. Тип. тест. задания_ред. Ященко_2016 -80с)

Спортивный магазин проводит акцию. Любой джемпер стоит 400 рублей. При покупке двух джемперов - скидка на второй джемпер 75%. Сколько рублей придется заплатить за покупку двух джемперов в период акции?

Согласно условию задачи получается, что первый джемпер покупается за 100 % его исходной стоимости, а второй за 100 - 75 = 25 (%), т.е. всего покупатель должен заплатить 100 + 25 = 125 (%) от исходной стоимости. Далее можно рассмотреть решение тремя способами.

1 способ.

400 рублей принимаем за 100 %. Тогда в 1% содержится 400: 100 = 4 (руб.), а в 125 %
4 . 125 = 500 (руб.)

2 способ.

Процент от числа находится умножением числа на дробь, соответствующую проценту или умножением числа на данный процент и делением на 100.
400 . 1,25 = 500 или 400 . 125/100 = 500.

3 способ.

Применение свойства пропорции:
400 руб. - 100 %
х руб. - 125 %, получим х = 125 . 400 / 100 = 500 (руб.)

Ответ: 500 рублей.

Пример. (Вариант 4 № 16. ОГЭ-2016. Математика. Тип. тест. задания_ред. Ященко_2016 -80с)

Средний вес мальчиков того же возраста, что и Гоша, равен 57 кг. Вес Гоши составляет 150 % среднего веса. Сколько килограммов весит Гоша?

Аналогично примеру, рассмотренному выше можно составить пропорцию:

57 кг - 100 %
х кг - 150 %, получим х = 57 . 150 / 100 = 85,5 (кг)

Ответ: 85,5 кг.

Пример. (Вариант 7 № 16. ОГЭ-2016. Математика. Тип. тест. задания_ред. Ященко_2016 - 80с)

После уценки телевизора его новая цена составила 0,52 старой. На сколько процентов уменьшилась цена в результате уценки?

1 способ.

Найдем сначала долю уменьшения цены. Если исходную цену принять за 1, то 1 - 0,52 = 0,48 составляет доля уменьшения цены. Тогда получаем, 0,48 . 100 % = 48 %. Т.е. на 48 % уменьшилась цена в результате уценки.

2 способ.

Если исходную стоимость принять за А, то после уценки новая цена телевизора будет равняться 0,52А, т.е. она уменьшится на А - 0,52А = 0,48А.

Составим пропорцию:
А - 100%
0,48А - х %, получим х = 0,48А. 100 / А = 48 (%).

Ответ: на 48 % уменьшилась цена в результате уценки.

Пример. (Вариант 9 № 16. ОГЭ-2016. Математика. Тип. тест. задания_ред. Ященко_2016 - 80с)

Товар на распродаже уценили на 15%, при этом он стал стоить 680 рублей. Сколько рублей стоил товар до распродажи?

До понижения цены товар стоил 100%. Цена на товар после распродажи уменьшилась на 15%, т.е. стала 100 - 15 = 85 (%), в рублях эта величина равна 680 рублей.

1 способ.

680: 85 = 8 (руб.) - в 1%
8 . 100 = 800 (руб.) - стоил товар до распродажи.

2 способ.

Это задача на нахождение числа по его проценту, решается делением числа на соответствующий ему процент и путем обращения полученной дроби в проценты, умножением на 100, или действием деления на дробь, полученную при переводе из процентов.
680: 85 . 100 = 800 (руб.) или 680: 0,85 = 800 (руб.)

3 способ.

С помощью пропорции:
680 руб. - 85 %
х руб. - 100 %, получим х = 680 . 100 / 85 = 800 (руб.)

Ответ: 800 рублей стоил товар до распродажи.

Решение задач на смеси и сплавы, с использованием понятий «процентное содержание», «концентрация», «% -й раствор».

Самые простые задачи этого типа приведены ниже.

Пример. Сколько кг соли в 10 кг соленой воды, если процентное содержание соли 15%.

10 . 0,15 = 1,5 (кг) соли.

Ответ: 1,5 кг.

Процентное содержание вещества в растворе (например, 15%), иногда называют %-м раствором (например, 15%-й раствор соли).

Пример. Сплав содержит 10 кг олова и 15 кг цинка. Каково процентное содержание олова и цинка в сплаве?

Процентное содержание вещества в сплаве - это часть, которую составляет вес данного вещества от веса всего сплава.

  1. 10 + 15 = 25 (кг) - сплав;
  2. 10: 25 . 100% = 40% - процентное содержание олова в сплаве;
  3. 15: 25 . 100% = 60% - процентное содержание цинка в сплаве.

Ответ: 40%, 60%.

В задачах этого типа основным является понятие «концентрация». Что же это такое?

Рассмотрим, например, раствор кислоты в воде.

Пусть в сосуде содержится 10 литров раствора, который состоит из 3 литров кислоты и 7 литров воды. Тогда относительное (по отношению ко всему объему) содержание кислоты в растворе равно. Это число и определяет концентрацию кислоты в растворе. Иногда говорят о процентном содержании кислоты в растворе. В приведенном примере процентное содержание будет таково: . Как видно, переход от концентрации к процентному содержанию и наоборот весьма прост.

Итак, пусть смесь массы М содержит некоторое вещество массой m.

  • концентрацией данного вещества в смеси (сплаве) называется величина;
  • процентным содержанием данного вещества называется величина с×100%;

Из последней формулы следует, что при известных величинах концентрации вещества и общей массы смеси (сплава) масса данного вещества определяется по формуле m=c×M.

