Участие органелл в образовании включений. Специальные органоиды и включения

Органоиды - это специализированные участки цитоплазмы клетки, имеющие определенную структуру и выполняющие определенные функции в клетке. Их подразделяют на органоиды общего назначения, которые имеются в большинстве клеток (митохондрии, комплекс Гольджи, эндоплазматическая сеть, рибосомы, клеточный центр, лизосомы, пластиды и вакуоли), и органоиды специального назначения, которые имеются только в специализированных клетках (миофибриллы - в мышечных клетках, жгутики, реснички, пульсирующие вакуоли - в клетках простейших). Большинство органоидов имеет мембранное строение. Мембраны отсутствую в структуре рибосом и клеточного центра. Клетка покрыта мембраной, состоящей из нескольких слоёв молекул,

обеспечивающей избирательную проницаемость веществ. В цитоплазме

расположены мельчайшие структуры – органоиды. К органоидам клетки

относятся: эндоплазматическая сеть, рибосомы, митохондрии, лизосомы,

комплекс Гольджи, клеточный центр.

Цитоплазма содержит ряд мельчайших структур клетки – органоидов,

которые выполняют различные функции. Органоиды обеспечивают

жизнедеятельность клетки.

Эндоплазматическая сеть.

Название этого органоида отражает место расположения его в

центральной части цитоплазмы (греч. «эндон» - внутри). ЭПС представляет

собой очень разветвлённую систему канальцев, трубочек, пузырьков, цистерн

разной величины и формы, отграниченных мембранами от цитоплазмы клетки.

ЭПС бывает двух видов: гранулярная, состоящая из канальцев и цистерн,

поверхность которых усеяна зёрнышками (гранулами) и агранулярная, т.е.

гладкая (без гран). Граны в эндоплазматической сети ни что иное, как

рибосомы. Интересно, что в клетках зародышей животных наблюдается в

основном гранулярная ЭПС, а у взрослых форм – агранулярная. Зная, что

рибосомы в цитоплазме служат местом синтеза белка, можно предположить, что

гранулярная ЭПС преобладает в клетках, активно синтезирующих белок.

Считают, что агранулярная сеть в большей степени предоставлена в тех

клетках, где идёт активный синтез липидов (жиров и жироподобных веществ).

Оба вида эндоплазматической сети не только участвуют в синтезе

органических веществ, но и накапливают и транспортируют их к местам

назначения, регулируют обмен веществ между клеткой и окружающей её средой.

Рибосомы.

Рибосомы – не мембранные клеточные органоиды, состоящие из

рибонуклеиновой кислоты и белка. Их внутреннее строение во многом ещё

остаётся загадкой. В электронном микроскопе они имеют вид округлых или

грибовидных гранул.

Каждая рибосомы разделена желобком на большую и маленькую части

(субъединицы). Часто несколько рибосом объединяются нитью специальной

рибонуклеиновой кислоты (РНК), называемой информационной (и-РНК). Рибосомы

осуществляют уникальную функцию синтеза белковых молекул из аминокислот.

Комплекс Гольджи.

Продукты биосинтеза поступают в просветы полостей и канальцев ЭПС,

где они концентрируются в специальный аппарат – комплекс Гольджи,

расположенный вблизи ядра. Комплекс Гольджи участвует в транспорте

продуктов биосинтеза к поверхности клетки и в выведении их из клетки, в

формировании лизосом и т.д.

Комплекс Гольджи был открыт итальянским цитологом Камилио Гольджи

и в 1898 году был назван «комплексом (аппаратом) Гольджи».

Белки, выработанные в рибосомах, поступают в комплекс Гольджи, а когда они

требуются другому органоиду, то часть комплекса Гольджи отделяется, и белок

доставляется в требуемое место.

Лизосомы.

Лизосомы (от греч. «лизео» – растворяю и «сома» - тело) - это

органоиды клетки овальной формы, окружённые однослойной мембраной. В них

находится набор ферментов, которые разрушают белки, углеводы, липиды. В

случае повреждения лизосомной мембраны ферменты начинают расщеплять и

разрушать внутреннее содержимое клетки, и она погибает.

Клеточный центр.

Клеточный центр можно наблюдать в клетках, способных делиться. Он

состоит из двух палочковидных телец – центриолей. Находясь около ядра и

комплекса Гольджи, клеточный центр участвует в процессе деления клетки, в

образовании веретена деления.

Энергетические органоиды.

Митохондрии (греч. «митос» - нить, «хондрион» - гранула) называют

энергетическими станциями клетки. Такое название обуславливается тем, что

именно в митохондриях происходит извлечение энергии, заключённой в

питательных веществах. Форма митохондрий изменчива, но чаще всего они имеют

вид нитей или гранул. Размеры и число их также непостоянны и зависят от

функциональной активности клетки.

На электронных микрофотографиях видно, что митохондрии состоят из

двух мембран: наружной и внутренней. Внутренняя мембрана образует выросты,

называемые кристами, которые сплошь устланы ферментами. Наличие крист

увеличивает общую поверхность митохондрий, что важно для активной

деятельности ферментов.

В митохондриях обнаружены свои специфические ДНК и рибосомы. В связи

с этим они самостоятельно размножаются при делении клетки.

Хлоропласты – по форме напоминают диск или шар с двойной оболочкой –

наружной и внутренней. Внутри хлоропласта также имеются ДНК, рибосомы и

особые мембранные структуры – граны, связанные между собой и внутренней

мембраной хлоропласта. В мембранах гран и находится хлорофилл. Благодаря

хлорофиллу в хлоропластах происходит превращение энергии солнечного света в

химическую энергию АТФ (аденозинтрифосфат). Энергия АТФ используется в

хлоропластах для синтеза углеводов из углекислого газа и воды.

Клеточные включения - это непостоянные структуры клетки. К ним относятся капли и зерна белков, углеводов и жиров, а так же кристаллические включения (органические кристаллы, которые могут образовывать в клетках белки, вирусы, соли щавелевой кислоты и т.д. и неорганические кристаллы, образованные солями кальция). В отличие от органоидов эти включения не имеют мембран или элементов циоскелета и периодически синтезируются и расходуются. Капли жира используются как запасное вещество в связи с его высокой энергоемкостью. Зерна углеводов (полисахаридов; в виде крахмала у растений и в виде гликогена у животных и грибов - как источник энергии для образования АТФ; зерна белка - как источник строительного материала, соли кальция - для обеспечения процесса возбуждения, обмена веществ и тд)

Включения - это непостоянные (необязательные) структурные элементы цитоплазмы.

Они заметны при световой микроскопии при общих методах окрашивания, иногда при малом и среднем увеличении, а часть из них можно выявить лишь специальными (гистохимическими, иммунологическими) методами или при электронной микроскопии. В зависимости от активности клетки, гормональных и метаболических влияний, особенностей дифференцировки, возраста, действия разнообразных факторов внешней среды в клетках можно обнаружить большое разнообразие включений по составу и количеству.

Включения указывают на особенности метаболизма, дифференцировки, функциональной активности клеток. Много включений появляется при дистрофических нарушениях в клетке, что сопровождается изменениями в ее жизнедеятельности вплоть до гибели. Иногда содержимое включений не только показатель функции, но основание для названия клетки: пигментные клетки - меланоциты; эозинофильные, базофильные и нейтрофильные гранулоциты крови и др.

При всем многообразии включений их можно объединить по их функциональному назначению.

Секреторные включения . Представляют собой секреторные гранулы, которые выделяются из клетки путем экзоцитоза. По химическому составу их подразделяют на белковые (серозные), жировые (липидные, или липосомы), слизистые (содержат мукополисахариды) и др. Количество включений зависит от функциональной активности клетки, стадии секреторного цикла, степени зрелости клетки. Особенно много гранул в дифференцированных, функционально активных клетках в фазу накопления секреторного цикла.