Задачи на смеси (сплавы) можно разделить на два вида:

  1. Задаются, например, две смеси (сплава) с массами m1 и m2 и с концентрациями в них некоторого вещества, равными соответственно с1 и с2. Смеси (сплавы) сливают (сплавляют). Требуется определить массу этого вещества в новой смеси (сплаве) и его новую концентрацию. Ясно, что в новой смеси (сплаве) масса данного вещества равна c1m1+c2m2, а концентрация.
  2. Задается некоторый объем смеси (сплава) и от этого объема начинают отливать (убирать) определенное количество смеси (сплава), а затем доливать (добавлять) такое же или другое количество смеси (сплава) с такой же концентрацией данного вещества или с другой концентрацией. Эта операция проводится несколько раз.

При решении таких задач необходимо установить контроль за количеством данного вещества и его концентрацией при каждом отливе, а также при каждом добавлении смеси. В результате такого контроля получаем разрешающее уравнение. Рассмотрим конкретные задачи.

Если концентрация вещества в соединении по массе составляет P%, то это означает, что масса этого вещества составляет P% от массы всего соединения.

Пример. Концентрация серебра в сплаве 300 г составляет 87%. Это означает, что чистого серебра в сплаве 261 г.

300 . 0,87 = 261 (г).

В этом примере концентрация вещества выражена в процентах.

Отношения объема чистого компонента в растворе ко всему объему смеси называется объемной концентрацией этого компонента.

Сумма концентраций всех компонентов, составляющих смесь, равна 1.

Если известно процентное содержание вещества, то его концентрация находится по формуле:
К = P/100%,
где К - концентрация вещества;
P - процентное содержание вещества (в процентах).

Пример. (Вариант 8 № 22. ОГЭ-2016. Математика. Тип. тест. задания_ред. Ященко_2016 - 80с)

Свежие фрукты содержат 75% воды, а высушенные - 25%. Сколько требуется свежих фруктов для приготовления 45 кг высушенных фруктов?

Если в свежих фруктах содержится 75% воды, то сухого вещества будет 100 - 75 = 25 (%), а высушенные - 25%, то сухого вещества в них будет 100 - 25 = 75 (%).

При оформлении решения задачи, можно использовать таблицу:

Свежие фрукты х 25% = 0,25 0,25 . х

Высушенные фрукты 45 75% = 0,75 0,75 . 45 = 33,75

Т.к. масса сухого вещества для свежих и высушенных фруктов не меняется, то получим уравнение:

0,25 . х = 33,75;
х = 33,75: 0,25;
х = 135 (кг) - требуется свежих фруктов.

Ответ: 135 кг.

Пример. (Вариант 8 №11. ЕГЭ-2016. Математика. Типов. тест. зад. ред Ященко 2016 -56с)

Смешав 70 % -й и 60 % -й растворы кислоты и добавив 2 кг чистой воды, получили 50 % -й раствор кислоты. Если бы вместо 2 кг воды добавили 2 кг 90 % -го раствора той же кислоты, то получили бы 70 % -й раствор кислоты. Сколько килограммов 70 % -го раствора использовали для получения смеси?

Общая масса, кг | Концентрация сухого вещества | Масса сухого вещества
I х 70% = 0,7 0,7 . х
II у 60% = 0,6 0,6 . у
вода 2 - -
I + II + вода х + у + 2 50 % = 0,5 0,5 . (х + у + 2)
III 2 90 % = 0,9 0,9 . 2 = 1,8
I + II + III х + у + 2 70 % = 0,7 0,7 . (х + у + 2)

Используя последний столбик из таблицы составим 2 уравнения:

0,7 . х + 0,6 . у = 0,5 . (х + у + 2) и 0,7 . х + 0,6 . у + 1,8 = 0,7 . (х + у + 2).

Объединив их в систему, и решив ее, получим, что х = 3 кг.

Ответ: 3 килограмма 70 % -го раствора использовали для получения смеси.

Пример. (Вариант 2 №11. ЕГЭ-2016. Математика. Типов. тест. зад. ред Ященко 2016 -56с)

Три килограмма черешни стоят столько же, сколько пять килограммов вишни, а три килограмма вишни - столько же, сколько два килограмма клубники. На сколько процентов килограмм клубники дешевле килограмма черешни?

Из первого предложения задачи получаем следующие равенства:

3ч = 5в,
3в = 2к.
Из которых можно выразить: ч = 5в/3, к = 3в/2.

Таким образом можно составить пропорцию:
5в/3 - 100%
3в/2 - х %, получим х = (3 . 100 . в.3)/(2 . 5 . в), х = 90% составляет стоимость килограмма клубники от стоимости килограмма черешни.

Значит, на 100 - 90 = 10 (%) - килограмм клубники дешевле килограмма черешни.

Ответ: на 10 процентов килограмм клубники дешевле килограмма черешни.

Решение задач на «сложные» проценты, с использованием понятия коэффициента увеличения (уменьшения).

Чтобы увеличить положительное число А на р процентов, следует умножить число А на коэффициент увеличения К = (1 + 0,01р).

Чтобы уменьшить положительное число А на р процентов, следует умножить число А на коэффициент уменьшения К = (1 - 0,01р).

Пример. (Вариант 29 № 22. ОГЭ-2015. Математика. Тип. экзаменационные варианты: 36 вариантов/ под ред. Ященко, 2015 - 224с)

Цена товара была дважды снижена на одно и то же число процентов. На сколько процентов снижалась цена товара каждый раз, если его первоначальная стоимость 5000 рублей, а окончательная 4050 рублей?