Секреторные включения образуются в комплексе Гольджи. Перед этим они проходят стадию синтеза в гр. или глад. ЭПС, реже это происходит в других структурах.

Секреторные белковые включения разнообразны по своим размерам, распределению в цитоплазме, электронной плотности. Они окружены клеточной мембраной. Полипептидные цепочки содержимого секреторных включений синтезируются в гр. ЭПС, а созревают в комплексе Гольджи. В связи с этим у клеток, синтезирующих секреторные белки, хорошо развиты данные органеллы, крупное ядро и ядрышки. Однако если клетка прекращает синтез включений, их накопление сопровождается инволюцией гр. ЭПС и комплекса Гольджи.

В экзокринных железах секреторные включения преобладают в апикальной части клетки, предполагая выведение секрета во внешнюю среду. Секреторные включения эндокринных желез концентрируются вблизи кровеносных сосудов или равномерно распределены в цитоплазме.

Слизистые секреторные включения находятся в основном в клетках слизистых секреторных желез. Примером одноклеточных секреторных желез служат бокаловидные клетки тонкой кишки. При световой микроскопии с помощью ШИК-реакции слизь хорошо видна в крупных вакуолях.

Секреторные включения, содержащие жиры (липосомы), имеются в цитоплазме сальных желез и эндокринных клеток, синтезирующих стероидные гормоны (производные холестерина). Стероидные гормоны — это мужские и женские половые гормоны, гормоны стресса (глюкокортикоиды) и гормон, контролирующий содержание ионов натрия в организме (альдостерон). В этих клетках хорошо развита глад, и гр. ЭПС, комплекс Гольджи, много митохондрий. Митохондрии эндокриноцитов участвуют в синтезе стероидных гормонов и имеют специфические особенности строения. Это крупные митохондрии с мультивезикулярными (трубчатыми) кристами.

Также выделяют секреторные включения, содержащие производные аминокислот и других аминов: норадреналин и адреналин, серотонин (мелатонин) и др.

Разнообразен состав секреторных включений в тучной клетке (лаброците) и базофильном гранулоците (базофиле). Эти клетки содержат многочисленные крупные секреторные включения, окрашивающиеся основными красителями и нередко изменяющие их оттенок. Такая способность изменять цвет красителя называется метахромазией. При электронной микроскопии видно, что в лаброцитах и гранулоцитах много крупных гранул округлой формы, различной электронной плотности.

Количество включений зависит от стадии секреторного цикла. Максимально их количество на стадии накопления секрета, а на других стадиях они могут отсутствовать или их концентрация в клетке минимальна.

Трофические включения . Это структуры, в которых клетки и организм в целом запасают питательные вещества, необходимые в условиях энергетического дефицита, недостатка структурных молекул (при голодании). Примером трофических включений служат гранулы с гликогеном (печеночные клетки, мышечные клетки и симпласты), липидные включения в жировых и других клетках.

Трофические включения гликогена представляют собой мелкие, неправильной формы гранулы, которые можно обнаружить при электронной микроскопии, а также при световой микроскопии, используя специальные методы окрашивания. Гликоген при расщеплении превращается в глюкозу, которую используют клетка и организм в целом в условиях ее дефицита.

Липидные включения в норме накапливаются в жировой ткани (белом или буром жире). В липоците белого жира включения сливаются в гигантскую каплю, которая занимает всю центральную часть клетки. Такие клетки приобретают округлую форму, большие размеры. Ядра уплощены и смещены на периферию, органелл немного. В липоцитах бурого жира включения не сливаются в одну каплю, ядра лежат центрально, много митохондрий, развиты комплекс Гольджи и глад. ЭПС.

При переходе на жировой обмен разрушение липидов в жировых тканях поддерживает энергетические потребности организма. Липидные включения легче разрушаются в буром жире, чем в белом. Избыточное накопление липидов в жировой ткани называют ожирением.

Трофические липидные капли могут накапливаться вне жировых клеток: в гепатоцитах, скелетных и сердечных миоцитах, канальцевом аппарате почек и др. Большое накопление таких включений, которое носит обратимый характер и не нарушает функцию клетки, называется жировой инфильтрацией. В случае, когда такое накопление ведет к повреждению клетки, это явление называют жировой дистрофией. Жировая дистрофия стенки артерии - атеросклероз.

Пигментные включения . Этот тип включений придает окраску клеткам; обеспечивает защитную функцию, например, гранулы меланина в пигментных клетках кожи предохраняют от солнечных ожогов. Пигментные включения могут состоять из продуктов жизнедеятельности клетки: гранулы с липофусцином в нейронах, гемосидерин в макрофагах.

Пигментные клетки - меланоциты у низкоорганизованных позвоночных встречаются во многих органах, придавая животным разнообразную окраску. Форма клеток также различная, но в основном многоотростчатая.

У млекопитающих и человека меланоциты встречаются в основном в эпителии. В многослойном эпителии они лежат в базальном слое, а их отростки направляются к шиповатому слою. Пигмент включений меланоцитов - меланин является производным аминокислоты тирозина. Меланин накапливается в многочисленных включениях, располагающихся в теле и отростках клетки. Часть включений выделяется и захватывается соседними клетками. Если клетки не способны вырабатывать меланин, то это ведет к альбинизму.

Экскреторные включения . Это включения веществ, захватываемых клеткой из внутренней среды и выводимых из организма: токсические вещества, продукты метаболизма, инородные структуры. Нередко экскреторные включения встречаются в эпителии канальцев почки, в первую очередь в проксимальных. Проксимальные канальцы выводят ненужные организму вещества, которые не могут быть отфильтрованы через клубочковый аппарат.

Случайные включения . Характерны для фагоцитов, захватывающих чужеродные для организма структуры (частички пыли, бактерии и вирусы), плохо перевариваемые и неперевариваемые макромолекулярные органические и неорганические комплексы. Наиболее часто подобные включения обнаруживают в специализированных клетках, осуществляющих фагоцитоз, - нейтрофильных лейкоцитах и макрофагах.

Минеральные включения . Преимущественно это нерастворимые соли кальция (карбонаты, фосфаты). Они образуются при пониженной активности органа, гипотрофии и атрофии. Нередко минеральные включения (соли кальция) обнаруживают в матриксе митохондрий, это связано с высоким содержанием этого иона и изменением метаболизма в органелле.

Включения при патологии , могут накапливаться в избыточном количестве и вести к нарушению структуры и функции клетки (дистрофии). Дистрофия обусловлена болезнями накопления, связанными с недостаточной активностью лизосом и/или избыточным синтезом каких-либо веществ (жировая дистрофия печени, дистрофия нейронов, при накоплении большого количества гранул с липофусцином, гликогеноз печени и мышц и др.). Накапливаться могут как обычные для клетки вещества (гликоген в гепатоцитах), так и вещества, в норме в клетке не встречающиеся (амилоид).

Большинство включений отделено от матрикса цитоплазмы мембраной (секреторные включения, жировые трофические включения и др.). Однако есть и включения, которые соприкасаются с содержимым гиалоплазмы (гликоген, некоторые минеральные включения).

Происхождение включений разнообразно и зависит от их содержимого. Например, основная масса секреторных и трофических включений формируется в комплексе Гольджи или в ЭПС, а случайные включения, гранулы гемосидерина - продукты неполного переваривания и фагоцитоза.

Утилизация и удаление включений из клетки зависят от природы самого включения. Секреторные включения выводятся из клетки путем экзоцитоза; гликоген и липиды расщепляются ферментами клетки и во внеклеточную среду выводятся в виде продуктов метаболизма (глюкозы, глицерина, жирных кислот); меланин выделяет пигментная клетка, затем его захватывает и разрушает клетка Лангерганса.