1 способ.

Т.к. цена товара снижалась на одно и то же число %, обозначим число % за х. Пусть в первый и второй раз цена товара была понижена на х %, тогда после первого понижения цена товара стала (100 - х) %.

Составим пропорцию
5000 руб. - 100%
у руб. - (100 - х)%, получим у = 5000 . (100 - х) / 100 = 50 . (100 - х) рублей - стоимость товара после первого понижения.

Составим новую пропорцию уже по новой цене:
50 . (100 - х) руб. - 100%
z руб. - (100 - х)%, получим z = 50 . (100 - х) (100 - х) / 100 = 0,5 . (100 - х)2 рублей - стоимость товара после второго понижения.

Получим уравнение 0,5 . (100 - х)2 = 4050. Решив его, получим, что х = 10 % .

2 способ.

Т.к. цена товара снижалась на одно и то же число %, обозначим число % за х, х % = 0,01 х.

Используя понятие коэффициента уменьшения, сразу получаем уравнение:
5000 . (1 - 0,01х)2 = 4050.

Ответ: на 10 % снижалась цена товара каждый раз.

Пример. (Вариант 30 № 22. ОГЭ-2015. Математика. Тип. экзаменационные варианты: 36 вариантов/ под ред. Ященко, 2015 - 224с)

Цена товара была дважды повышена на одно и то же число процентов. На сколько процентов повышалась цена товара каждый раз, если его первоначальная стоимость 3000 рублей, а окончательная 3630 рублей?

Т.к. цена товара повышалась на одно и то же число %, обозначим число % за х, х % = 0,01 х.

Используя понятие коэффициента увеличения, сразу получаем уравнение:
3000 . (1 + 0,01х)2 = 3630.

Решив его, получим, что х = 10 %.

Ответ: на 10 % повышалась цена товара каждый раз.

Пример. (Вариант 4 №11. ЕГЭ-2016. Математика. Типов. тест. зад. ред Ященко 2016 -56с)

В четверг акции компании подорожали на некоторое число процентов, а в пятницу подешевели на то же самое число процентов. В результате они стали стоить на 9% дешевле, чем при открытии торгов в четверг. На сколько процентов подорожали акции компании в четверг?

Пусть акции компании дорожали и дешевели на х %, х % = 0,01 х, а исходная стоимость акций была А. Используя все условия задачи, получаем уравнение:

(1 + 0,01 х)(1 - 0,01 х)А = (1 - 0,09)А,
1 - (0,01 х)2 = 0,91,
(0,01 х)2 = (0,3)2,
0,01 х = 0,3,
х = 30 %.

Ответ: на 30 процентов подорожали акции компании в четверг.

Решение «банковских» задач в новой версии ЕГЭ-2016 по математике.

Пример. (Вариант 2 №17. ЕГЭ-2016. Математика. 50 типов. вар. ред. Ященко 2016)

15-го января планируется взять кредит в банке на 15 месяцев. Условия его возврата таковы:

Известно, что восьмая выплата составила 108 тыс. рублей. Какую сумму нужно вернуть банку в течение всего срока кредитования?

Со 2-го по 14-е число производится выплата А/15 +0,01А.

После чего сумма долга составит 1,01А - А/15 - 0,01А = 14А/15.

Через 2 месяца получаем: 1,01. 14А/15.

Второй платеж А/15 + 0,01. 14А/15.

Тогда долг после второго платежа 13А/15.

Аналогично получаем, что восьмая выплата будет иметь вид:

А/15 + 0,01. 8А/15 = А/15 . (1 + 0,08) = 1,08А/15.

А по условию она равна 108 тыс. рублей. Значит, можно составить и решить уравнение:

1,08А/15 = 108,

А=1500 (тыс. руб.) - исходная сумма долга.

2) Чтобы найти сумму, которую нужно вернуть банку в течение всего срока кредитования, мы должны найти сумму всех выплат по кредиту.

Сумма всех выплат по кредиту будет иметь вид:

(А/15 + 0,01А) + (А/15 + 0,01. 14А/15) + (А/15 + 0,01. 13А/15) + … + (А/15 + 0,01. А/15) = А + 0,01А/15 (15+14+13+12+11+10+9+8+7+6+5+4+3+2+1) = А + (0,01. 120А)/15 = 1,08А.

Значит, 1,08 . 1500 = 1620 (тыс. руб.) = 1620000 рублей нужно вернуть банку в течение всего срока кредитования.

Ответ: 1620000 рублей.

Пример. (Вариант 6 №17. ЕГЭ-2016. Математика. 50 типов. вар. ред. Ященко 2016)

15-го января планируется взять кредит в банке на 24 месяцев. Условия его возврата таковы:

  • 1-го числа каждого месяца долг возрастает на 1% по сравнению с концом предыдущего месяца;
  • со 2-го по 14-е число каждого месяца необходимо выплатить часть долга;
  • 15-го числа каждого месяца долг должен быть на одну и ту же величину меньше долга на 15-е число предыдущего месяца.

Известно, что за первые 12 месяцев нужно выплатить банку 177,75 тыс. рублей. Какую сумму планируется взять в кредит?

1) Пусть А - сумма кредита, 1 % = 0,01.

Тогда 1,01А долг после первого месяца.

Со 2-го по 14-е число производится выплата А/24 +0,01А.

После чего сумма долга составит 1,01А - А/24 - 0,01А = А - А/24 = 23А/24.

При такой схеме долг становится на одну и ту же величину меньше долга на 15-е число предыдущего месяца.