Таким образом, включения представляют собой разные по происхождению, функциональному назначению и морфологии структуры. Их число, вид могут быть показателями особенностей дифференцировки и функционального состояния клеток.

Цитоплазма (cytoplasma) представляет собой сложную коллоидную систему, состоящую из гиалоплазмы, мембранных и немембранных органелл и включений.

Гиалоплазма (от греч. hyaline - прозрачный) представляет собой сложную коллоидую систему состоящую из различных биополимеров (белки, нуклеиновые кислоты, полисахариды), которая способна переходить из золеобразного (жидкого) состояния в гель и обратно.

¨Гиалоплазма состоит из воды, органических и неорганических соединений, растворенных в ней и цитоматрикса, представленного трабекулярной сеткой волокон белковой природы, толщиной 2-3 нм.

¨Функция гиалоплазмы заключается в том, что эта среда объединяет все клеточные структуры и обеспечивает химическое взаимодействие их друг с другом.

Через гиалоплазму осуществляется большая часть внутриклеточных транспортных процессов: перенос аминокислот, жирных кислот, нуклеотидов, сахаров. В гиалоплазме идет постоянный поток ионов к плазматической мембране и от нее, к митохондриям, ядру и вакуолям. Гиалоплазма составляет около 50% от всего объема цитоплазмы.

Органеллы и включения. Органеллы - постоянные и обязательные для всех клеток микроструктуры, обеспечивающие выполнение жизненно важных функций клеток.

В зависимости от размеров органеллы разделяются на:

1) микроскопические - видимые под световым микроскопом;

    субмикроскопические - различимые при помощи электронного микроскопа.

По наличии мембраны в составе органелл различают:

1) мембранные;

    немембранные.

В зависимости от назначения все органеллы делятся на:

Мембранные органеллы

Митохондрии

Митохондрии - микроскопические мембранные органеллы общего назначения.

¨Размеры - толщина 0,5мкм, длина от 1 до 10мкм.

¨Форма - овальная, вытянутая, неправильная.

¨Строение - митохондрия ограничена двумя мембранами толщиной около 7нм:

1) Наружной гладкой митохондриальной мембраной (membrana mitochondrialis externa), которая отграничивает митохондрию от гиалоплазмы. Она имеет равные контуры, замкнута таким образом, что представляет мешок.

    Внутренней митохондриальной мембраной (memrana mitochondrialis interna), которая образует выросты, складки (кристы) внутрь митохондрии и ограничивает внутреннее содержание митохондрии - матрикс. Внутренняя часть митохондрии заполнена электронно-плотным веществом, которое носит название матрикс.

Матрикс имеет тонкозернистое строение и содержит тонкие нити толщиной 2-3 нм и гранулы размером около 15-20 нм. Нити представляют собой молекулы ДНК, а мелкие гранулы - митохондриальные рибосомы.

¨Функции митохондрий

1. Синтез и накопление энергии в виде АТФ, происходит в результате процессов окисления органических субстратов и фосфорилирования АТФ. Эти реакции протекают при участии ферментов цикла трикарбоновых кислот, локализованных в матриксе. Мембраны крист имеют системы дальнейшего транспорта электронов и сопряженного с ним окислительного фосфорилирования (фосфорилирование АДФ в АТФ).

2. Синтез белка. Митохондрии в своем матриксе имеют автономную систему синтеза белка. Это единственные органеллы, которые имеют молекулы собственной ДНК, свободной от гистоновых белков. В матриксе митохондрий также происходит образование рибосом, которые синтезируют ряд белков, некодируемых ядром и используемых для по строения собственных ферментных систем.

3. Регуляция водного обмена.

Лизосомы

Лизосомы (lisosomae) - субмикроскопические мембранные органеллы общего назначения.

¨Размеры - 0,2-0,4 мкм

¨Форма - овальная, мелкая, шаровидная.