Через 2 месяца получаем: 1,01. 23А/24.

Второй платеж А/24 + 0,01. 23А/24.

Тогда долг после второго платежа 1,01. 23А/24 - А/24 - 0,01. 23А/24 = 23А/24(1,01 - 0,01) - А/24 = 23А/24 - А/24 = 22А/24.

Таким образом получаем, что за первые 12 месяцев нужно выплатить банку следующую сумму:
А/24 +0,01А. 24/24 + А/24 + 0,01. 23А/24 + А/24 + 0,01. 22А/24 + … + А/24 + 0,01. 13А/24 =12А/24 + 0,01А/24 (24+23+22+21+20+19+18+17+16+15+14+13) = А/2 + 222А/2400 = 711А/1200.

А по условию она равна 177,375 тыс. рублей. Значит, можно составить и решить уравнение:
711А/1200 = 177,75,
А=300 (тыс. руб.) =300000 рублей - планируется взять в кредит.

Ответ: 300000 рублей.

«Простые и сложные проценты »

Актуальность темы.

Понимание процентов и умение производить процентные расчеты в настоящее время необходимы каждому человеку: прикладное значение этой темы очень велико и затрагивает финансовую, демографическую, экологическую, социологическую и другие стороны нашей жизни.

Материал актуален для всех, у кого в этом году есть 11 классы.

Когда Ященко, имеющий к составлению КИМов по математике непосредственное отношение, приезжал к нам на семинар в октябре, он сказал, что все прототипы задания 19 будут выложены в открытом банке, так как задание новое.

Задание, решаемое для моего не очень сильного класса, и натаскать на него можно, было бы на чём.

Немного теории…

“Проценты”.

Задание1

а) Что называется процентом? (Процентом называется одна сотая часть какого-либо числа )

б) Как обозначается 1%? ( 1%? = 0,01 )

в) Как называется 1% от центнера? (кг. ) Метра? (см. ) Гектара? (ар или сотый)

г) Что называется 1% процентом данного числа а? (Процентом данного числа а называется число 0,01 а, т.е. 1% (а) = 0,01*а )

д) Как определить р% от данного числа а? (найти число 0,01 р а, т.е. р% = 0,01*р*а )

е) Как перевести десятичную дробь в проценты? (умножить на 100 ). А как проценты в десятичную дробь? (разделить на сто, т.е. умножить на 0,01 )

ж) Как найти часть от числа в процентах? (Чтобы найти часть в от числа х в процентах, нужно эту часть разделить на число и умножить на 100, т.е. а(%)=(в/х)*100 )

д) Как находится число по его проценту? (Если известно, что а% числа х равно в, то х можно найти по формуле х = (в/а)*100 )

Задание 2

Представьте данные десятичные дроби в процентах:

А)1; 0,5; 0,763; 1,7; 256.

б) Представьте проценты десятичными дробями: 2%; 12%; 12,5%; 0,1%; 200%.

Задание 3

Найдите % от числа:

в) 0,1% от числа 1200? (1,2)

г) 15% от числа 2? (0,30)

Задание 4

Найдите число по его проценту:

д) Сколько центнеров весит мешок сахарного песка, если 13% составляет 6,5 кг.? (50 кг.= 0,5 ц.)

в) Сколько процентов от 10 составляет 9?

Ответы: а) 9%, б) 0,09%, в) 90%; г) 900%?

Простые и сложные проценты .

Эти термины чаще всего встречаются в банковских делах, в финансовых задачах.

Банки привлекают средства (вклады) за определенные процентные ставки. В зависимости от процентной ставки вычисляется доход.

На практике применяются два подхода к оценке процентного дохода – простые и сложные проценты.

При применении простых процентов доход рассчитывается от первоначальной суммы вложенных средств не зависимо от срока вложения. В финансовых операциях простые проценты используются преимущественно при краткосрочных финансовых сделках.

Пусть некоторая величина подвержена поэтапному изменению. При этом каждый раз ее изменение составляет определенное число процентов от значения, которое эта величина имела на начальном этапе . Так вычисляются простые проценты.

При применении сложных процентов накопленная сумма процентов добавляется во вклад по окончании очередного периода начислений. При этом каждый раз ее изменение составляет определенное число процентов от значения, которое эта величина имела на предыдущем этапе . В этом случае имеем дело со “ сложными процентами ” (т.е. используются начисления “процентов на проценты”)

Первоначальная сумма и полученные проценты в совокупности называются накопленной (наращенной) суммой.

Так, если банковская ставка равна 10%, а первоначальная сумма 100 руб., то накопленная сумма за пять лет при применении простых и сложных процентов будет иметь вид:

Таблица 1. Накопленная сумма с использованием простых и сложных процентов.

На начало

1-й год

2-й год

3-й год

4-й год

5-й год

Простые проценты

Сложные проценты

Формулы простых и сложных процентов.

I. Пусть некоторая величина A увеличивается n раз (n год) и каждый раз на р%.

Вводим обозначения: A 0 – первоначальное значение величины A;

р – постоянное количество процентов;

a процентная ставка; a=р/100 = 0,01*р

A n – накопленная сумма за n раз (к концу n-го года) - по формуле простых процентов;

S n - накопленная сумма за n раз (к концу n-го года) - по формуле сложных процентов.

Тогда ее значение A 1 для простых процентов после первого увеличения (к концу первого года) вычисляется по формуле: A 1 = A 0 + A 0 * (0,01р) = A 0 (1 + (0,01р) = A 0 (1 + p)

В конце второго этапа A 2 = A 1 + A 0 * (0,01р) = A 0 (1 + a ) + A 0 * a = A 0 (1 + 2 a ).

В конце третьего этапа A 3 = A 2 + A 0 * (0,01р) = A 0 (1 + 2 a ) + A 0 * a = A 0 (1 + 3 a ).

Тогда для простых процентов сумма по годам равна:

A n = A 0 (1 + 0.01р*n) или A n = A 0 (1 + ?* n) (1)

Для сложных процентов это выглядит иначе:

Пусть некоторая величина S 0 увеличивается n раз (n год) и каждый раз на р%.

Тогда ее значение S 1 для сложных процентов после первого увеличения (к концу первого года) вычисляется по формуле:

S 1 = S 0 + S 0 (0,01р) = S 0 * (1 + 0,01р) = S 0 * (1 + ?).

В конце второго этапа S 2 = S 1 + S 1 (0,01р) = S 1 * (1 + 0,01р) = S 0 (1 + ????р) 2 = S 0 (1 + ?) 2 .

В конце третьего этапа S 3 = S 2 + S 2 (0,01р) = S 2 * (1 +0,01р) = S 0 (1 +0,01р) 2 *(1 +0,01р)=S 0 (1 +0,01р) 3 = S 0 (1 + a ) 3 .

Тогда для сложных процентов сумма по годам равна:

S n = S 0 (1 + 0,01р) n или S n = S 0 (1 + a ) n (2)

Пример 1.

В банке открыт срочный депозит на сумму 50 тыс. руб. по 12% на 3 года. Рассчитать накопленную сумму если проценты:

а) простые; б) сложные.

Решение 1.

По формуле простых процентов

Sn=(1+3*0.12)*50 000 = 68000 руб. (отв. 68000 руб.)

По формуле простых процентов

Sn=(1+0.12) 3 *50 000 = 70246 руб. (отв. 70246 руб.)

Формула сложных процентов связывает четыре величины: начальный вклад, накопленную сумму (будущую стоимость вклада), годовую процентную ставку и время в годах. Поэтому, зная три величины, всегда можно найти четвертую:

S n = S 0 * (1+0,01р) n

Для определения количество процентов р необходимо:

р = 100 * ((S n / S 0 ) 1/n – 1) (2.1)

Операция нахождения первоначального вклада S 0 , если известно что через n лет он должен составить сумму S n , называется дисконтированием:

S 0 = S n * (1 + 0,01р) –n (2.2)

Сколько лет вклад S 0 должен пролежать в банке под р % годовых, чтобы достигнуть величины S n .

n = (lnS n – lnS 0 ) / (ln(1 + 0,01р) (2.3)

В банковской практике проценты могут начисляться чаще чем 1 раз в год. При этом банковская ставка обычно устанавливается в пересчете на год. Формула сложных процентов будет иметь вид:

S n = (1 + ?/t) n t S 0 (3)

где t – число реинвестиций процентов в году.

Пример 2.

В банке открыт срочный депозит на сумму 50 тыс. руб. по 12% на 3 года. Рассчитать начисленную сумму если проценты начисляются ежеквартально.

Решение 2.

n = 3

t = 4 (в году – 4 квартала)

По формуле сложных процентов

S 3 = (1+0.12/4) 3*4 *50000 = 1.03 12 *50000 = 71288 руб. Отв. 71288 руб.

Как следует из примеров 1 и 2, накопленная сумма будет возрастать тем быстрее, чем чаще начисляются проценты.

Приведем обобщение формулы (2), когда прирост величины S на каждом этапе свой. Пусть S о , первоначальное значение величины S, в конце первого этапа испытывает изменение на р 1 %, в конце второго на р 2 %, а в конце третьего этапа на р 3 % и т.д. В конце n-го этапа значение величины S определяется формулой

S n = S 0 (1 + 0,01р 1 )(1 + 0,01р 2 )...(1 + 0,01р n ) (4)

Пример 3.

Торговая база закупила партию товара у изготовителя и поставила ее в магазин по оптовой цене, которая на 30% больше цены изготовителя. Магазин установил розничную цену на товар 20% выше оптовой. При распродаже магазин снизил эту цену на 10%. На сколько рублей больше заплатил покупатель по сравнению с ценой изготовителя, если на распродаже он приобрел товар за 140 руб. 40 коп.

Решение 3.

Пусть первоначальная цена составляет S руб., тогда по формуле (4) имеем:

S 0 (1 + 0,01*30)(1 + 0,01*20)***(1 – 0,01*10) = 140,4

S 0 *1,3*1,2*0,9 = S 0 *1,404 = 140,4

S 0 = 140,4: 1,404 = 100 (руб.)

Находим разность последней и первоначальной цены

140,4 – 100 = 40,4 Отв. 40,4 руб.

Примеры задач с решениями

Вариант 1

Задача 1. Владелец автозаправки повысил цену на бензин на 10%. Заметив, что количество клиентов резко сократилось, он понизил цену на 10 %. Как после этого изменилась начальная цена на бензин? (повысилась или понизилась и на сколько % -ов?)

Решение : Пусть S 0 – начальная цена, S 2 – конечная цена, х - искомое число процентов изменения, где х = (1 - S 2 /S 0 )*100% (*)

Тогда по формуле S n = S 0 (1 + 0,01р 1 )(1 + 0,01р 2 )***(1 + 0,01р n ) (4), получим

S 2 = S 0 (1 + 0,01*10 )(1 - 0,01*10) = S 0 *1,1*0,9 = 0,99*S 0.