¨Строение - лизосомы имеют в своем составе протеолитические ферменты (известно более 60), которые способны расщеплять различные биополимеры. Ферменты располагаются замкнутом мембранном мешочке, который предупреждает их попадание в гиалоплазму.

Среди лизосом различают четыре типа:

    Первичные лизосомы;

    Вторичные (гетерофагосомы, фаголизосомы);

    Аутофагосомы

    Остаточные тельца.

Первичные лизосомы - это мелкие мембранные пузырьки размером 0,2-0,5 мкм, заполненные неструктурированным веществом, содержащим гидролитические ферменты в неактивном состоянии (маркерный - кислая фосфотаза).

Вторичные лизосомы (гетерофагосомы) или внутриклеточные пищеварительные вакуоли, которые формируются при слиянии первичных лизосом с фагоцитарными вакуолями. Ферменты первичной лизосомы начинают контактировать с биополимерами, и расщепляют их до мономеров. Последние транспортируются через мембрану в гиалоплазму, где происходит их реутилизация, то есть включение в различные обменные процессы.

Аутофагосомы (аутолизосомы) – постоянно встречаются в клетках простейших, растений и животных. По совей морфологии их относят к вторичным лизосомам, но с тем различием, что в составе этих вакуолей встречаются фрагменты или даже целые цитоплазматические структуры, такие, как митохондрии, пластиды, рибосомы, гранулы гликогена.

Остаточные тельца (телолизосома, corpusculum residuale) - представляют собой окруженные биологической мембраной нерасщепленные остатки, содержат небольшое количество гидролитических ферментов, в них происходит уплотнение содержимого, его перестройка. Часто в остаточных тельцах происходит вторичная структуризация не переваренных липидов и последние образуют слоистые структуры. Там же наблюдается отложение пигментных веществ - пигмент старения, содержащий липофусцин.

¨Функция - переваривание биогенных макромолекул, модификация продуктов синтезируемых клеткой с помощью гидролаз.

Органоиды клетки, они же органеллы, представляют собой специализированные структуры собственно клетки, отвечающие за различные важные и жизненно необходимые функции. Почему же все-таки «органоиды»? Просто тут эти компоненты клетки сопоставляются с органами многоклеточного организма.

Какие органоиды входят в состав клетки

Также порой под органоидами понимается исключительно лишь постоянные структуры клетки, которые находятся в ее . По этой же причине ядро клетки и ее ядрышко не называют органоидами, равно как и не являются органоидами , реснички и жгутики. А вот к органоидам, входящим в состав клетки относятся: , комплекс , эндоплазматическая сеть, рибосомы, микротрубочки, микрофиламенты, лизосомы. По сути это и есть основные органоиды клетки.

Если речь идет о животных клетках, то в число их органоидов также входят центриоли и микрофибриллы. А вот в число органоидов растительной клетки еще входят только свойственные растениям пластиды. В целом состав органоидов в клетках может существенно отличатся в зависимости от вида самой клетки.

Рисунок строения клетки, включая ее органоиды.

Двумембраные органоиды клетки

Также в биологии существует такое явление как двумембраные органоиды клетки, к ним относятся митохондрии и пластиды. Ниже мы опишем свойственные им функции, впрочем, как всех других основных органоидов.

Функции органоидов клетки

А теперь коротко опишем основные функции органоидов животной клетки. Итак:

  • Плазматическая мембрана – тонкая пленка вокруг клетки состоящая из липидов и белков. Очень важный органоид, который обеспечивает транспортировку в клетку воды, минеральных и органических веществ, удаляет вредные продукты жизнедеятельности и защищает клетку.
  • Цитоплазма – внутренняя полужидкая среда клетки. Обеспечивает связь между ядром и органоидами.
  • Эндоплазматическая сеть – она же сеть каналов в цитоплазме. Принимает активное участие в синтезе белков, углеводов и липидов, занимается транспортировкой полезных веществ.
  • Митохондрии – органоиды, в которых окисляются органические вещества и синтезируются молекулы АТФ с участием ферментов. По сути митохондрии это органоид клетки, синтезирующий энергию.
  • Пластиды (хлоропласты, лейкопласты, хромопласты) – как мы упоминали выше, встречаются исключительно у растительных клеток, в целом их наличие является главной особенностью растительного организма. Играют очень важную функцию, например, хлоропласты, содержащие зеленый пигмент хлорофилл, у растения отвечают за явление .
  • Комплекс Гольджи — система полостей, отграниченных от цитоплазмы мембраной. Осуществляют синтез жиров и углеводов на мембране.
  • Лизосомы - тельца, отделенные от цитоплазмы мембраной. Имеющиеся в них особые ферменты ускоряют реакцию расщепления сложных молекул. Также лизосома является органоидом, обеспечивающим сборку белка в клетках.
  • - полости в цитоплазме, заполненные клеточным соком, место накопления запасных питательных веществ; они регулируют содержание воды в клетке.

В целом все органоиды являются важными, ведь они регулируют жизнедеятельность клетки.

Основные органоиды клетки, видео

И в завершение тематическое видео про органоиды клетки.

Помимо органелл или органоидов клетка содержит непостоянные клеточные включения. Обычно содержатся в цитоплазме, но могут встречаться в митохондриях, в ядре и других органоидах.

Виды и формы

Включения - необязательные компоненты растительной или животной клетки, накапливающиеся в процессе жизнедеятельности и метаболизма. Включения не стоит путать с органеллами. В отличие от органелл включения то возникают, то исчезают в структуре клетки. Некоторые из них небольшие, едва заметные, другие превышают в размерах органеллы. Они могут иметь разную форму и различный химический состав.

По форме выделяют:

  • гранулы;
  • кристаллы;
  • зёрна;
  • капли;
  • глыбы.

Рис. 1. Формы включений.

По функциональному назначению включения подразделяются на следующие группы:

  • трофические или накопительные - запасы питательных веществ (вкрапления липидов, полисахаридов, реже - белков);
  • секреты - химические соединения в жидком виде, накапливающиеся в железистых клетках;
  • пигменты - окрашенные вещества, выполняющие определённые функции (например, гемоглобин переносит кислород, меланин - окрашивает кожу);
  • экскреты - продукты метаболического распада.

Рис. 2. Пигменты в клетке.

Все включения являются продуктами внутриклеточного обмена веществ. Часть так и остаётся в клетке «про запас», часть расходуется, часть со временем выводится из клетки.

Строение и функции

Главными включениями клетки являются жиры, белки, углеводы. Их краткое описание дано в таблице “Строение и функции клеточного включения”.

ТОП-4 статьи которые читают вместе с этой

Включения

Строение

Функции

Примеры

Мелкие капли. Находятся в цитоплазме. У млекопитающих жировые капли расположены в специальных жировых клетках. В растениях большая часть жировых капель находится в семенах

Являются основным запасом энергии, расщепление 1 г жиров высвобождает 39,1 кДж энергии

Клетки соединительной ткани

Полисахариды

Гранулы разнообразных форм и размеров. Обычно в животной клетке запасаются в форме гликогена. В растениях скапливаются зёрна крахмала

При необходимости восполняют недостаток глюкозы, являются энергетическим запасом

Клетки поперечнополосатых мышечных волокон, печени

Гранулы в форме пластинок, шариков, палочек. Встречаются реже, чем липиды и сахара, т.к. большая часть белков расходуется в процессе метаболизма

Являются строительным материалом

Яйцеклетка, клетки печени, простейшие

В растительной клетке роль включений играют вакуоли - мембранные органеллы, накапливающие питательные вещества. Вакуоли содержат водный раствор с органическими (соли) и неорганическими (углеводы, белки, кислоты и т.д.) веществами. Белки в небольшом количестве могут находиться в ядре. Липиды в виде капель накапливаются в цитоплазме.



Понравилась статья? Поделитесь с друзьями!