S 2 = 0,99*S 0; 0,99 = 99%, значение S 2 составляет 99% первоначальной стоимости, значит ниже на 100% - 99% = 1%.

Или по формуле (*) получаем: х = (1 – 0,99 )*100% = 1%.

Ответ: понизилась на 1%.

Задача 2 . В течении года предприятие дважды увеличивало выпуск продукции на одно и то же число процентов. Найдите это число, если известно, что в начале года предприятие ежемесячно выпускало 600 изделий, а в конце года стал выпускать ежемесячно 726 изделий.

Решение : Пусть S 0 – начальная цена, S 2 – конечная цена, р – постоянное количество процентов.

По формуле (2.1) получаем: р = 100 * ((726 / 600 ) 1/2 – 1) = 10%.

Ответ: 10%

Задача 3. Цена на компьютерную технику были повышены на 44%. После этого в результате двух последовательных одинаковых процентных снижений цена на компьютеры оказалась на 19% меньше первоначальной. На сколько процентов каждый раз понижали цену?

Решение: По формуле (4), составляем уравнение

S 3 = S 0 (1 + 0,01*44)(1 - 0,01р )(1 - 0,01р) = S 0 *1,44*(1 - 0,01р ) 2 = S 0 * (1-0,01*19). Решая уравнение, получаем 2 корня: 175 и 25, где 175 не подходит условию задачи. Поэтому р = 25%.

Ответ: 25%

Задача 4. Для определения оптимального режима повышения цен фирма решила с 1 января повышать цену на один и тот же товар в двух магазинах двумя способами. В одном магазине – в начале каждого месяца (начиная с февраля) на 2%, в другом – через каждые два месяца, в начале третьего (начиная с марта) на одно и то же число процентов, причем такое, чтобы через полгода (1 июля) цены снова стали одинаковыми. На сколько процентов надо повышать цену товара через каждые два месяца, во втором магазине?

Решение : Пусть S 0 – начальная цена, р – постоянное количество процентов.

Тогда через 6 месяцев (после шести повышений на 2%) в первом магазине цена на товар станет равна S 0 (1 + 0,01*2) 6 , а во втором магазине (после трех повышений на р%) цена товара будет равна S 0 (1 + 0,01р) 3 . Получаем уравнение S 0 (1 + 0,01*2) 6 = S 0 (1 + 0,01р) 3 . Решая его, получаем

(1 + 0,01*2) 2 = (1 + 0,01р); 1,02 2 = (1 + 0,01р); р = 4,04

Ответ: 4,04%

Вариант 2.

Задача 1. Автомобиль ехал по магистрали с определенной скоростью. Выезжая на проселочную дорогу, он снизил скорость на 20%, а затем на участке крутого подъема он уменьшил скорость на 30%. На сколько процентов эта новая скорость ниже первоначальной?

Решение : Пусть V 0 – начальная скорость, V – новая скорость, которая получается после двух разных изменений, р – искомое количество процента.

Тогда по формуле (4), составляем уравнение V 0 (1 - 0,01*20)(1 - 0,01*30) = V 0 (1 - 0,01р). Решая его получаем V 0 *0,8*0,7 = V 0 (1 - 0,01р); р = 44

Ответ: 44%

Задача 2. Предположим, что в комнатной температуре за день вода испаряется на 3%. Сколько литров воды останется через 2 дня от 100 литров? А сколько воды испарится?

Решение : n=2; р=3%; S 0 = 100л. Тогда по формуле (2), получаем

S 2 = S 0 (1 - 0,01р) 2 = 100*(1-0,01*3) 2 = 100*0,97 2 = 94,09; S 0 – S 2 = 100 - 94,09 = 5,91

Ответ: 94,09л.; 5,91л.

Задача 3 . Вклад, положенный в банк 2 года назад, достиг 11449 рублей. Каков был первоначальный вклад при 7% годовых? Какова прибыль?

Решение : n=2; р=7%; S 2 = 11449; S 0 = ?

В формулу (2.2) S 0 = S n * (1 + 0,01р) –n подставляем данные значения, получаем:

S 0 = 11449* (1 + 0,01*7) –2 = 11449/ (1,07) 2 =11449/ 1,1449 = 10000.

11449 – 10000 = 1449

Ответ: 10000 руб.; 1449 руб.

Задача 4. Сберкасса начисляет ежегодно 3% от суммы вклада. Через сколько лет сумма удвоится?

Решение: р=3%; S 0 – начальная сумма; n=?

Составим уравнение: 2*S 0 = S 0 (1 + 0,01р) n ; 2*S 0 = S 0 (1 + 0,03) n ; 2 = 1,03 n n=log 1,03 2; n ?23.

Самостоятельная работа

1-уровень. После реконструкции завод увеличил выпуск продукции на 10%, а после замены оборудования еще на 30%. На сколько процентов увеличился первоначальный выпуск продукции?

(Ответ: на 43%)

2-уровень. Число 50 трижды увеличили на одно и то же число процентов, а потом уменьшили на это же число процентов. В результате получили число 69,12. На сколько процентов увеличивали, а потом уменьшали данное число?

(Ответ: на 20%)

3-уровень. Банк начисляет ежегодно 7% от суммы вклада. Найдите наименьшее число лет, за которое вклад вырастает более чем на 20%.

(Ответ: 3 года)

№1. Сберегательный банк начисляет по вкладам ежегодно 5,5% годовых. Вкладчик внес в банк 150 тысяч рублей. Какой станет сумма вклада через 2 года?

(Ответ: 166953,75 руб.)

№3. Банк предлагает два варианта депозита

1) под 120% с начислением процентов в конце года;

2) под 100% с начислением процентов в конце каждого квартала.

Определить более выгодный вариант размещения депозитов на один год.

Решение.

Более выгодным считается тот вариант, при котором наращенная за год сумма будет больше. Для оценки вариантов начальную сумму примем равную 100 руб.

По первому варианту накопленная сумма будет равна (1+1,2)*100 руб. = 220 руб.

По второму варианту проценты начисляются ежеквартально. По окончании первого квартала накопленная сумма равна (1+1,0/4)*100 руб. = 125 руб.

По окончании 2-го квартала (1+1,0/4) 2 *100 руб. = 156 руб.

За год накопленная сумма равна (1+1,0/4) 4 *100 руб. = 244 руб.

Как следует из расчетов второй вариант значительно выгоднее (244 > 220). Правда, только при условии применения сложных процентов.

Подборка прототипов задания №19 ЕГЭ по математике 2015 года профильного уровня.

19. 31 декабря 2012 года Екатерина взяла в банке 850000 рублей в кредит под 15% годовых. Схема выплаты кредита следующая: 31 декабря каждого следующего года банк начисляет проценты на оставшуюся сумму долга (то есть увеличивает долг на 15%), затем Екатерина переводит в банк определенную сумму ежегодного платежа. Какой должна быть сумма ежегодного платежа, чтобы Екатерина выплатила долг тремя равными ежегодными платежами?

19. Молодой семье на покупку квартиры банк выдает кредит под 20 % годовых.

Схема выплаты кредита следующая: ровно через год после выдачи кредита банк

начисляет проценты на оставшуюся сумму долга (то есть увеличивает долг на 20%),

затем эта семья в течение следующего года переводит в банк определенную

(фиксированную) сумму ежегодного платежа. Семья Ивановых планирует погашать

кредит равными платежами в течение 4 лет. Какую сумму может предоставить им

банк, если ежегодно Ивановы имеют возможность выплачивать по кредиту 810 000

рублей?

19. В 8-литровой колбе находится смесь азота и кислорода, содержащая 32% кислорода. Из колбы выпустили некоторое количество смеси и добавили столько же азота; затем снова выпустили такое же, как и в первый раз, количество новой смеси и добавили столько же азота. В итоге процентное содержание кислорода в смеси составило 12,5%. Сколько литров смеси выпускали каждый раз?

19. В банк был положен вклад под банковский процент 10%. Через год хозяин вклада снял со счета 2000 рублей, а еще через год снова внес 2000 рублей. Однако, вследствие этих действий через три года со времени первоначального вложения вклада он получил сумму меньше запланированной (если бы не было промежуточных операций со вкладом). На сколько рублей меньше запланированной суммы получил в итоге вкладчик?

19. В первый рабочий день месяца с заводского конвейера сошло некоторое число тракторов. Каждый следующий рабочий день их выпуск возрастал на 3 трактора ежедневно, и месячный план 55 тракторов был выполнен досрочно, причем за целое число дней. После этого ежедневно выпускалось 11 тракторов. Определите, сколько тракторов было выпущено в первый рабочий день, и на сколько процентов был перевыполнен месячный план, если известно, что в месяце было 26 рабочих дней, а плановая работа длилась не менее 3 и не более 10 дней.

19. 8 марта Леня Голубков взял в банке 53 680 рублей в кредит на 4 года под 20% годовых, чтобы купить своей жене Рите новую шубу. Схема выплаты кредита следующая: утром 8 марта следующего года банк начисляет проценты на оставшуюся сумму долга (то есть увеличивает долг на 20%), а вечером того же дня Леня переводит в банк определенную сумму ежегодного платежа (все четыре года эта сумма одинакова). Какую сумму сверх взятых 53 680 рублей должен будет выплатить банку Леня Голубков за эти четыре года?

19. Семён Кузнецов планировал вложить все свои сбережения на сберегательный счёт в банк «Навроде» под 500%, рассчитывая через год забрать А рублей. Однако крах банка «Навроде» изменил его планы, предотвратив необдуманный поступок. В результате часть денег г-н Кузнецов положил в банк «Первый Муниципальный», а остальные – в банку из-под макарон. Через год «Первый Муниципальный» повысил процент выплат в два с половиной раза, и г-н Кузнецов решил оставить вклад ещё на год. В итоге размер суммы, полученной в «Первом Муниципальном», составил А рублей. Определите, какой процент за первый год начислил банк «Первый Муниципальный», если в банку из-под макарон Семён «вложил» А рублей.

19. Банк планирует вложить на 1 год 30% имеющихся у него средств клиентов в акции золотодобывающего комбината, а остальные 70% – в строительство торгового комплекса. В зависимости от обстоятельств первый проект может принести банку прибыль в размере от 32% до 37% годовых, а второй проект – от 22% до 27% годовых. В конце года банк обязан вернуть деньги клиентам и выплатить им проценты по заранее установленной ставке, уровень которой должен находиться в пределах от 10% до 20% годовых. Определите, какую наименьшую и наибольшую чистую прибыль в процентах годовых от суммарных вложений в покупку акций и строительство торгового комплекса может при этом получить банк.


«Хороший учитель обязан понимать, что никакую задачу нельзя исчерпать до конца. Этот взгляд он должен прививать и своим ученикам».
Д. Пойа.

Введение.

Особое внимание я уделяю текстовым задачам на проценты, которые часто встречаются в практике вступительных экзаменов в экономические вузы, но недостаточно полно рассматриваются в школе. Умение выполнять процентные вычисления, − безусловно, одна из самых необходимых математических компетенций. Однако не только те, кто уже давно окончили школу, робеют при виде процентов. Даже на ЕГЭ решаемость задач на проценты не превышает 20 % . Это говорит о том, что такого типа задачи следует решать не только в младших классах, где изучается эта тема, но и на протяжении всех лет обучения в школе.

1. При решении задач на проценты используются основные формулы:

1% числа а равен а.

р% от числа а равно а.

Если известно, что некоторое число а составляет р% от х, то х можно найти из пропорции

а − р%

х − 100%,

откуда х= а.

Пусть имеются числа a, b, причем а

Число b больше числа а на100%.

Число а меньше числаbна100%.

2. Формула сложных процентов.

Если на вклад положена сумма а денежных единиц, банк начисляет р% годовых, то через n лет сумма на вкладе составит

a ден.ед.

3. Задачи на проценты.

Задача 1.

Умных людей на 45 % меньше, чем красивых, 36% умных обладают красивой внешностью. Каков процент умных людей среди красивых?

Решение: пусть х − количество красивых людей, тогдаколичество умных людей:

х − 0,45х = 0,55х.

Среди умных 36% составляют красивые люди, следовательно, количество умных и одновременно красивых людей:

0,36 ·0,55х= 0,198х.

Составим пропорцию:

Отсюда получим:

Ответ: 19,8%

Учащиеся с интересом решают текстовые задачи на проценты, которые ближе к реальной жизни. Особый «прикол» представляет собой подача задач не из задачника, а прямо с газетной полосы. Тут уж не возникает мыслей о ненужности математики. А «процентная журналистика» в связи с разразившимся экономическим кризисом на страницах газет буквально процветает.

Задача 2.

Цены на путевки уже подросли: например, туры во Францию − на 20%. Можно ли сказать, на сколько процентов раньше тур во Францию был дешевле?

Решение: пусть х − старая цена, а n − новая цена.

1) Составим первую пропорцию:

Получим n=1,2х.

2) Составим вторую пропорцию:

х − (100-а%)

(100-а) 1,2х = 100х

Решив уравнение, получим: а ≈17%.

Ответ: 17%.

4. Использование формулы сложных процентов.

Задача 3.

На банковский счет было положено 10 тыс. руб. После того, как деньги пролежали один год, со счета сняли 1 тыс. руб. Еще через год на счету стало 11 тыс. руб. Определите, какой процент годовых начисляет банк.

Решение: пусть банк начисляет р% годовых.

1) Сумма в 10000 рублей, положенная на банковский под р% годовых, через год возрастет до величины

2) Когда со счета снимут 1000 руб., там останется 9000+100р руб.

3) Еще через год последняя величина за счет начисления процентов возрастет до величины

По условию эта величина равна 11000:

Решив это уравнение получим: =10, =−200 − отрицательный корень не подходит.

Ответ: 10%

Задача 4. (ЕГЭ-2015)

Банк под определенный процент принял некоторую сумму. Через год четверть накопленной суммы была снята со счета. Но банк увеличил процент годовых на 40% . К концу следующего года накоплена сумма в 1,44 раза превысила первоначальный вклад. Каков процент новых годовых?

Решение: от суммы вклада ситуация не изменится. Положим в банк 4 рубля (делится на 4 ). Через год сумма на счету увеличится ровно в p раз и станет равной (4p) рублей.

Поделим её на 4 части, унесём домой (p) рублей, оставим в банке (3p) рублей.

Известно, что к концу следующего года в банке оказалось 4·1,44 = 5,76 рублей. Итак, число (3p) превратилось в число (5,76) . Во сколько раз оно увеличилось?

Таким образом, найден второй повышающий коэффициент k банка.

Интересно, что произведение обоих коэффициентов равно 1,92 :

Из условия следует, что второй коэффициент на 0,4 больше первого.

Избавившись от запятых, сделаем замену t = 10р :

Из такого уравнения получить 12 совсем просто.

Итак, p = 1,2, k = 1,6.

В 1,2 раза увеличилась сумма вклада первый раз, в 1,6 раз - во второй раз.

Было 100%, стало 160%. Новый процент годовых равен 160%-100% = 60%.

Ответ: 60%.

Задача 5. (ЕГЭ-2015)

В банк помещена сумма 3900 тысяч рублей под 50% годовых. В конце каждого из первых четырех лет хранения после вычисления процентов вкладчик дополнительно вносил на счет одну и ту же фиксированную сумму. К концу пятого года после начисления процентов оказалось, что

размер вклада увеличился по сравнению с первоначальным на 725% .

Какую сумму вкладчик ежегодно добавлял к вкладу?

Решение: пусть х рублей – вкладчик ежегодно добавлял ко вкладу.

50% годовых означает, что каждый год сумма на счету вкладчика увеличивается в 1,5 раза. Если вкладчик ничего бы не добавлял к первоначальной сумме, то через год на его счету было бы 3900·1,5 , через два года - 3900·1,52 и так далее.

Посчитаем, какой доход принесли все четыре добавки.

х∙1,5 4 + х∙1,5 3 + х∙1,5 2 +х∙1,5

Для этого вынесем х за скобку и вычислим сумму геометрической прогрессии, в которой b = 1,5 и q = 1,5 .

Известно, что размер вклада увеличился по сравнению с первоначальным на 725% .



Понравилась статья? Поделитесь с друзьями!